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ABSTRACT

Addressed is a problem as (0 meso perturbation wave ensemble development in a curved basic flow in the context
of a f-plane non—hydrostatic equilibrinm acoustic wave fltaring model in natural coordinates with the aid of the
WKJB and energetic approachcs.' Results show that the symmetric development depends crucially on the matching of
structures of the disturbance wave and background field, and for a smooth (curved) basic flow the wave ensemble
evolution hinges upon the spatial imhomogeneity of ponthermal wind of the background field (under nongradient
wind balance). Finally, presented is the wave ensemble evolution in relation to the thermal curvature vorticity in the
background field.
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I. INTRODUCTION

Numerous studies show mesc symmetric instability to be one of the mechaaisms for
mesosystem genesis. Review includes Hoskins {1974), Emamuel (1982), Zhané (1988) and
many others that are devoted to detailed investigation of the symmetric instability and devel-
opment of geostrophic smooth flow, thereby enriching the theories on perturbation stability
at this scale. Observational studies, however, reveal that basic flow controlling the disturb-
ance tends to be cyclonically or anticyclonically curved instead of smooth (Huang et al., 1982;
Ding et al., 1992), the example being mostly anticyclonically—curved upper—air jet responsi-
ble for summertime rainstorm amplification over the Jiang—Huai drainage. This paper con-
cerns meso wave ensemble development in a curved basic flow in terms of a fplane
non-hydrostatic—equilibrium, ageostrophic, adiabatic and acoustic wave filtering model in
natural coordinates by means of multi—scale and WKIB techniques.

II. BASIC EQUATIONS

It has been demonstrated that the f~plane, non—hydrostatic, acoustics removing model is
optimal {Zhang, 1980). To deal with the impact of nonzonal flow on meso—system behavior,
we assume natural coordinates for horizonal dimensions, s for basic flow U direction and the

normally—used z vertically so that we have a system of perturbation equations of ((—f; = 0)

symmetric with resbect to s:
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where (u, v, w, 8) = plu’, v/, w’,iﬂ’) with the prime denoting the perturbation quantity

and «‘,v', and w’ as the components of the field in s, m, and z directions, respectively.
Consequently,
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where 8, represents a standard value of potential temperature, U(n, z) and B(n, z) the basic
wind and potential temperature field, respectively, {_/—,, the thermal wind of the basic tempera-
ture field; K, the curvatore of the basic wind, assumed 1o be a constant.

Intreduction of streamfunction yin, z, t) into (5) leads to
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which is then substituted into (1)—(4) by referring to (6)—(9). Thus we find
8 a2 2y T 2, 0% 28 .
ot Y S U gy TN
2 AT L [0y BN
AR A FHUTRES LR an
2 2
with 72 =2+ &
on® Bz

The problem of eigenvalues of (11) has been examined under the condition of smooth
flow thermal wind equilibrium (Hoskins; Zhang) whilst approach to the solution of {11) in the
case of the nonthermal wind balance documented by Sun et al., (1989) by dint of the WKBJ
scheme. However, their conclusion applies only to southward—inclined phase—isopleths of the
perturbation, leaving something to be explored. We shall now investigate in the following sec-
tion the solutions of (11) in the case of a curved flow by virtue of the WKBI method, with
some additional evidence presented to the article of Sun et al. {1989).
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III. DYNAMICS OF SLOWLY —VARYING WAVETRAIN

. As we know, a wave group consists of 1) highfrequency carrier wave, changing relatively
fast as a function of space and time, thus displaying shift in phase of perturbation and II)
lower —frequency wave packet that varies relatively slowly spatially and temporally, referred
to as slowly-varying wavetrain, exhibits change in amplitude. As a result, two kinds of
space / time scales are available in a wave group, for which a multi~scale method is
employed.

Let y=a, z=z, t=t, (12)
Y=¢y, Z=2z, T=sr, ‘ ' (13)
perturbation space / time scales -

back ground — field space / time scales
To the examined wavetrain the WK BJ approximation is applied such as we set

in which ¢ = «]

8
Yy=0(Y,Z, et , {14)
with ®=3 0. , (15)
=0 N
B=kY+mZ—wT . (16)

If the basic flow is assumed to be steady and a function of ¥ and Z only, then @, k. m
are functions of Y, Z, T, respectively. Putting (12)—{16) into (11), we get the zero— and
first—order approximations of ¢ in the form
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where K* = &% + 2%, From the dispetsion relation (17) we obtain the expressions of group ve-
locity, viz.,
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Foliowing He (1991), for the actual atmosphere, £, f; < * < N? is normally met, lead-
ingto 42 > 0.
By the definition of phase velocity
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we find, from (19}, {20) and (22),
ol E’g =0 (23)

for group velocity perpendicular to phase velocity as one characteristic feature of gravity—in-
ertia wave. In (23) the group velocity is givenas C, = Cy j + C k.

2
Write €, = ;;—, and C = %"ﬂf to stand for the projections of total phase velocity

(22) on the ¥ and X axis, respectively. It is easy to discover that C,, has the same sign as-
C,y - suggesting that both phase velocity and wave energy arc propagating in the ¥ direction, '
and C,. is opposite in sign o C,., implying their inverse migration in the Z direction.
Fig.1{ab) portrays the relation between phase and group velocities at different inclinations
phase isolines,

In Putting (19}-(20) into (18) in such a way as to make re—insertion based on the follow-
ing

5_(0:_.2& a_w-_-__a_’ﬂ @’ﬂ=_a_k (24)
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with the resulting form multiplied on both sides by @, (but by a complex conjugate for a
complex @), we come to ’
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Fig.1. Relation between phase and group velocities for two inclifelions. phase isolines.

3
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IV: CONDITIONS FOR WAVE ENSEMBLE SYMMETRIC DEVELOPMENT

Denote
AU, =U, — U (26)
AU =AU, — (K707 } f, _ 27

where AUB refers to nonthermal wind, and AU” to’ the same wind in basic flow of
noungradient wind equilibrium. And for X, =0, AUM-AUB results.
Substitution of (6), (9), (26) and (27) into (25) yields

A

(K G+ T - (K00 = T

=—=——C+p . (28)

with

p= VAU, + 2K, U),] . 29)
in which p is the environmental vector associated with energy varlatlon the first term on the
rhs the vectors for the thermal wind distribution; the second the compoucrlt “ector for therm-
al curvature vorticity in the Y direction; C, =; the Z phase velocity. Fr&n {17}, (19} and

C, we have

_k
ng .‘CZ_2—m-i . (30)

Substituting (30) into (28) yields

%(Kz®§)+'i?-(f(2¢f, -—f’m" °p. (31)

which is integrated across the perturbation domain, and for the amplitude @, = 0 at the
fringe we arrive at the energy expression of the from

”"‘ E-‘lc s pdYdZ | (32)

where E = IIK Zd)ﬁd YdZ signifies the (¥ — Z)-plane energy amount of the pocket under

L
consideration.
The perturbation is enhanced as the energy is increasing versus time, and v.v.

4.1. Conditions o fthe Examined Energy Conservation

For smooth basic flow (X, = 0} and thermal equilibrium (AT, o =0), from (29) p=0 fol-
lows, giving, after substituted into (28),

BE _ : ‘ ,
o =0, (33)

suggesting that the energy neither intensifies nor. falls. We hence arrive at the conditions
of K, = 0 and AU, = 0 for the energy conservation.




532 vAdvanoes in Atmospheric Sciences Yol.14

Fig.2. Models of the strengthening and atienuation of the study wave ensernble at % >0,
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Fig.3. Asin Fig.2. but at% <0.

42, Conditions of Wave Ensemble Development

To facilitate analysis, we set the Y—axis directed to the due north so thatznk— >0 (<Q)
implies the perturbation phase isopleths inclined SOuth—(north\#ard).
4.2.1. Effctof smooth fow on the wave development

With K, =0, suggestive of smooth flow, we get, from (29}, p= V(A[Ta), thereby leading
(30) to have the form which clearly shows that, to the extent that the spatial heterogeneity of
(he thermal difference between the basic flow and tempetature fields is respensible for the en-
ergy change, the wave packet depends for development on the matching of the phase isograms
with the nonthermal (AU, ) structures

We therefor; come to the conclusions as follows:

" For the scuth—{northward)inclined phase isolines, i.e., % > 0{ < 0) and the wave group

velocity having the same direction as the nonthermal gradients (the upgradients), the devel-
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opment reaches its peak, as seen from (34),as opposed to the case when the group velocity is
directed likewise as the upgradients (gradients)

It is evident from the foregoing evidence that for K, = 0 the development is related to the
pattern of the perturbation phase isolines as well as the group velocity direction and basic
flow nonthermal wind configuration. Sun et al., (1989) however, reported on the findings only

with % > (). As we know, in the realistic atmosphere such isopleths tend to slope towards a

cold area when symmetric instability emerges. As such, the results for % are presented here as

our modest contribution to the problem.
4.2.2. Influence on perturbation develo pment o fgradient balance
For a curved flow (K, # 0), we have
AUy, =0, . (35)

When the flow satisfies the relation of gradient wind balance, in which case {32) can be -
rewritten as

eE _ _ [(m®
2 - —of 2% e Lk, navaz. e

I
Thus, EIQZ_(K . U) >0 is available underneath cyclonically curved jet stream and as gra-

dient-wind equilibrium field exists if % > 0( < 0, see Fig.4.).

4.2.3. Impact o fcurved flow upon perturbation development

When Ks does not equal zero nor satisfies the relation of gradient wind balance, (32} has
its two terms on the rhs, viz.,

2E _ _J‘ m Py

iT y 2 TV Uy dYdZ — zﬂk T fc,,az(x U)dYdzZ ) (37

L

maintained where the first term denotes the role in the development of the nonthermal

Fig.4. Wave ensemble development under the effect of cyclonically curved jet at '—;— >0
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inhomogeneity throughqutvtﬁe nengradient equilibrivan basic flow due to the effects in verti-
cal originating from the imbalance of pressure gradient, inertial centrifugal and Coriolis
forces in combination, and the second term describes the role of thermal curvature vorticity in
development of perturbation wave ensemble in question. For their detailed analyses the read-
er is referred to the previous subsection. '

V. CONCLUDING REMARKS

Based on the wave ensemble development presented the highlights are as follows:

1. For a zonally smooth basic flow and thermal wind balance, the wave ensembleas not en-
hanced nor weakened, i.e., the energy is conserved.

2. For K, =0 but thermal imbalance has its development dependent on the matching ot the
phase isopleth pattern with nonthermal structure throughout the flow. These isolines slop-
ing towards a cold region will give rise to the reinforcement of the wave propagating
southward, an outcome that agrees more closely with observed synoptic events.

3. For a zonally curved flow, energy for the perturbation wave intensification has its origin
from nonthermal heterogeneity throughout the flow under nongradient equilibrium.

4. Vertical shear of the flow curvature vorticity makes positive contribution to the develop-
ment.
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