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ABSTRACT

In this paper, we first apply the assumption # = &b’ of topographic variation {(kis the nondimensional
topographic height and is a small parameter) to obtain nonlinear equations describing three—wave quasi—resonant
and non-resonant interactions among Rossby waves for zonal wavenumbers 1—3 over & wavenumber-two bottom
topography {WTBT). Some numerica! calculations are made with the fourth—order Rung—Kutta Scheme. It is found
that for the case without vopographic forcing, the period of thres—wave quasi—resonance (TWQR) is found to be in-
dependent of the zonal basic westerly wind, but dependent on the meridional wavenumber and the initial amplitudes.
For the fixed initial data, when the Irequency mismatch is smaller and the meridional wavelength is moderate, its pe-
rioed will belong to the 30-60—day period band. However, when the wavenumber—two topography is included, the ps-
riods of the forced quasi-resonant Rossby waves are also found to be sirongly dependent on the setting of the zonal
basic westerly wind. Under the same conditions, only when the zonal basic westerly wind reaches a moderate extent,
intraseasonal oscillations in the 30-60—day period band can be found for zonal wavenumbers 1-3. On the other
band, if three Rossby waves considered have the same meridional wavenumber, three~wave non-resonant interaction
over a WTBT can occur in this case.When the WTBT vanishes, the amplitudes of these Rossby waves are conserved.
But in the presence of a WTBT, the three Rossby waves oscillate with the identical period. The period, over a moder-
ate range of the zonal basic westerly wind, is in the intraseasonal, 30-60-day range.
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L. INTRODUCTION

Since the poineering study of three—wave resonance among barotropic Rossby waves
was done by Longuet—Higgins and Gill (1967), considerable works on this problem were
made in Geophysical fluid dynamics (Loesch, 1974; Jones, 1977, Pedlosky, 1987). Loesch
(1974) and Egger (1978) showed that nonlinear interactions in a resonant Rossby wave triad
could be considered as a prototypical mechanism for the onset of atmospheric blocking situa-
tion. However, because the large—scale topography plays an important role in the variability
of the general atmospheric circulation, the topographically forced nonlinear interaction theo-
ry has long been an important topic. Recently, Cree and Swaters (1991) made a theoretical
study on the large—scale orographic modulation of interacting Rossby wave triads by al-
lowing the bottom topography to be the constant slope one, and showed that in the presence
of topographic forcing, the nonlinear energy exchange between the members of triad will lead
to resonance conditions being no longer satisfied. The numerical and rotating annulus exper-
imental studies of Marcus et al. (1994) and Li {1993) indicated that topographic forcing plays
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a key role in producing the NH extratropical intraseasonal oscillation. For this reason, more
recently, Luo {1994) investigated the effect of wavenumber—two topography on three-wave
quasi-resonant interaction under the assumption of h=¢ 4" and tried to explain the
occurence of intraseasonal oscillation in the NH extratropics. But this result cannot explain
the travelling components of wavenumber—two intraseasonal oscillations. However, Tung
and Lindzen (1979) and Szoeke (1983) pointed out that the topographically induced disturb-
ance should be the same order as the free linear Rossby disturbance. In this case, the assump-
tion A = eA’ seems 10 be more appropriate, while the assumptions 2 =>4’ and A=¢ & (Jin
and Ghil, 1991; Nathan and Barcilon 1994; Luo 1994) seem to underestimate the role of the
large—~scale topography in the intraseasonal variability of atmospheric circulation.
Consequently, it is helpful to further investigate three-wave quasi—resonant and non—reso-
nant interactions over a WTBT under the assumption 4 = &4’. More recently, Luo (1997) in-
vestigated the interaction between single—mode topography and single wave with the same
wavenumber in a near-resonant uniform westerly wind, and found that the low—frequency
oscillation can be excited through this interaction.

In this paper, the effect of a WTBT on three—wave quasi—-resonance is reexamined in the
case of b = ch’ , and three—wave non—resonant interaction among barotropic Rossby waves
for the same meridional wavenumber and zonal wavenumbers 1—3 is also studied. The basic
model we used is the non—dimensional quasi—geostrophic potential vorticity equation associ-
ated with the nigid—lid shallow water equations. The outline of this paper is as follows. In Sec-
tion 2, the nonlineat equations describing three—wave quasi—resonant and non-resonant
interactionts among barotropic Rossby waves for zonal wavenumbers 1—3 over 28 WTBT are
obtained under the assumption of # = k', which are remarkably different from those derived
by Luo (1994) under the assumption of 4= g2k, The numerical results of three—wave
quasi—resonant and non—resonant interactions with and without the forcing of WTBT are
presented in Sections 3 and 4, respectively. The main conclusions are given in Section 5,

II. DERIVATION OF THE WAYE-WAVE INTERACTION EQUATIONS
1. Derivation 6 fThree—wave Quasi—resonance Equation over a WTBT

The inviscid and non—dimensional quasi—geostrophic potential vorticity equation asso-
ciated with the rigid—lid shallow water equations can be written in the form

3 =2 2 o
=V v+, v b+ =0, 5}

2 2
where, = }30%- and B, = —?—cos(wﬂ ), in which @, is the angular frequency of the earth’s
a

rotation, g, the earth’s radius and ¢, the latitude, & is the bottom topographic distribution,
U=10m/sand L = 10°m are the horizontal velocity and length scalss respectively, and the
characteristic height of WTBT has been taken to be 1000 m, and the other notation can be
seen in Pedlosky’s (1987) book.

As pointed out in the introduction, the bottom topography has been supposed to be the
same order as the linear disturbance term. Based on Szoeke’s {1983) treatment, we introduce a
new topographic amplitude paramter ¢ in the nondimensional form, so that

h=ch’ , (2)
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The assumption (2) is different from that used in Cree and Swaters (1991) and Luo
(1994). However, the derivation of the three-wave interaction equation using the
multiple-scale method when no forcing is present is well known (Pedlosky, 1987). In order to
discuss the effect of a WTBT on three—wave quasi—resonance ameng Rossby waves under the
assumption of A=¢eh’, we will use a multiple-scale procedure to derive the
topographically—forced three—wave quasi—resonmance equation. Accordingly, we introduce
the slow time variable in the form

where 0 <7, «g«1 has been assumed with the Rossby number r;, = 1.

T=gf.

The solution to (1) can be obtained in a straightforward asymptotic expansion of the
form

v=—uytep, Copt )+ P, (e tn) o, 4

where u is the zonal basic westerly wind and a constant.
If (2)—1(4) are substituted into (1), we can obtain a set of perturbation equations in the
following form:

- Lo} 4
)= (E+al)rw)+ el = 0
Lg,) = -5";\72% ~ I, T, A ®

In the Northern Hemispheric midlatitudes, the large—scale mountain ridges are approx-
imate to 2 zonal wavenumber—~2 distribution (Charney and Devore, 1979; Bernardet et al.,
1990), in this case, the bottom topographic distribution is assumed to be

h=hyexplilc,x + m, )]+ cc , (N

where &', denotes the topographic amplitude, = —1,k, =2k, m, =m and m = f—y {Ly

is called “meridional wavelength®), k = N is the zonal wavenumber of one wave
6.371cos(p,)
and cc represents the conjugate of it's previous terms.
Since {5) is a linear equation including the topographic forcing, it permits a sclution con-
sisting of the superposition of three Rossby waves in which zonal wave 2 includes a travelling

part and a stationary part forced by a WTBT in the form

3
U= Y 4, (e + b, i explilk,x +my )]+ ce ®

=t
where 6, =k, x+m,y—w,t (n=1,2,3),k, and m, are the zonal and meridionai
wavenumbers of the nth Rossby wave respectively, w, is the frequency of the ath Rossby
wave, and A (1) denotes the complex amplitude of the » Rossby wave. We can also note that
the amplitude of travelling part of zonal wave 2 is 4, (z), while s, represents the stationary
part of zonal wave 2 which is induced by a WTBT. If one removes the second term in the
right-hand side of (8), it reduces to the usual expression of three~wave resonance solution,
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for example, in Longuett—Higgins and Gill (1967), Pedlosky (1987), Cree and Swaters (1991)
and Luo (1994). On the other hand, we note that when the assumptions A=A’ and A=¢" ¥
are used, the second term in the right—hand side of (8) vanishes. In this case, the period of the
three—wave resonance does not depend on the setting of the background westerly wind.

Substitution of {7) and (8) into {5) yields the linear dispersion relation of three travelling
Rossby waves and an expression of i, in the form

_ it .
w, =ik, == . (9)
X, |
by = (10)
A 1
ﬁ_ —_
l_l_ IKEl

where K, = ik, + jm,.i and J are the unit vectors in the zonal and meridional directions.

When w, =0, then u = —I%Ll and &, — 0. In this case, the travelling part of zonal wave
2

2 becomes stationary, while its stationary part becomes infinite. This shows that the stationa-
ry part of zonal wave 2 is a resonant wave forced by a WTBT, which resembles the resonant
theory of Tung and Lindzen (1979). This implies that a travelling part of zonal wave 2 seems

to exist besides a stationary part forced by a WTBT if the relation z = I_EE—( is not satisfied. In
2

the work of Luo (1994), the second term in the right~hand side of (8) does not exist because

the assumption A = &% 4* was used. In this paper, we only consider the case of & # —%—‘ In or-
2

der to investigate the effect of a WTBT on three—wave quasi—resonance, as a simple example
we can take {(k,,m,)=(k,2m), (ky,m,;)= 2k, —m)and (k,,m,})={(—3k, —m)as the
zonal and meridional wavenumbers of three Rossby waves for zonal wavenumbers 1-3,
Consequently, when the three Rossby waves in (8) satisfy the following conditions

K, +K,+X,=0, o to, tw,=Ao , {11)

for a small frequency mismatch Aw, three—wave quasi-resonance among thess three Rossby
waves can occur. The condition (11) is the well-known quasi—resonance conditions derived
by Craik (1985). For example, if we choose Ly =3~ 3.5 (3000~ 3500 km in the dimensional
form), then we have Aw = 0.0634~0.0365 at 45°N. In this case, three—wave quasi-resonant
interaction is permitted.

Substitution of {7) and {8) into the right—hand side of {6) yields the appearance of secular
terms in the solution for ,. Consequently, for the smaller parameters Aw and
M) =w, +a,, if we assume Aw = eAw, and AQ=¢eAQ,, the nonsecularity condition re-
quires that

dA . v t b LI T

-a'—'rl=S|Az A, e’ + [_l_k‘]_l-(-slfh ]h,nAs ettt (2
3

dA » o iAoyt

L =5,4 A5 et 13

dr
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1€ | |K, | 1K, |
by =kym, —kym,=b, =k my~k,m, =b, =k,m —km, AQ=w, +tw, and 4,
denotes the complex conjugate of 4, .

Note that in Eqgs.(12}-(14), Af} must be required to be smaller. For example,
if w=1.35~1.51s allowed, we have AQ=10.0194~ —0.0472 at 45°N for Ly =3, while
when = 1.75~1.86 is chosen, AQ= —0.024d~ — 0.073 exists for Ly = 3.5 Thus, over &
moderate range of #, equations (12)—(14) are valid for describing three—wave quasi-reso-
nance over a WTBT.

Equations {12)-(14) are the three—wave quasi—resonance equations over a WT BT, which
are different from the topographically forced interaction equations derived by the previous
investigators (for example, Cree and Swaters, 1991; Luo, 1994). It can be noted that
topographic forcing acts directly on the A, and A, equations under the assumption k = h'.

where §; =

However, for the assumption o= e i’ the topographic forcing only acts on the A, equation
(Luo, 1994). When the WTBT is absent, {12)—(14} reduce 1o the quasi-resonant interaction
equations derived by Craik (1985}, its analytical solution can be expressed in terms of the
Jacobian elliptic functions. However, if the forcing of WTBT is included in (12)~{14), their so-
lutions cannot be obtained directly. In this case the fourth—order Rung—Kutta scheme may be
used to compute Eqs.(12)-(14), and their numerical results will be presented in Section 3.

2. Derivation of the Three—wave Non—resonant Interaction Equations of Zonal Waves 1—3
with the Same Meridional Wave Number over a WTBT

In the above section, if the meridional wavenumbers of the three Rossby waves are the
same, the three Rossby waves don’t permit quasi—resonance. For this situation the
three—wave non~-resonant interactions among Rossby waves can only occur in the higher or-
der nonlinear terms, which equations will be obtained by using a formal multiple—scale
asymptotic expansion in this section. In order to derive the topographically—forced
wave—wave non-resonant interaction equations, we will introduce a new slow—time variable
T to replace the slow—time variable £ in (3) in the form

T=¢'t, (15)
angd the solution of {1) may be expanded as

W=y + ey, (e pt, T+ 62, (e T + &0 (6,9, 0, T) + ooe {16)

If (15)—{16) are introduced into (3), we have

_ o) ,
L= (2 +3L )T+ Pl - -l an

L) = — 30, V2 + 40, (18)
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Ls)= =3 V2, =, T, + R0 = . T, (19}

In this section, we assume that the topographic distribution and the solution to (1) have
the same forms as given in (7) and (8), but the main difference is that the zonal and meridional
wavenumbers of zonal waves 1— 3 considered here will be taken to be (k,,m,)={k,m),
{k,.m,)=1(2k, m) and (k,, m;) = (3k, m) so that three Rossby waves in (8) don't satisfy the
quasi—resonance condition {11).

If (7) and (8) are substituted into (17), we can obtain the same dispersion relation and A,
as given in (9) and (10}, but replaced by m, = m.

Substituting (7) and (8) with (k,,m, )=k, m), (k,,m,}=Qk,m)and ( k ; ., m , }
={3k, m} into the right—hand side of (18), we have

Liy,) = —S]’zAlAze'w' — B! _51.3A1A3ef(3| - 83) ._S”AzAsei(f’z*ﬂﬂ

+Sl_2,4;,42€f(—9|+92)+S1‘3A;A3en—s1+ﬁa) +52,3A2'A,ei(_92+33]

_ zAprphroel'(ﬂ,+k;1+my) + ZA; rphjnea‘(—ﬂp+k2:+m)-) +ce ] (20)
pw2 T
k —- - -
where W, =uk —B . h R — K, =ik, + jm, Sm=m(kp—kq)

R B
—_ u —
(K, |- |E,Dandr, =mlk, — &, K, |~ |K, D, — 11
It can be noled that all terms in the right—hand side of {20) are the non—resonant terms.

Thus, the solution of (20} is able to exist for this case.
Clearly, the solution of (20} can be given by

il . 1 - g, +8
Wy =i A, 4, T 0 A4 A e ™ Y 100, 4,4, 5)

. i — . i — . « —8, + B
+iZ24, Az""( b ) +’ZL3'4;A:€'{ 8;+9;)+‘ZMA2 AJEK 2 ¢ 8

+iZEpAPh,-Oei(6p+k2x+m_‘») +izF'ﬂA;hﬂgei{-ﬂp+k,x+mﬂ +ec , (21)

p¥2 pw?

where @, .. Z,,.E, and F, are defined by
SP-H (22)

2 =ﬁ(k,, +kq)—[tf(k,, +k,,)_ (wp + wq)][(kp +kq)2 +4m2] .

z,, = _ 52 _, @3)
"B~k th )k, tE ) (o, e M(—k, + k)]

-
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d Bl—k, + k)~ [k, + k) + w0, I~ k, +k;)°] (25)

Substitution of {7), {8) and (21) into (19) leads to the appearance of secular
terms in the solution for ¥, When Ly=13, we have @, = — 0,178~ —0.089 for &
=0.85~1.05 and w, =0.112~0.2 for ¥ = 1.5~1.7. While when [y = 3.5, we have &, =
=021~ — 0085 for #=1.15~14and @, =0.105~0.24 for u=1.85~2.15.
Accordingly, for these cases if 6=0.34 is allowed, then when we assume w, =& w,,
and preclude the secular terms, the topographically forced three—wave non—reso-
nant interaction equations can be obtained as

d4 . .

— = ila| A, A +a A, [P At e Ay AT e e A Agfige 0T
tahgd,) 26

dd .

—ﬁ=i(bl|A,|1Az+b2|A3|2A2+b]|.{,|2h’oe"‘”"7)+b4|A3[2h’De""“T). Q7

44 ; .

d'T3 =i(cllAJ ]1A3 +“2]*‘12 |2A3 +C3A; Aah’oemmr +c4A1A3h’0e fom T

+chhA,), (28)

where |4, " =4,4, (n=1.2,3) and the coefficients of (26)-(28) are given in the
Appendix A. (26)-(28) are the three—wave non-resonant interaction equations
over a WIBT, which have nol yet been derived by the previous investigators. Note
that w, must be required to be smaller so that Egs.{26)-(28) are valid. When the

did )
forcing of a WTBT is absent, we have }a';) =0 {n=1,2,3). It means that the en-

ergy of each Rossby wave is conserved. This reason is that when the three Rossby
waves have the same meridional wavenumber, the three—wave quasi~resonant
interaction {nonlinear interaction) does not occur. This is why the amplitudes of
the three Rossby waves are conserved when the WTBT is absent. However, when
d|A

the forcing of WTBT is considered in (26)-(28), we have )d—Tr", # 0. This shows
that the forcing of WTBT could drive the threc non-resonant Rossby waves 1o
produce oscillations. In order to obtain the oscillatory characters of the three
Rossby waves, the numerical solutions of {26)—(28) will be obtained by using the
fourth—order Rung~Kutta scheme in Section 4.
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III. NUMERICAL RESULTS OF THREE-WAVE QUASI-RESONANT
INTERACTION WITHOUT AND WITH THE FORCING OF WTBT

1. Without Forcing

If we define B, (r) =ed,(et), and use the transformation r=£, Eqs.(12)-(14) can be

written in the form

dBl = il bl LI/

"‘,1T=S|B| Bye '+[_m+31h4]huﬂzem‘ 4 (29)
dB, - » aAwr

W=SEB] B3 EA . (30)
4B, s e it bs .

ar =58, B, ¢ r+[_m + 83k, 8 e, 3D

where &, = th, and 2k, denotes the height of WTBT because of 4 = ek’ = ¢h"pexp[i(k, x
+ m, W)} + ec = 2hgcoslk, x + myy).

Here we usc | B, |,| B, | and | B, | to represent the real amplitudes of three Rossby waves
for zonal wavenumbers 1—3. In order to see qualitatively how WTBT has an influence upon
three-wave quasi-resonance, we at [irst consider the case without forcing. In the numerical
experiment we take b, = (| B | —0.3) X 10 as a measure of the amplitude of zonal wave 1. We
may assume, without loss of generality, that initially B (0)= B,(0)=B,(0)=03.
Consequently, the time—varying amplitudes of three Rossby waves for zonal wavenumbers
1-3 without forcing for Ly = 3 and 3.5 at 45°N are, respectively, shown in Fig. 1.

Fig. 1a shows that for the case without forcing the three quasi—resonant Rossby waves
for zonal wavenumbers 1-3 possess a long period oscillation besides a short period, and the
periods are found to be dependent on the initial amplitudes and the meridional wavelength
but not dependent on the zonal basic westerly wind. For Ly =13 {3000 km in the dimensional
form), the long period is about 38 days, while the short period is close to 5 days. However, for
Ly=3.5, the long period becomes 19 days, while the short period becomes about 7 days.
These results are limited to small frequency mismatch Aew, which can be approximatly used to
explain 21-day and 45-day oscillations in the Northern Hemisphere (NH) extratropics ob-
served by Ghil and Mo (1990). In addition, we note that the long period of zonal wave 1 is not
too clear. More recently, Branstator (1987) found that the 21-day oscillation has a
large—scale wavenumber—two and slightly smaller wavenumber—three components. This can
be basically explained by the three—wave quasi—resonance without forcing for Ly =3.5. It
should be pointed out, however, that the results obtained here differ from those obtained by
Luo (1994), who showed that for the case without forcing only 10—day oscillation was found
when the frequency mismatch is taken to be relatively large in comparison with that given
here. More recently, the numerical experiments by Marcus et al, (1994) using the UCLA gen-
eral atmospheric circulation demonstrate that 42-day oscillation was found to arise in the
NH extratropics of the standard topography. By contrast, no intraseasona) (36—60-day)
oscillations can be found in the three no-mountain experiments. This indicates that the
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Fig. 1. Time-varying amplitudes of three quasi-resonamt Rossby waves for zonal
wavenumbers 1 -3 without forcing at 45°N for 8, (01 = B,{0)= 8,(0)=0.3, Ly =3 and
35, inwhich b, (|8, - 0.3) % 10k (&) Ly =3:{b) Ly =35

forcing of topography is very important. Certainly, the forcing of WTBT has an impotant ef-
fect on the oscillation periods of three—wave quasi—resonance. This problem will be discussed
in the following subsection.

2. With the Forcing o fWTBT

In this subsection, as an example we choose 22, = 1 in our subsequent calcuiation, ie.,
the height of wavenumber—two mountain ridges is chosen to be 1 km. i we take Ly = 3, un-
der the same initia] conditions as in Fig. | the time—varying amplitudes of three quasi—reso-
nant Rossby waves for zonal wavenumbers 1-3 for #=1.35 and 1.5 (13.5m/sand 15m /s
in the dimensional form), at 45°N, are shown in Fig. 2, respectively.

It is found from the numerical calculations here that when the WTBT is included, the pe-
riods of the envelope amplitudes of three quasi—resonant Rossby waves are found to be de-
pendent on the zonal basic westerly wind. For & = 1.35, the three Rossby waves propagate
eastward and exhibit 31-day oscillation, in which zonal wave 2 {its phase speed is 0.! m / s}is
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Fig. 2. Time-varying amplitudes of three quasi-resonant Rassby waves for zonal wavenumbers

1-3 with the forcing of WTBT for b, = 0.5, Ly = 3 and varjous value of i, in which the initial da-

N ITTTER

1a are the same as in Fig. 1: ()% = 1.35; (b a = 1.5.

slower than the other two waves. While for u = 1.5, the envelope amplitudes of the three
quasi—resonant Rossby waves possess 25~day period. In addition, by comparing Fig. 2 with
Fig. 1 we note that when the forcing of WTBT is considered and when the zonal basic wester-
Iy wind is moderate, intraseasonal oscillations are found to be more clear than those found
for the case without forcing. This shows that the forcing of WTBT and the moderate setting
of zonal basic westerly wind favor the appearance of intraseasonal oscillations in the NH
midlatitudes. However, for Ly = 1.5, a similar calculation is made. We can see in Fig. 3 that
the envelope amplitudes of zonal waves 1 and 3 possess 50—day period, while the envelope
amplitude of zonal wave 2 undergoes 34~day variation. These conclusions coincides roughly
with the observational results of Ghil and Mo (1991), who showed that the 45-day waves at
mid-latitudes are dominated by wavenumber one—through-three, Moreover, Tribbia and
Ghil(1990) and Jin and Ghil (1991) have shown that the intraseasonal oscillation appeats to
arise from the nonlinear interaction with the topography of the large—scale flow field in the
NH extratropics. However, our study here indicates that three—wave quasi—resonant
interaction over a WTBT seems to be advantageous to intraseasonal oscillations in the NH

e
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Fig. 3. Time—varying amplitudes of three quasi-resonant Rossby waves for zonal wavenutbers
1-3 with the forcing of WTBT for Ly = 1.5 and various value of &, in which the other parameters
are the same as in Fig. 2: {ah = 1.75; () = L.86.

extratropics, which has been suggested by Luo (1994). But his reslut is only appropriate for
the lower topography.

V. NUMERICAL RESULTS OF THREE-WAVE NON-RESONANT INTERACTION
WITH THE FORCING OF WTBT

In Section 2.2. we have shown that for the same meridional Rossby waves, if the topog-
raphy vanishes, the three non—tesonant Rossby waves don’t oscillate. However, if the forcing
of WTBT is considered, can the forcing of WTI BT drive the three non—resonant Rossby waves
to produce periodic oscillation? what is its property? These problems deserve to be studied.

To examine the problems, if we let 8, (1) =t (' 1) and use ¢ = —12: we rewrile the evolution
6

equations (26)—(28) as follows:
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&__.( B 2B + B 2 + - gt =iyt 2
r =ia B, | B, +a,|B; "B, +ay B, B; hye™ +a, B, B h,e tashyB)) . (32)
d‘BI — 2 2 2 g 1 1 i@yt
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Similarly, here we still use |B |, |B,|and |B, | to represent the real amplitudes of three
non-resonant Rossby waves, If we choose the parameters 8,(0) = B, (0} = B;(0)=0.3, Ly
=3, and h, = 0.5, the time-varying amplitudes of three—nonresonant Rossby waves over a

WTBT for # = 0.85 and 1.05 are shown in Fig. 4, respectively.
Fig.4 shows the dependence of the same period of three—nonresonant Rossby waves at

45°N

, under the forcing of WTBT, on the setting of zonal basic westerly wind for Ly = 3. It is

noted that when # is between 0.85 and 1.05, the three topographically forced nonresonant

waves travel westward and their period is between 37 and 63 days. While when i« is between
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Fig. 4. Time-varying amplitudes of three non-resonant Rossby waves for zonal wavenumbers
{3 with the forcing of WTHBT for Ly = 3 and various value of & in which the other parameters are
the same as in Fig. 2: (e)w = 0.85; (b)u = 1.05,
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Fig. 5. Same as Fig. 4, but for Ly = 3.5 and different: (a) w=1.15: (b} w =1 4.

1.5 and 1.7, the three Rossby waves travel eastward and possess the same peried in the range
from 60 to 36 days. Fig. 5 corresponds to the case of Ly = 3.5. Clearly, for this case, there is
the same property as that for Ly = 3. It is found that when & is between 1.15 and 1.4. the
westward travelling 33—66—day oscillaticn can be found for zonal waves 1-3. While when 4 is
between 1.85 and 2.15, the eastward travelling low frequency oscillation with the period of 66
to 30 days can occur. However, when the topography vanishes, no intraseasonal oscillation
can be found. This indicates that topographic forcing is an origin of the NH 30-60-day low
frequency oscillations with the same meridional scale. This result was supported by the nu-
merical experiment of Marcus et al. (1994}, who showed that in the standard topography run,
42-day oscillation was found to occur in the NH extratropics, but in the three no-mountain
experiments, no intraseasonal oscillation can be found. Ghil and Mo {1991) found that
48-day oscillation has wavenumbers 1—3 structure, in which wavenumber two is dominant
and has both travelling and standing components. However, it is worth noting that becuase
the assumptions A = c2h"and A= 4 are used, the previous theories can only explain the
standing component of wavenumber—two intraseasonal oscillation, but cannot explain the
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travelling component (Jin and Ghil 1990; Luo 1994), But in this paper, becuase the assump-
tion 4 =¢h’ is used, our result can explain the travelling component of wavenumber—two
intraseasonal oscillation. Actually, in this paper when Ly =3.0~3.35 it denotes the
meridional wavelength of Rossby wave being 6000~ 7500 km (the nondimensional
meridional wavelength of Rossby wave is 2Ly=6.0~ 7.0), which is consistent with the
observational facts of low—frequency oscillations obtained by Ghil and Mo (1991). It should
be pointed out that when the assumption s =4gh’ is used, the amplitude of the
topographically induced stationary wave depends on the background westerly wind. When it
interacts with the three quasi—resonant waves, the periods of the three quasi—resonant waves
depend on the setting of the background westerly wind. This is why our result is different
from the previous results,

V. CONCLUSIONS

In this paper, we have investigated three—wave quasi—resonant and nonresonant
interactions among barotropic Rossby waves over a WTBT under the assumption & = ¢h’. [t
is found that for the case without forcing, three-wave quasi-resonance can induce low fre-
quency oscillations, whose periods depend on the initial amplitudes and the meridional wave-
length. However, under the forcing of WTBT, the low frequency periods of the
topographically forced quasi—resonant Rossby waves are also found to be dependent on the
zonal basic westerly wind, When the zonal basic westerly wind is in a moderate range, the
topographically forced low frequency oscillation is found to be more apparent than that
without forcing. Thus, the forcing of WTBT and the moderate setting of zonal basic westerly
wind favor the appearance of intraseasonal oscillation in the NH extratropics. On the other
hand, if the meridional wavenumbers of the three Rossby waves are the same, three-wave
fon—resonant interaction can take place. When topography vanishes, no oscillation can be
found. While when a WTBT is considered, the three—wave non-resonant interaction can lead
to low frequency oscillation in the 30— 60—day period band, whose period length depends
strongly on the setting of zonal basic westerly wind.Therefore, it appears that topographic
forcing is an origin of the NH extratropical 30~60—day oscillation. This result has been con-
firmed by the numerical experiment of Marcus et al. (1994).

In this paper, some physical processes, for example, dissipation, baroclinic effect and
thermal forcing have been ignored. These problems deserve further investigation,
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APPENDIX A

The coefficients of (26—(28) are defined by
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