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ABSTRACT

In order to improve the practicality of speciral methed and the eficiency of computation, the multi—spectrum
method is proposed on the basis of multi-grid method. Coarse specira are used to compute the slow nonlinear part
(including physical process), while fine spectra are used to compute the fast linear part. This method not only can re-
duce computation time, but also can obtain computational efficiency similar to that from only fine spectra. Thus, it is
an economical numerical method. Both explicit complete—square—conservation scheme and multispectrum scheme
are used to improve IAP L, T,, spectral climate models, with and without physical forcings respectively, and the ad-
vantage of reducing computation lime is obtained satisfactorily. In order to overcome the difficulty that vapor equa-
tion is very sensitive 1o the change of time step, the square—conservation semi-Lagrangian scheme is used to solve
vapor equation. Because the semi-Lagrangian scheme has the property of square—conservation, computational in-
stability can be avoided. When time step becomes longer with the semi—Lagrangian Scheme, through numerical ex-
amples, the vapor transportation can be depicted objectively and the effect of precipitation simulation can be modi-
fied.
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1. INTRODUCTICN

Numerical methods in common use to solve partial differential equation are spectral
method, finite—difference method and finite element method. Because of the large
compulational amount, spectral method is not practical until FFT (fast Fourier transform} is
proposed. To meet practical needs, it's necessary to establish time—saving numerical methods
suitable for spectral models. Several years ago, explicit complete square—conservation differ-
ence schemes and its time—saving techniques were developed and obvious time benefits were
obtained (Wang et al., 1990; Ji et al., 1991; Wang et al., 1994; Wang et al., 1993). Recently,
another time—saving method i.e. multispectrum method, is proposed on the basis of spectral
method (Ji and Wang, 1996). In this paper, multispectrum scheme on short—term climate
simulation is applied. Especially for the simulation of precipitation, complete energy conser-
vative semi—Lagrangian method is proposed to solve vapor equation. In Section 2, basic idea
of multispectrum method is introduced. In Section 3, some good results and currently existing
problems on the application of multispectrum method are proposed. In Section 4,
square—conservation semi-Lagrangian method is applied to imprave the calculatiop of vapor
equation.
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II. BASIC IDEA OF MULTISPECTRUM METHOD

For the spherical baroclinic atmospheric equations in e—coordinate system:
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MNow, (4) can be transformed into vorticity equation and divergence equation. Letting
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then the equations can be written in operator form
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If friction is neglected and ad1abauc condition is assumed, then P = 0 and (7) can be simpli-

fied as:
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By analyzing operator equation (8), it is obvious that the right two parts have different
physical properties: the first is mainly composed of slow waves and high—frequency effect is
very weak, but the second consists of quick waves and high~frequency effeet is rather strong.
So, when (8) is solved by using spectral method, it is not economical and is necessary o use
fine spectra for the first part. It can be computed by using coarse spectra and the
computational efficiency will not be affected greatly. By this way, bénefits of saving time can
be obtained. For the second part, because of strong high—frequency waves in it, fine spectra
must be used otherwise the computational efficiency will be greatly damaged. The second part
is much simpler than the first part and the computation amount is relatively small, so by using
fine spectra the computing time will not increase much. This methed, that coarse spectra ( fine
spectra) are used to compute slow waves-(quick waves) is called multispectrum method. It
comes from multigrid method and is the extension to spectral method. It not.only can save
time, but also can keep good simulation effect and it is theoretically a satisfactdty economical
numerical method.

1II. RUDIMENTARY NUMERICAL RESULTS AND SOME PROBLEMS

To examine the time—saving property and computational efficiency of the multispectrum
method, it is applied to improve the IAPL,T,, dynamic spectral model. Using the (global) ob-
servation data on June 8, 1992 as initial field, making 5—day prediction and comparing the re-
sults with those from the original model and observations, we can see that the computational
efficiency is satisfactory. '

Table 1. Anomaly Correlation Coefficient and Mean Varianos of Global {90°5—90"N) Prediction Results for New
and 01d Models with Observed Data

Initial data: 92.06.08: S-day prediction

Correlation Correlation ; . : :
Layer coefTicient coefficient Difference z;.jn :fx: :;:I;O;:i Difference
{0ld scheme} | {new scheme)
104 hPa 0.5689 0.6044 0.0355 116.02 111.47 -4.55
200 hPa 0.4730 0.5234 0.0504 134.92 126.21 -8.71
300 hPa 0.4256 04879 0.0623 137.99 12742 -14.57
500 hPa 0.3869 0.4429 0.0560 115712 106.30 -9.42
700 hPa 0.3369 0.3823 0.0454 103.05 93.74 -9.31
B50 hPa 0.2447 0.2793 0.0346 101.13 91.32 -9.81
Agelfa ;‘:::f 0.4060 0.4534 -0.0474 118.14 109.41 8,73

The compariscn shows that the predictive effect of new scheme is better than that of the
original one. Although it is difficult to detect the minor difference from prognostic charts
(omitted), the conclusion can be obtained from their anomaly correlation coefficient and
mean variance with observed data (Table 1). The longer the p}ediction time is, the more obvi-
ous the difference exists. : ’

Furthermore, Table 2 shows the evolution of whole kinetic energy, absolute average
vorticity and divergence with time. It can be known that the whole property of the new
scheme is better than that of the old one, and chapges are uniform and stability is better. Es-
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pecially, the time step of the new scheme is three times longer than that of the old one, so
computing time can be saved.

Table 2. Comparison of Kinetic Energy Vorticity and Divergence between Mew Scheme and Old Scheme

Time Kinetic energy | Kinetic energy | Vorticity of | Vorticity of | Divergence of | Divergence of
{hour) of old scheme |of new-scheme |  old scheme new scheme :?Id scheme new scheme
(1E+B) (LE+8) (1E-4) (1IE-4) {LE-5) (18-
L14) 0.11t06 0.11106 0.20227 (.20227 0.26864 0.26864
024 0.12055 0.11635 1.21943 0.20888 0.37728 0.31499
0.48 0.12916 0.12036 0.23527 0.21688 0.42374 0.3395%
0.712 0.14019 4.12562 0.26042 0.22891 0.52064 0.35024
096 0.15113 0.13076 0.27528 0.2357% 0.63712 © 044440
120 0.15876 0.13399 0.28667 0.24234 0.71456 0.46962
Time step: old scheme: 30 minutes; new ;scheme: 90 minutes
CPU time: . old scheme: 9.1 minutes; new scheme: 6.3 minutes

When vapor equation is solved by using this scheme, with the increasing of time step,
however, the simulation of precipitation is affected greatly. The amount and area of precipita-
tion decrease. In the following section, square—conservation semi-Lagrangian method is used
to improve the computation of vapor equation.

Iv. COMPUTATION OF VAPOR EQUATION

Consider the following vapof equation (forcing term is neglected):

4 _ _ vy,
o1 V.Vg. 9
. . ar, — ,
From continuity equation il V7 » (¥P,), vopor equation can be proved
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(9) is of square conservative property. The following two conservative properties can also be
proved:

where 2 is the spherical surface, ¥ =(u,v,6), V = ( ) So vapor equation ,

% old&'”n Pgds=0, (12)
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During the procedure of computing, approximate value c';':.‘_;; is calculated by linear
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a. New scheme b. DId scheme
(multispectrum) . * {semi-implicit)

Fig. 1. Prediction of precipitation in the Northern Hemisphere (5th day),

interpolation formula and it can be proved that:
nt+1

G i =4 (Z—Z?)
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where A, B, € are three undetermined coefficients. They can be determined by using the primary,

quadratic and cubic conservative properties that g" ! satisfies. Because interpolation formula
isk

is used and not any extrapolation is involved, negative vapor can be avoided. The resulted q:.';t'

not only keeps the primary, quadratic and cubic conservative properties but also is permanently
positive. In practical computation because vapor equation consists of forcing term, the conserva-
tive part is first computed by using splitting method and then forcing term is involved. '
Employing the observational data on June 1, 1992 as the initial field, the result of 5—day
prediction is shown in Fig. 1. According to Fig. 1, the amount of simulated precipitation with
the square-conservation semi—Lagrangian scheme is larger than that with the multispectrum
scheme. Moreover, the amount of simulated precipitation with the square—conservation .
semi—Lagrangian method is the same order as that with the original semi—implicit scheme.
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