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ABSTRACT

As the second attempt at ﬁnifying treatment of aunospheric particke systems, this paper further examines shape
characterization of atmospheric particles. First, to support the theoretical framework developed in Part I, methods
for studying non-spherical particles are reviewed. [t is argued that these different methods can be unified under
fractal geometry through the generalized power laws given in Part I. Empirical power—laws for hydrometeors scat-
tered in literatore since 1935 are summarized and reevaluated in terms of fractals. Second, generalization from
self-similar {0 self~affine particfes is discussed. Se!f-—aﬁ’mity of atmoaph_eric particles is exemplified by examining the
exponents in the power laws between the kength along 2— and c~axis of ice crystals. It is argued that unlike Euclidean
and self—similar particles, self-affine particles do not have a simple dimensional relation between original particles
and their projections; the relation for projection of self-similar particles and Mandeibrot” thumb rules for intersection
respectively set the lower and upper bound. Using published data, self—affine particles are shown to exist in the at-
mosphere. The existence of sclf—al‘ﬁn.: particies in turn calls for instruments that can simultanegusly measure mass,

area and maximum diameter (or their equivalents).
Key words:  Atmospheric particle, Shape quantification, Power—{aw, Self—affine fractal, [nstrumentation
L. INTRODUCTION

Atmospheric particles include both aerosols and hydrometeors. Traditionally, they are
studied separately. Howevér, many atmosphere-rtelated problems such as global climate call
for an overall consideration of effects from all the atmospheric particles. Moreover, since
these particies interact with one another, it is desirable to describe atmospheric particle sys-
tems as a whole. Theory of atmospheric particle systems has two relevant problems that are
not completely understood: particle shape and number distribution. Liu (1995, hereafter Part
) addressed both issues*within a unified framewerik, in which particle shapes are unified with
fractal geometry, particle number size distributions are unified with the principle of maximum
Shannon’s entropy, and particle shapes are related to-particle number size distribution
through shape—dependent power—laws.

With three specific objectives, this paper further exainines shapes of atmospheric parti-
cles and their characterization. First, Part I only discussed particle shapes theoretically. How
to treat non-spherical particles has been explored for a long time. Aerosol scientists and
meteorologists treat non—-sphericity differently. To provide observational evidence for the po-
tential of unifying shape treatment through the generalized power laws developed in Part I,
previous studies will be reviewed, summarized and re—consideted in terms of fractals. Second,
Part [ concentrated on Enclidean and self~similar particles. However, particles of neither
Euclidean nor self—similar shapes also exist in the atmosphere. A unified scheme therefore
should have the ability to quantify more general shapes. The second objective is o extend
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particle shapes from self-similar to self-affine fractals, to demonstrate the existence of
self—affine particles in the atmosphere. To discuss what new Questions the existence of
self-affine particles poses for future research is the third goal. ' _

The paper is organized as follows. Section 2 reviews approaches used by acrosol scientists
and meteorologists to investigate non-sphgrical particles, and summarizes applications of
fractal geometry in investigations of aerosol, and empirical power laws for hydrometeors. In

Section 3, first discussed are dimension concepts and methods for determining fractal dimen-

sions, then self—similar and self-affine Fractals with emphasis on their distinctions. In Section
4, two methods for studying seif-affine particles are discussed , and applied to demonstrate
the existence of self-affine particles in the atmosphere. The existence of self-affine particles
complicates shape quantification and hence raises new requests for instrumentation. These
implications are discussed in Section 5. Concluding remarks are made in Section 6.

1I. OVERVIEWS AND RE-EVALUATION

Non-spherical particles have been studied for a long time in many disciplines. However,
how to treat non—sphet"icity remains unsolved. Approaches for acrosols and hydrometeors
are different, As noted in Part I, a unified treatment is necessary for studying problems related
to atmospheric particles. This section serves to review, summarize and re—evaluate methods
for treating non—-spherical particles, and show these different methods can be unified under
fractal geometry through the generalized power laws given in Part I. .

1. Studies o fNon—spherical Aerosols

For a non-spherical particle, a commonly used term in aerosol science is equivalent
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Fig. 1. Various equivalent diameters and corresponding physical quantities measured (After Baron
and Willeke, 1993),
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Fig. 2. Particles that look different can belong to the same set when described by a descriptor: {a)
set of particles that have the same “projected arca diameter”; (b) set of particles of identicle Stokes
diametes; (¢) set of particles with'same volume. {after Kaye 1981, Fig.1.2).

diameter. When a particle is detected by a technique, the measurement usually corresponds to
a specific physical property. An equivalent diameter is then defined as the diameter of a
sphere having the same value of a specific physical property as the non—spherically shaped
particle being measured. For instance, aerodynamic equivalent diameter is the diameter of a
unit—-density sphere having the same gravitational settling velocity as the particle being meas-
ured. The commonly used equivalent diameters and corresponding properties are summarized
in Fig.l. Such equivalent diameter method has the deficiency that it can hardly differentiate
between distinct shapes, Fig.2 provides good examples: particles with very different shapes
may have the same equivalent diameters.

The deficiency of “equijvalent diameter” method is partially overcome by adding a shape
factor (Herdan et al. 1960, 25-27pp; 173-180pp). Theory for non-spherical particles hence in-
volves a shape [actor and an equivalent diameter. For example, drag on a non-spherical particle
is often expressed as a function of dynamic shape factor and volume equivalent diameter. How-
ever, such “shape factor approach” is unsatisfactory since most shape factors are empirically de-
termined by comparing two different measurements, and therefore are of uncertainty.

Thanks to the application of fractal geometry, a major breakthrough oocurs in agrosol
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shape characterization (Kaye 1978; see also the references listed in Tables 2a and 2b). Three
- ways have been developed to determine fractal dimension. The standard one, ruler method, is
to determine fractal dimension by measuring some property (e.g., number of sphere N{L))
change with the scale of the ruler (e.g., a length L) for an individual particle. The fractal di-
mensicn is determined by the power—iaw between N(L) and L (Mandelbrot 1967, 1983). This
meihod has been applied to analyze two—dimensional projections of a particle and has two
variants. The second, correlation function method, is to determine fractal dimension by ex-
ploring the dependence on distance r of the correlation function defined as c(r) = < p(x)p(x
+ry> cr? where <.> denotes the spatial average; p{x) is the density at a position x of a
certain quantity. Fractal dimension can be determined by a simple relation g=E—y
where £ is the Euclidean dimension of the space in which the aggregate is embedded {Forrest
and Witien, 1979), The two methods examine a single particle with changing scales. The third
method, Facta! measyre method, is to determine the fractat dimension by measuring proper-
ties of an ensemble of particles with similar shapes with the same scale (Sreenivasan, 1991).
This method has a variety of variants based on different measures used. Typical examples are
Mandelbrot's area—perimeter power—law and Mandelbrot’s volume—area power-law
{Mandelbrot, 1983, ch.12). The three major methods and their various variants are summa-
rized in Table 1. Table 2a is a summary of area fractal dimensions. Table 2b is a summary of
mass—fractal dimensions. The terms “mass fractal dimension and area fractal dimension” are
used in this paper generically to connote, respectively, fractal dimensions of objects embedded
in three—dimensional and two—dimensional Euclidean space. As shown in Table 2b fractal
measure methods based on power—laws among different equivalent diameters and / or dy-
namic shape factors are commonly used for studying non-spherical aerosols.

Table I. A Summary of Three Major Methods and Their Variants to Obtain Fractal Dimensions

Methods Symbols Power—law used Description
Fractal dimension §, is obtained
Ruler Method RM1 pxLl™h by measuring boundary perimetsr P

with length—varying steps.

Fractal dimension §, is obtained by

Ruler Method 2 RM2 Axph measuring projectsd area A with

length-varying squares for a particle

Fracta] dimension §,, is obtained by

CF ClpywF by measuring c{r) varistion with size r for
: a particle

Fractal dimensiony are obtained by

correlation

funetion method

Fractal measure £

FM =g . measuring {g,,4,) Tor an ensemble
method . i
particles with similar geometry.
FM] qi=Dmf! qJEDn
FM2 §=D, g9, =M
FM3 ' =D, q,=D,
FM4 =0 qJ':Dn

D,.D,, . and D, are respectively volume, dynamical, and mobility equivalent diameters; x is the dynamic shape
factors see Part I for their definitdons.
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2. Studies o fNon—spherical Hydrometeors

Meteorologists treat non—spherical crystals in a way different from aerosol scientists.
First, meteorologists prefer directly establishing relations between physical quantities {e.g.,
mass) for different hydrometeors to using some equivalent diameters and shape factors. Sec-
ond, fractal geometry has found few explicit applications in hydrometeor shape
characterization. However, fractal properties of hydrometeors have been implied, long before
the birth of fractal geometry, in a large number of empirically power—laws. Various power
laws, with integer or fractional exponents, are mathematieal manifestations of physical ob-
jects as described by fractal geometry (Schroder, 1991). In fact, most fractal measure methods
for aerosol particles can be related to these empirical power laws through the generalized
power laws given in Part I. Since 1935, various power laws have been established for
hydrometeors, A summary of them is desirable for linking hydrometeors with fractal geome-
try,

The most extensive power—laws for hydrometeors are established for mass:
M =a,, D% In 1935, Nakaya and Terada obtained mass power laws for five rough cate-

gories of hydrometeors: graupels, crystals with water droplets, powder snow and spatial
dendrite crystals, plane dendrite crystals, and needles. Since then mass power—laws have been
dramatically supplemented {Bashkirova and Pershina, 1964; Zikmunda and Vali, 1972;
Locatelli and Hobbs, 1974; You et al., 1987; Mitchell et al., 1990). A summary is given in Ta-
ble 3 after Locatelli and Hobbs {(1974) and Mitchell et al, (1990).

Relatively small number of area {A) data have been published (Davis and Auer, 1974;
Bruintjes et al., 1987; Heymsfield and Kajikawa, 1987); but the number has been increasing
recognizing the importance of area in both microphysics and radiation transfer (Mitchell and
Arnott, 1994}, and the development of instruments which can automatically sample and ana-
lyze two-dimensional images such as PMS-2D probes. Recently, the power-law for

Table 2a. Reported Values of the Fractal Dimensions of Two-Dimensional Projctions

Particle type 8. Methods Notes Source

D:1.1t0 3.0 um Forrest & Witten
Fe, Zn, 8i0,, Lab 1.7t0 19 RM2 & CF

Dy: 7om 1979
Acetylene soot, 1.5t0 1.6 RM D< 1.0 tm Samson ct al.
Lab D,:30 nm, 1987
Acetylene soat, 1.82 RM, D:5.35t0 12 um Samson et al.
Lab D30 nm, 1987
Methane soot, 1722010 RM D:1 to Sim Zhang et al.
Lab D20 nm, 1988
Diesel Lab 121012 RMI D:0.79 pm Klingen & Roth

1, 1210 1.
resel soot. L ° D450 to 100 am 1989

Carbonaceous 1.35t0 1.89 RM2 D:0.21 to 2.61 pm Katrinak et al.
aerosol Dy284 11 nm 1993
500t 170+ 0.97 RM2 Cai et al, 1993
soot 1.57:£0.08 CF Caietal. 1993
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Table 2b. Reported Values of Mass— Fractal Dimensions

Particle type - B Methods Noles Source
Ag aggregates 2.18 FM DG:7.5 nm Schmidt—Ott 198Ba
Ag aggregates 218 M DO: 7.5 nm Schmidt—Ott 19882
Methane soot {62+ 006 FM. D: 1 to 5um Zhang et al,
Dy 20 nm, 1938
Butane soot 19 FM D <20 sm Colbeck etal.
D60 nm, 198%
P10, 1.8 0.05 FM Dy17 nm, Naumang & Bunz
' 1991
U0, 1.8£0.07 FM Dy:36 nm, Naumznn & Bunz
" 1951
CuQ 1.8+£0.05 FM -Dg:24 nm, . Naumapn & Bunz
1991
vo 1.90.08 FM Dg:46 nm, Naumann & Bunz
: 1951
Fe0, 2.7+0.04 FM Dg:45 om, Naumann & Bunz
1991
Fe, 0, 2.1+008 FM D45 nm, Neavmana & Bunz
] 1991
Carbopaceous 186 FM D,:0.56 (0 1.41 Wu & Colbeck
aerosal ’ 1991
sool 1.7120.10 RM2,3D Cai et al. 1993
s00t 1.5720.08 Cr,iD Cai et al. 1993
soot 1934008 FM,h=12mm Caietal 1993
sooi 1.72+0.07 FM,h=16mm Cai et al. 1993
magnesium 1.08 FM D,.0.63 10 1.58 Wu & Colbeck
oxide smoke ' 1991
Butane soot 18710 2.19 FM D: €10 pm Nyeki & Colbeck
Dy:50 nm 1954

projected area of complex polycrystals in cirrus clouds was established. The projected arca
was measured for particles <200 sm by photocopying replicator image under microscope.
For sizes >200 um, the projected area was determined from the ice particle images of the
2D-C probe by counting the occluded pixels. Techrique details are referred to Mitcheli et al,
(19964, b). Table 4 is a summary of these power—laws.

Terminal velocity power—law ¥, = a, D" results from the corporation of fractal geome-
try of a particle and fractal properties of flow around the particle (Part I). Empirical power
laws have been reported since 1935 {Nakaya and Terada, 1935; Langleben, 1954 for plates
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Table 3. Power—Laws betwesn Mass and Maximum Diameter of Hydrometeor

Hydrometeor Type Power—~law Notes Authors
Lump graupel M =0.042D* D05t 2.0 L & EH(1974)
20050 0.1
Lump graupel M =0.078D% D:0.510 3.0 | L &H(197)
) p:0.1100.2 .
Lump graupel M =0.14D* D:0.5t0 1.0 L & H{(1974)
. £0.2 10045
Conical graupel M=0073D** D081 30 L & H{1974)
Hexagonal graupel M = 0.044D** D:0.8103.2 L & H([974)
Graupellike snow of lump type M =0.059D?' D:0.5t022 L & H(1974)
Graupellike snow of hexagonal type M=0.p21D* D:b.3to28 L & H{1974)
Rimed columns M =0.033D* D810 20 L & H{1974)
Rimed dendrites M=0.015D" D:l8104.0 L & H(1974)
Rimed radiating assemblages of M =0.039D*! D:1.8t028 L & H(1974)
dendrites
Aggregates of radiating M =0.073D" D200 100 L & H{1974)
assemblages of dendrites
or dendrites
Aggregates of rimed radiating M=0.037D"* D:2.010 120 L & H(1974)
assemblages of
dendrites  or dendrites
Aggregates of side planes M =0.047D" D:0.5to 4.0 L & H(1974)
Elementary ncedles M=0.0049D"* D:0.6to 2.7 M(1990}
Rimed Elementary needles M= 6.0060D*' D:0.5t02.8 M{1990}
Long columns M=0.0121D"* - D02t 1.5 M{1990)
combinations of Long columas M=0.017D" D210 26 M{1990)
side planes M =0.0210%° D:i0.310 2.5 M{1990)
Shert Columns M =0.064D** D020 0.6 M{1990}
Combinations of short columns M=0031D"" D:04to 1.4 M(1930)
Hexagonai plates M =0.028D%° D:0.2to 1.0 M{1930)
Radiating Assemblage plates M =0,019D*! D210 3.0 M(1990}
Fragments of rimed dendrites M=0.027D" D030 19 M{1990)
Aggregates of fragments of rimed M =0.034D* D:0.5104.8 M{1950)
dendrites |
Aggregates of radiating M =0.023D"" D:0.8 to 7.7 M{1990)
assemblages plates
Aggregates of side planes, M=0022D* D:08 10 4.5 M(1990)
bullets, and columns

L & H= Locatelli and Hobbs (1974); M = Mitchell et al. (1990)
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Table 4. Area Power—Laws of Hydrometeors

Hydrometeor Type Power-laws Notes Sources
Crystal with sector—like A=0.65D* 10 to 40, basal " Davis and Aucrl974
branches
Crystal with sector—like A=0.55D"Y 41 10 2000, basal Davis and Auer1974
branches
crystal with broad A=0.65D* 10 to 90, basal Davis and Averl974
braches likerabbit
ears, steller crystals
erystal with broad A=p11D'E 91 to 1500, basal Davis and Auer1974
braches like rabbit
ears, steller crystals
crystal with broad A=065D* 10 to 100, basal Davis and Aver1974
sector-like braches
crystal with broad A=021D"* 101 to 1000, basal | Davis and Auerl974
sector-likebraches
solid thick plate A=0.65D" 10 to 100, basal Davis and Aucrl974
Solid column, L/ W< 2 A=0.65D7 10 to 10400, basal Davis and Averl974
Solid column, L./ W >2 A=0.65D* 10 to 1000, basal Davis and Auerl974
Hollow column, L/ W <2 A=065D" 10 to 1000, basal Davis and Auer1 974
Hollow column, L / W>2 A=0.65D* 10 to 1000, basal Davis and Auer1974
Hexagonal plaies A=0.65D" 10 to 3000, basal Davis and Aueri9d74
Doubk plate with 7 . -
A=0.72D" D> 200 pm, basal Bruitjes et al. 1987

branches
Hexagonal plates A=0.2395D"* D> 15 um, random | Mitchell et al 1956 °
Hexagona! columa A=10.6837D*0 15<D< 100 ym Mitchell et al {996
Hezagona) column A=004590D'# D> 100 pm Mitchell ¢t al 1996
Bullet rosettes with § .

: A=0,08587D" D> 200 #m Mitcheli et al 1996
branches
Complex Polycrystals A=0.2285D" 20<D< 450 pm Mitche]l et al 1596
$imple polycrystals A=04715D 20<D <100 ym Mitchall et al 1996

and columns, dendrites, mixture of dendrites and aggregates of plates, rimed dendrites; Ma-
son and Huggins, 1980 for hailstones; Sasyo and Matsuo, 1980 for mixed smowilakes;
Locatelli and Hobbs, 1974 for 15 types of hydrometeors; Knight and Heymsfield, 1983 for
hailstones; Heymsfield and Kajikawa, 1987). A summary is given in Table 5. Berry (1989} of-
fered a good discussion on terminal velocity of aerosol particles.

The size of a crystal is nsually be characterized by two lengths: length along a-axis (a)
and length along c—axis (c). Observations (Schaefer, 1947; Wieckmann, 1947; Reynolds, 1952;
Mason, 1953; Magono, 1954; Isono, 1959; Ono, 1969, 1970; Auer and Veal, 1970; Heymsfield
and Knollenberg, 1972; Davis, 1974; Jayaweera and Ontake, 1974} have shown that the two
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Table S. Power—Laws between Different Characteristic Lengthes of Hydrometeors
Hydrometeor type Power-laws Range of major axis (im) | Sources
Hexagonal plate. E H=1.41 x 1072ps™ 10 to 3000 Auer and Veal1970)
Crystal with sector-like

st H=1.05 x 10-2p™2 10 to 2000 Aucr and Veal(1970)
branches. D

stal with broad braches like
4 . H=%.96x 1073p*$ 10to 1500 Auer and Veal(1970)
rabbit cars, steller crystals. B -
crystal with broad sector—like Y
H=%96x107°p*"'* 10 to 1000 Auer and Veal(1970)

braches, C ;

. solid thick plate. F H=0.138D%™* 10 to 1000 Auer and Veai{1370)
Solid eolumn, L / W< 2.G W =0.578L0%% 10 to 1000 Auer and Veal1970)
Solid column, L/ W= 2.1 W =0.260L% 10to 1000 Auer ard Yeal(1970)
Hollow column, L/ W< 2J W =0.4221.992 10 to 1000 Auer and Veal(1970)
Hollow column, L/ W>2.H W =0.262L%%% 10 to 1000 Auer and Veal(1970)
dendrites, fernlike crystals,
dendrites with plates at end,

Plates with dendrite extensions, | H=%.02 % 107D Auer and Veal(1970)

Four brached crystals,

dendrites with 12 branches. A

Solid bullet, L< 0.3 mm. K W =0.153L07% ) Auver and Veal(1970}
asaz Jayaweera & Cntake

Hollow bullet, L 2 0.3 mm.M W =0,063L" )

: 1974
Elementary needle. L W =3.05 % 1073L0! Heymsfield 1972
Long solid column. N w353 % 10724 Heymsfield 1572

lengths are related to each other, and the size relationship can be well described by various
powet—laws. Table 6 is a summary after Pruppacher and Klett (1978, 40p). These power laws
provide observational evidence for the existence of self-affine fractals, and hence necessitate
the second order generalization of describing particle shapes.

I11. FRACTAL DIMENSION, SELF-SIMILAR AND SELF-AFFINE FRACTAL
1. Fractal Dimension

Fractal dimension is the most ymportant shape descriptor in fractal geometry, For
completeness, this section outlines the evolution of dimension concept. The Euclidean dimen-
sion originates from intuiticn, We know empirically that the dimension of a line and a plane
is 1 and 2, and that we live in a 3—dimensional space. Such intuitive dimension concept is gen-
eralized to n—dimensional vector space by defining the dimension of a vector space as the
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number of independent variables {Datta, 1994). Actually, it iz conventional in multi-body
mechanics to replace the motion of # particles in 3 dimensions by the motion of one particle
in 5m~-dimensional space by considering each particle’s location and momentum as indepen-
dent. Poincare (1903) gave topological meanings to such intuitive view in terms of
“continuum and cut”. The following is the translation by Mandelbrot (1983, 410p): “If to di-
vide a continuum C it suffices to consider as cuts a certain number of distinguishable
elements, we say that this continuum is of dimension one.... If to divide a continuum it suf-
fices to use cuts which form one or several continua of dimension !, we say that C iz a
continuum of dimension 2. If cuts which form one or several continua of at most dimensipn
two suffice, we say that C is a continuum of dimension three; and so on.... Since curves can be
divided by cuts which are not continuum, they are continua of dimension one; since surface
can be divided by cantinuous cuts of dimension one, they are continua of dimension two; and
finally space can be divided by a continuous cuts of two dimensions, it is a continuum of di-
mension three. *

Table 6. Summary of Commoniy-used Dimensions

Name Description

Dimension of the Euclidenn space in which the
observed set is embedded; integral values only
Integral values onlys inveriant under
homeomorphism

Euclidean dimension

Topological dimension

"Defined for strictly self—similar objects,
including Euclids
Defined by most efficient covering and for

Similarity dimension

Hausdorff-Bestovish dimension
any shapes

Defined by covering with identical Euclids,
€.2., spheres and cubes

(b} (c)

o)

Capacity dimension

—
Fractal dimensions increase from 1102 with figures
from (s} to {c).

Fig.3. Objcts with the same Euclidean dimension 1, vet different fractal dimensions, Object (a) is
a smooth line with fractal dimension = 1.0; object (b) is a Koch flake with fractal dimension g2
1.26; object {c) is a plane—filling Brownian motjon curve with fractal dimension f22.
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The dimension as discussed looks natural and is favored by commeon sense. It, however,
contains serious flaws. First, it cannot differentiate between simple and complex shapes. For
example, the objects in Fig.3 have the same Euclidean dimension 1, yet different shapes. Sec-
ond, there are contradictions for complex shapes. For exampie, neatly one hundred years ago,
Peano described a very strange curve that can be drawn with a single stroke and tends to
completely cover a plane (Peano curve, see Mandelbrot, 1983). Since the location of a point
on the Peano curve, like a point on any curve, can be characterized with one real number, we
become able Lo describe the position of any point on a plane with only one real number.
Hence both Euclidean and topological dimension of this curve are 1. This contradicts the em-
pirical value 2 of a plane. These difficulties drove mathematicians to a concept breakthrough
at the early 20th century: from topological notion to metric notion of dimension concept.
These metric dimensions are called fractal dimensions by Mandelbrot {1983) (see Table 6 for
a summary).

The simplest fractal dimension is similarity dimension. As discussed in Part 1, it is devel-
oped for self-similar objects, and closely connected with our intuitive notion of Euclidean
dimension. Some key points ars repeated here,

A one—dimensional object , for example, a line segment, can be divided into N identical

parts each of which is scaled down by the ratio Dy = 1% (D is length). A two—dimensional ob-
jects, such as a square, can be divided into N identical parts each of which is scaled down by a
factor D, = J%‘ A three-dimensional object, like a solid cube, can be divided into N litle

cubes each of whlch is scaled down by a ratio D, = 3-=

To genera]:ze a p—dimensional self-similar object can be divided into N smaller parts
each of which is scaled down by a factor

D, =%N , )
or ,
N= —Df?n— ). | (1b)
The similarity dimension is given by
p=togl) (10)
log (E )

Similarity dimension overcomes the difficulties of the Enclidean dimension when an ob-
ject is self—similar, and conforms to Euclidean dimension when an object is a Enclid
{(Mandelbrot, 1983).

A more general fractal dimension, Hausdorff—Bestovish dimension, was introduced by
Hausdorff in 1919, completed by Bestovish and finally manipulated to study physical objects
by Mandelbrot (1983). Hausdorff-Bestovish dimension is defined as follows by a method of
coverings.

Let £> 0 and é > 0 be real numbers. Cover a set by countable spheres whose diame-
ters are all smaller than &. Denoting the radii of the spheres by Ty, F3 ety » the {~dimensional
Hausdorff measure is defined by
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H @)= Liming (T, ), : {2a)

50 sy <d

.

where in £,) means the infimum,

For any given set (3, this measure is proved to jump from zero to infinity at a critical
value &, denoted by S, This critical value defined as Hausdorff—Bestovish dimension.
Mathematically, we have,

B, =inAEH )= 0}= sup{r.f:Hf(Q) = 00} R 2b)
so that H‘(ﬂ)={;0 ::: E:}gh (2c)
4

Hausdorff-Bestovish dimension equals to similarity dimension for self—similar fractals, and
to Euclidean dimension for regular objects (Appendix A). The practical ruler method is de-
veloped from the covering idea.

2. Self-similar and Self-affine Fractals

Self—similar models enhance our ability of particle shape characterization by quantifying
some jrregular shapes. Nature, however, also produces neither Euclidean nor self-similar
shapes. As a consequence, a unified treatment should be able to include more complex shapes.
The self-affine model is obviously a good choice. A self-affine fractal is the natural generali-
zation of a self-similar fractal. Their main distinction is that self-similar fractals scale
isotropically { the same in all directions) whereas self—affine fractals scale anisotropically
(differently in different directions). In other words, a self-affine fractal is directionally
self-similar. Mathematically, a function is self—affine if it satisfies {3a)

LA x, Apxs, e A x, Y A 2 et L xy e x)) (3a)

where H, is called the Hufst exponent; the symbol means that (3a) holds statistically
(Mandelbrot, 1983). When fis a function of one independent variable, equation (3a) reduces
to a simple form: :

faxy~ ¥ fx) . . (3b)

Equation (3b) expresses the fact that the function is invariant under the following scaling: en-
larging along the x—axis by a factor of 4, followed by scaling the function value by a different
factor A7 . More about self—similarity and self—affinity are given in Appendix B.

However, the practical part of the generalization {rom self—similar to self-affine fractals
is not as simple as the concept. Unlike self-similar fractals which have such nice properties
that only a single fractal dimension is needed to quantify shapes, and that methods for deter-
mining fractal dimensions are well established, characterization of self-affine fractals still re-
mains unsolved {Mandelbrot, 1985; Lovejoy and Schertzer, 1987). In the following section,
we will demonstrate the self-affinity of atmospheric particles, and address problems involving
their shape characterization.
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IV. JUSTIFICATION FOR SELF-AFFINE PARTICLES
1. Power—laws between Lengths o fDifrent Directions

An obvious feature of a self—affine fractal is that it scales differently in different direc-
tions. Suppose a fractal scales differently in the x and z direction (Lojevoy and Schertzer,
1987, Matsushita and Ouchi 1989):

Lo | (4a)

L, ociffe | {4b)

where L and L, are the lengths along x and z direction respectively, 4 the scale factor, H,
and H, the corresponding exponents.
A combination of (4a) and (4b) yields a power law between the two lengths:

Lyl | (58)
H
Bus=3 - (5b)

Equation (5b) shows that the exponent f,, does not equal 1 if an object is-self—affine (scales

- differently in the x and z direction) and equals 1 if it is self-similar. For crystals x and

2 correspond to the a—axis and c—axis respectively. Therefore, self-similarity or self-affinity
of crystals can be investigated by examining power laws between lengths of the a—axis and
¢—axis. Simple calculation of the exponents given in Table 5 yields a spectrum of g, , from
0.377 to 2.288. The degree of self—affinity of crystals becomes more evident in Fig. 4.

2. Dimensional Relation between Seif-afiine Fractals and Their Pro jctions

Atmospheric particles exist in the three—dimensional space. However, most shape ana-
lyses are usually performed for their two—dimensional projections. A relationship between

.25
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L 1 L L 1 L L L i 1 1 |3 i
A B C DEF G H 1 J KL MN
) . Crystal Type
Fig. 4. Degree of Self-affinity of hydrometeors, ﬂm inverse of the exponents in Table 5 is.tak_en
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mass and area fractal.dimensions is therefore desirable. Two equations are in common use.
First, for Euclidean particles, it is obvious that dimension of projecticns depends on both
projected particles and projection subspace. A plane—projection of a three—dimensional and a
two~dimensional particle has dimension two whereas a plane—projection of a one—
dimensional curve still has dimension one. When a projection subspace is one—dimensional,
either a three—~dimensional, or a two—dimensional, or a one—dimensional object has a projec-
tion of dimension 1. This is readily generalized to a self—similar fractal (Part I):

ﬁpm_'mﬁnn = min(ﬂs !ﬁ) . (63)

Equation (6a) indicates that the projection dimension f;qpcriq, Will be the minimum between
B and B, when a self-similar particle of dimension f is projected onto a subspace of dimen-
sion B, . A rigorous demonstration of (6a) was provided in Falconer (1991, Ch.6).

The other method inferring mass fractal dimension from area—fractal dimension is based
on Mandelbrot's rule of thumb for intersection (Mandelbrot, 1983). Mandebrot’s rule of
thumb for intersections states that an E, ~dimensional section of a fractal set embedded in
E-Euclidean dimensional space (E > E, , integers) satisfies equation (7)

ﬁ = ﬁinwmﬁnn +(E - E:) (Sb)

Equation (6b) has been widely used for obtaining fractal dimension of an isotropic turbulence
from its cross—sections, and adopted for cloud surface analysis assuming (6b) is valid for pro-
jections as well (see Malinowski and Zawadzki, 1993 and references therein).

However, when an object is self-affine, dimensional relationships are complicated. It will
involve both (6a) and Mandelbrot’ rule of thumb for intersections because of their anisotropic
properties. For example, Malinowski and Zawadzki (1993) argued that satellite images of
clouds are not cross—sections but rather horizontal projections. Particles exist in different
orientations in the atmosphere; such orientational variability of atmospheric particles further
compounds the problem. Assume that given an area—fractal dim_ension, the corresponding
mass—fractal dimension lies batween curves determined by (6a) and (6b). In other words, for
self-affine particles, we can no longer predict mass—fractal dimension from area—fractal di-
mension from either (§a) or (6b). On the other hand, a combination of (6a) and {6b) sets the
domain where mass—fractal dimensions locate. In practice, the common situation is that a
patticle embedded in the three-dimensional space is sampled onto a two-—dimensional
subspace, i.e., 8, = E, = 2, and E = 3. Then (6a) and (6b) become (7a) and (7b) respectively.

B, =min(2, p) , (7a)
f=p+1, {76}

where fi, is the measured area—fractal dimension representing either 8, ,oci0n OF Bigersection -

If our new proposal holds, then inferring mass—fractal dimension from area fractal di-
mension has a uncertainty of as large as 1. Knowledge of both mass fractal dimension and
area fractal dimension is required to demonstrate (7a) and (7b). Unfortunately, to the
authors’ knowledge, very few studies have been performed which measure mass—and
area-fractal dimensions simultaneously. Mitchell et al. (1996) provided 19 pairs based on
previous studies for hydrometeors; Rogak et al. (1993) determined 12 pairs for asrosols. We
plot these data in Fig.5. It is evident that the measurements fall within the domain set by (72)
and (7b). The preliminary agreement supports our assumption and suggests the existence of
self-affine particles in the atmosphere. It also cautions that special care is needed to infer
mass fracta) dimension from area fractal dimension.
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1- i PP | 1 L ]

1 12 14 14 1.8 2 22
" Area Fractal Dimonsicd

Fig.5. Relationship between mass fractal dimension and area fractal dimension. The squares rep-
resent the data for crystals from Table I of Michell (1994), and crosses repressnt the daja for
aerosol particles from Table 2 of Rogak and Flagan (1593). The thin solid curve represents
£, = min(2,8,,); the thick linc respresents g, =§, + 1.

V. IMPLICATIONS FOR SHAPE CLASSIFICATION AND INSTRUMENTATION

A variety of particle shapes exist in the atmosphere. Dependence of varicus properties
(e.2., scattering and dynamical) on particle shapes makes particle shape classification more
important. The traditional way to describe the shape is to use a metaphor or to compare the
shape to a known geometry. For example, the British Standards Institute prepared a standard
glossary of terms in the description of fine particle shapes (Kaye 1980, 338p). The most
widely—used systematic classification of ice particles is thar by Magono and Lee (1966), in
which about 80 categories are identified. Obviously, these qualitative classifications hardly
meet the needs of quantitative calculation such as aumerical models.

Fractal theory offers a way to quantitatively classify particle shapes. However, practical
application needs further examination. First, above discussions demonstrate that atmospheric
particles can be characterized by a power—iaw:

(quantity); = prefactor(quantity); ™" . (8)

The exponent , which is related to fractal dimension, is an important ahape descriptor.
For example, mass—fractal dimensions of atmospheric particles may range from 1 (needle
crystals or straight chainlike aerosols), to 2 ( regular planar crystals and acrosols), Further to 3
{ Euclidean 3-dimensional solid such as spherical particles), witk various fractional dimen-
sions in between. So far, most aerosol studies have gmphasized the importance of fractal di-
mension; Information on prefactors has been overlooked. However, as pointed out by
Mandelbrot, the prefactor cannot be neglected; it includes important information on particle
texture. Furthermore, for atmosphenc particles, the prefactor contains information about not
only the common texture (characterized by a new term, lacunarity, defined by Mandelbrot,
1983) but also the particle material. Without knowing fractal geometry, meteorologists have
reported a large number of empirical power laws. The importance of prefactor in character-
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izing particle shapes can be clearly seen from these empirical power—laws. For example, in
Table 3, hydrometeors of graupelike snow of lump type, rimed radiating assemblages of
dendrites, rimed elementary needles, radiating assemblaged plates, and aggregates of side
planes, bullets and columns, all have exponents around 2.1 whereas their shape differences are
reflected by the differences in their. prefactors. This suggests that exponent-and prefactor
should be measured and studied simultaneously as the first and second shape descriptor
respectively.

QOur second concetn is for self-affine particles. As discussed above, we cannot definitely
know mass—fractal dimensions from measuring iwo—~dimensional images for self-affine par-
ticles. Quantifying self-affine particies requires at least a pair of power—laws that describe
three physical properties. The existence of self—affine particles therefore calls for instruments
which can measure both mass—and area—fractal dimensions together with prefactors. Devel-
oping such kind of instruments lies in the front of undarstanding atmospheric particle systems
and their varicus effects. Recall Table 2 of Part 1. determining terminal velocity or other
dynamical quantities at least requires mass, area and maximum diameter. An optical example
is that the determination of effective distance, the representative distance a photon travels
through a particle, also requires mass, area and maximum diameter (Mitchell et al., 1995), Ef-
forts have been recently made in this respect. Malonsy et al. (1995) developed an instrument
to measure solid particle length, width, cross—sectional area, extermal surface area and vol-
ume by rotating particles using a set of directed gas jets ang recording image data for succes-
sive video fields as a function of rotation angle. Arnott et al. (1995) proposed a method to
measure two—dimensional images and masses of cloud particles by recording successive im-
ages and the evaporation time.

V1. CONCLUDING REMARKS

Methods for studying non—spherical particles are reviewed. Examination is made of the
differences in methods for aerosols and for hydrometeors. Various fractal dimensions and
practical methods to determine them are discussed. Characterization of aerosol particles in
terms of fractal dimensions is reviewed. Empirical power—laws for hydrometeors are summa-
rized and re—considered in terms of fractal. It is argued that methods for aerosols and
hydrometeors can be unified in terms of fractal through the generalized pgwer laws as dis-
cussed in Part L. '

Generalization from ‘self-similar to self—affine particles is addressed. The degree of
self—affinity of atmosphetic particles is studied by examining power laws between lengths of
different directions. It is shown that hydrometeors exhibit a spectrum of self-affinity, from
self-similar to flat., It is further argued that unlike Euclidean or self—similar particles,
self—affine particles have no"definite dimensional relationship between real particles and their
projections. We propose that the relationship for projections of self—similar particles and
Mandelbrot rule of thumb for intersections respectively set the lower and upper limit to the
mass—fractal dimensions given measured area—fractal dimensions. The preliminary evidence
supports such relationship. Discussed is potential usefulness of power—laws in quaatifying
particle shapes. Exponent {or, fractal dimension) and prefactor in a power—law are suggested
to be respectively the first and second index of a particle shape. Instruments are highlighted
that can simultanecusly measure both mass fractal dimension and area fractal dimension be-
cause of the existence of self-affine particle in the atmosphere.
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Appendix A. Generality of Hausdorff—Bestovish Dimension

Falconer (1990, 29p) gave mathematical discussions about generality of Hausdorff-
Bestovish dimension as follows. '

If a set is smooth m—dimensional surface of space E* then Huasdorff-Bestovish dimen-
sion equals ». In particnlar smooth curves have Huasdorff-Bestovish dimension 1 and
smooth crves have Hausdorff~Bestovish dimension 2. For example, let F be a flat disc of unit
radius in £°. From familiar properties of length, area and volume, their Hausdorff measures
are

H'(F)= length(F)= o , . {Al.1a)
0< HH(F)= inarea(F) <o, (AL1b)
Hs(ﬂ=‘3-‘nvolume(.r)'=o . ‘ (AL10)

Thus, According to Eq.2, Hausdorff-Bestovish dimension 8, = 2, equals the Euclidean di-
mension of the disc. )

Appendix B. Self—similarity and Self—affinity
This appendix is after Mandelbrot (1983, Ch.39).
B1. Self-similarity

In the Euclidean space &7 ; a real ration r > 0 determines a transformation called simi-
larity. It transforms the point x = (x,, x5, ..., Xg) into the point r(x)=(r % 1,7 X 2, .,
r % E), and hence transforms a set § into the set r($). A bounded set § is self-similar, with
respect to r and an integer N, when § is the union of N non—overlapping subsets, each of
which is congruent to #(S). “Congruent” means identical except for displacement and or rota-
tion.

" B2. Self-affinity

In the Euclidean space R*, a collection of positive ratios r = (r, r,, ..., 7g) determines
an affinity. It transforms each point x = [x,,%,, .., Xz ) into the point 7 (x) = (r, X 1, 7,
X 2, ..., rg X E), hence transforms a set into the set r(5). A bounded set § is self—affine, with
respect to the ratio vector r and an integer N, when Sis the union of ¥ nonaverlapping
subsets, each of which is congruent to r(5).

Appendix C. Corrections to Part 1
B—1/b B-1/6

Page 425, Table 2.y =p, (I_JJL) Jmoty=p, (31)
E)

ae
. _N . _X .

Page 430. Equation (14b) shouid be &, =¥ instead of g, = N Correspondingly, the
following line “where g, represents the average X per particle” is changed as “where g, 1ep-
resents number of particles per unit X.

Page 435. equation (A1} should be
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Lip(x).q,,4,)= — j: p(x)np(x) + ..., not

Lip(x). g1, 4;)= = j: plx)n(x) + ...

The main idea took silape when Liu Yangang was in the Chinese Academy of Meteorological Sciences, PRC'
(CAMS) under the support of National Natural Scisnce Foundation. Special thanks to Professors You Laiguang, Hu
Zhijin, Guo Enming and Chenp Wankui in CAMS. Lin Yangaﬁg thanks Drs. W. P. Amott, D. L. Mitchell, J. Hallett
and §. K. Chai of the Desert Research Institute, USA for their Insightful discussions, thanks Mrs. Sham‘n Hughes of
the Nevada Literacy Counsel, USA for her effort at improving English,
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