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ABSTRACT

By using the conservaijon laws and the method of variational principle. an improved Arnol'd’s second
nonlinear stability theorem for the two-dimensional multilayer quasi—geostrophic model in periodic chan-
nel is ablained.
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L. Introduction

Mu et al. (1994} obtained the Arnol'd’s second theorem for the multilayer quasi-
geostrophic mode] (Pedlosky 1979). Liu and Mu (1994) extended the mentioned theoretn (o a
more general model and simplified the nonlinear stability criterion. Here, we investigated the
genetal model in periodic channel by different technique and obtained a nonlinear stability
theorem superior to that of Mu et al. (1994). The improvement is not only in the nonlinear
stability condition but also in ihe estimates of the disturbance bounds. The disturbance
bounds obtained here is really explicitly dependent on the initial disturbance fields, while in
Mu et al. (1994). the bounds involve the solution of a boundary-value problem of the system.
Herice the bounds obtained in this paper are more suitable in the studying of the nonlinear
saturation of instability (cf. Shepherd 1988). We also apply our theorem to the Phillips model,
and the improvement is considerable. Finally, we proved Andrews’ theorem for our model,
that is, any basic state satisfying our nonlinear stability condition must be zonally symmetric.

2. The model of general multilayer flow

We consider the stratified fluid of N(> 1) superimposed layers of constant density
£, <+ < p,, with arbitrary density jumps and mean layer depth o; on periodic channel
D: x5[— X. X). y€l — ¥, ¥]. The flow is governed by the multilayer quasi—geostrophic po-
tential vorticity equations (Ripa, 1992).

P, t@#®,. P)=0, [i=1r N, (2.1a)

where ®, (x, y, 1} is the streamfunction in layer { and

P=VvOo-FTG + A . {2.1b)
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Where P =col(P,), P, is the potential vorticily in the ith layer. And 8@, 8)=a, b, —
a b, is the two—dimensional Jacobian. v? is the Laplacian on x — y plane, x and y are
eastward and northward coordinates, respectively, ¢ is the time, and fiy) = col(f (»)).

1 ()
A=+ By =
1
LRy =f+fy ., i=2e=N—-1, N>2,
7y (¥)
L=+ N22
N

where 7 is the representative value of the Coriolis parameter, t,(y) and 7, (y) are the possi-
ble available topographies at the top and the bottom of the fluid, respectively. T=(7T;}is a
matrix (cf. Liu and Mu, 1994).

T, =1.
Tl’i =gl(gfill +gr'_]) » [f=2, "'-N] N
Tiv1 =T = ”1?15:'1’.;‘"l <0, [i=1l» N—1],

T,.=0, li~fA>1.

L

F =diag(F;}) . F, - L >0,
dig

where g, > 0 is the buoyancy jump (not necessarily equal) across the interface between the ith
and the (i + 1)th layer. Here we consider the rigid top and bottom boundarys, then gﬂ_] =0

andg, ' =0.
The boundary conditions are

Y, |}_: =0 r ®y,|y==ydx=0 . (2.1c)

] il
Denote K = diag(k,). K, ={F,)"2 , i=1, -~ N. We can sec that ¥ K@, can be ad-

ded to an arbitrary function of time. So, to ensure the uniqueness, we assume that
N ”
_[ YK ®dxdy=| LK ®ydxdy . (2.1d)
p = p =1

where the subscript 0 refres to the state at initial time ¢ = 0.
3. Basic state and disturbance system

Suppose that (B, Py= (¥, 0) is a basic steady state of system (2.1), and there exists a
constant @ such that

¥+ =YHQ) . i=1L N, (3.1a)

where P! (¢) is a continuous monotonic function of £, and there is a positive definite diagonal
constant matrix
C = diag(C,.»-, Cy) . {3.1b)
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such thal
¥
— L > f =] e .
dz C;, >0, [i=1,- N], (3.1c)

holds almost everywhere.
We continue  ¥7 (&) to £€( — 00,0} as follows:
Wi =¥ (min@,})— C,(¢ —minQ,), for { SmingQ,; ,
Y& =¥ (maxQ,)— C,{{ — max@,), for £ Z maxQ, ,

50 that (3.1c) holds for all £€{ — ¢, x¢),
Define the disturbance (§, 7) by

T=¥+y ., F=0+7. (3.2

and the relative disturbance (", E") by
V=W, +¥ . G=7,+7 . (3.3)

We have the disturbance system
F=vV¥-K'TY . (3.4a)
and
bt

Vol =0, j 7ol dx=0, (3.45)
I 7 dxdy=0 . (3.4¢)

D

By the method of decoupling system (3.1) in Liu and Mu {1992), denote (4, =+, 4, ) the
eigenvalues of the matrix K™ 'TK ™', (0 = 4, <+ < 1,,), then there exists an orthogonal ma-
trix L, such that

LYK 7'TK 'L =diag(d,)= A , (3.5

where the first column of L takes the form

=)

E—:—col(.'(i) . (3.6
| LK

Take the transformations (supscript 7 denotes transpose}

FELKY, E=L7K7 . 3.7)

In (3.4), we obtain uncoupled disturbance system
Vzﬁ_/\?).:b_., (3.82)
E’r‘)'=il’=0’Iﬁ)'l_p:_tydx=0* (38'3)
I bdxdy=0 . (3.8¢)

D
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By (3.6) and (3.7), we have

I =—+—[2Kf¢’] .
DY

hence by (3.8abc) and (2.1d). we have

I pdxdy=20 . (3.8d)}

D

Moreover, by (3.6)-(3.7),

by = : [ZK?‘?J;'] .
éZKf -

and the conservation of the zonal impulse implies

j ybldxa'y=I szp,dxd_v=0 . (3.82)

D o

4. Improvement of Poincare ineqeality

Define the disturbance energy
E[FJ,EI v 5+ 5 Apdxdy . (4.1a)
D
where| 75" = (5, )* + (;5},)2 . Then the Poincare inequality derived in Mu et al. (1994) reads

E[msj FT(AL+ A) " hdxady .
D

In order to improve above inequalily, applying inequality (A 19) (See Appendix) to
(p,.5,), we have

| 2 1 2
[V | dxdy s.——j bldxdy | (4.1b)
‘L L P T » !

where =% / X°. Applying the usual Poincare inequality to (p,, b;), i=2, - N , we
have

I (ve | +iipf)dxdy$3T1TI brdxdy . [i=2- N]. (4.1¢)
] T Yy

Thus we have the improved Poincare inequality by (4.1).

e nn 2T R Y

aar
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EFl< jD #7 A'bdxdy = | K LALT K7 daxdy = jD (K7 IMKKF ddxdy , (4.2a)

where

! = di ] 1 vas 1
Aﬁdlag(i"’,ﬂ’l*’lz, ‘;-+J].N), (4-2b)

M=LALY . (4.2¢)

5. Conservation laws and nonlinear stability

There are well-known invariants by the conservation laws
(1) EILTK®|= | (K9S| + T Bhdrdy, (total energy),
D

F(_”,de , (circulations) ,

@ Id=2% (- 1))’]1@1(2 3, |
(3) AI9)= z‘ﬁ &2f (v @anaxay
=1 ! o 0 ' ’
(4) M[®D]= ZI yY K2P dxdy. (zonalimpulse).
Do

Combining these invariants we obtain the conserved energy—Casimir functional AD).

0] = EILTK®] — 2 M[®] — T[®] + AlD] . (5.1
Then define the invariant 7/
I=1%-190) . (5.2)
Direct calculation shows that
I= - E[L"Ky]-2) K?I (r (P —¥HE, NAdxdy | (5.3)
=1 D QJ
and it may also be proved that
EILTK#,1- KIL"K@] = — EIL" K1+ 2_" VIK'§ dxdy | (5.4)
D
where
EILTKY'1= El7] . (5.5)

Then by (3.1c) and Lebesgue integral theory, we have

2,
—QJ (WO -G NME=Crap o [i= 1, N] . (5.6)
2.

Hence. by {4.2) and (5.3})-{5.6), we have the inequality
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j (K7 )T (C— MXKF ddxdy + zj (K(CT, + ¥, 0" (K7 Yxdy
D D

<7+ ELTKP,]=H . (5.7)

Now suppose that the matrix
C—M is positive definite , (5.8)

which ensures that its minimum eigenvalue v, > 0. From (5.7), using Holder inequality and

(3.4¢). we have
vmmj (K7 )V dxdy — 2n ,fj (Kg V¥dxdy < H | (5.9a)
D D

where
n= \/ I (K(Cg, +¥, Wdxdy , (5.96)
2l
here the superscript *+ means
j Xdxdy
X‘ =X — L . (5.9C)
j dxdy
D

Therefore, by (5.9), we obtain the bound for relative disturbance potential enstrophy
. n+Jnt+v . H
| k7Y aeay <220 =y (5.10)
o  min
Furthermore, the bound for disturbance potential enstrophy can be obtained by

| ®graxdy=| &g, Paxdy+2] gy )T®Kg axdy+[ (Kg'xdy
D o P 2

<| &7, Vdxdy+2 /| (K7, Y dxdy Brp+ (Brp)
n D

and by (4,2a) and (5.5) we have the bound for relative disturbance energy:

(Brp)

. - - EB L]
minA+pata,) ot

EILTK¥ 1<

and the bound for disturbance energy by (5.4):

EILT K@< EILTKG, 1+ 2/ | (Ki; Y dxdy Brp+ Bre .

We can see that all the bounds are independent of time and tend to zero as the initial dis-
turbances tend to zero. In this meaning we can say that the basic state is nonlinearly stable,
and (5.8) is the nonlinear stability condition.

According to Liu and Mu (1994), condition (5.8) is equivalent to the matrix

M™'-C"' s positive definite .

While
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M =LA 'LT =LALT +p7vT =1+ K7 'TK '+ uvv"

where I is the identity matrix and ¥ is defined by (3.6).
Therefore the nonlinear stability condition (5.8) is simplified to the matrix

A+K I TK ™ = '+ uvv"T s positive definite . (5.11)

Thus, we have proved

Theorem 1 Suppose that (\F, 0) is the basic steady state of system (2.1) with property
(3.1). If (5.8} or (5.11}) holds. then the basic state is nonlinearly stable (o any finite-amplitude
disturbances.

The nonlinear stability condition in Mu et al. (1994) is equivalent to (5.11) with its kast
term #¥ ¥’ dropped. hence the nonlinear stability condition {5.11) is superior, since it is ad-
ded to a positive semi—definite matrix a¥v7 .

6. Two—layer model

We investigate the two-layer model in detail. The system is
P, Tl . PY)=0, [i=12],

PLEVIO-—F (@ —0,)+f(), (6.1}
P,=VI0—-F (=@, + &)+ /0.
Denote (=1 — I?]-FLFI’ then the criterion matrix of (5.11) is

A+ p+IF, —Cl -WJFF,

1

(6.2)
- FF, ﬁ.+11+|'F2—CL
2
The minimum eigenvalue of matrix {6.2) is
1 1.1 1
=i L) (— +—
Femin & 4 2(F1+F‘ u) 2(’:1 62)
1 1 1 .2 2
- —F)+— -+ i 6.3
2\/(1'(1"'1 F,} o C]) 4F, F, (6.3)
and the matrix of (5.8) is
c A+ p+IF, _ IF,F,
D (Q+m+F +F) AW+ F +F,)
(6.4a)

WFF, A+ p+IF,

TGTRGEE FF) O G RGEE FE

Since €| and C, contain a parameter %, the determinant of {6.4} may be quadratic in =z
and takes its maximum for some x in some cases. Now we discuss it for later use.
Suppose that

C, == (6.4b)
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1—w

C: ="z (6.4c)
where G|, G, > 0 and we(0.1).
The determinant A, of (6.4) is guadratic in w, and takes its maximum at
LA WAL F A F 4G, = Gy)+ G~ F\Gy) (6.44)
' 200+ +F, +F,) ’
The maltrix {6.4a) can be rewritien as
z
1 2G1 F] F2
CHOUAF AR z : (6.4)
1412 2G1
where
Z=+Mu+F +F,—G, —G,)—KF,G, +F,G,) . (6.40)
and the sign of A, is the same as that of
7' —4(F,G F G . : {6.42)
6.1 Application to the Phillips model
As an application of the result of Section 6, we discuss the Phillips model
Y= -0, 0,0=B+ (- DT FU+T, (6.5)

where I/, = U, — U,. U, and U, are constants.
There are only four cases in all to be studied (cf. Mu et al., 1994).

b oy B
LU <
Case | F, U, 7,

Itis proved to be nonlinearly stable (cf. Shepherd, 1988, or Mu et al, 1994).

L
Case2. U, F

Let o= U, then C, = and take C, sufficiently large. Therefore, by (6.3}, we

1
F +F,
obiain the nonlinear stability condition

1+%u>]F1F2+(F,—%u)2 , (6.62)

or gquivalently
A +plA+F > F(F +F,). (6.6b)

=B
Case 3. U, F

Let x=U,. then C, = and take C, sufficiently large. Therefore, by (6.3), we

1
F, +F,
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obtain the nonlinear stability condition

.o 1 1y
hhsp> F1F2+(sz§u) . (6.7a)

or equivalently

PP+ F )= Fy(F +F,) . (6.7b)

Cased. U, < MFi’ or UV, >F£.

1 2

Now
U, —=
P DS
FU B G,
a—U, 1 —w
C,=—=_ = s
: FZU.siﬁ GZ

where w=(U, —a) /U, >0, and G, =F, + /U >0,G,=F,~F/ U, >0 Thus we
can use the results of (6.4) to obtain nonlinear stability condition in this case

;.(A+p)>f[\/pz(pl+bi)+\/ﬁl (Fz—Ui)]2 _ (6.8)

Take & =0, then noslinear stability conditions (6.6)-(6.8) can be turned into the results
of Mu et al. (1994), which equivalent to

AZ>[fF:(Fl+§)+fF](F1—Lf)]2. (6.92)

or equivalently

.&>sz (F,+?i—)+\/ﬁ, (Fz——['jﬂ—) : (6.95)

i

Hence. our result is better than that of Mu et al (1994).
7. Andrews’ theorem

Mu, Zeng, Shepherd and Liu (1994) have proved that any basic state satisfying their
nonlinear stability theorem for zonally symmetric problem of the two~dimensional multilayer
quasi—geostrophic model must itsell be zonally symmetric. That is to say, Andrew’s (1984)
theorem holds for the basic state satisfying the nonlinear stability theorem in zonally
symmetric problem. Here we use the similar technique to show that this is also true for our
improved nonlinear stability theorem in this paper,

Suppose that (¥, @ is the nonlinear basic state satisfying our nonlinear stability condi-
tion. Then (B = Flx + a. y). P= Olx + a, )} is also a steady state. The invariants {1)-{(4) in
Section 5 for ¥ are equal o the corresponding invariants for ®, hence, the invariant T of {(5.2)
is equal to zero. On the other hand, after transformation (3.7} on ¥ = &—Yand g=F -
0. (F=LTK#, 5= LTKg) satisfies (3.8), so the general Poincare inequality holds for .
Therefore, under the stability condition, the i is positive definite in § = P- 5 thus, g = ¢
= (). Since g is any constant, we can see that -‘f"z = (), which proves our assertion.
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APPENDIX

Proof of the improved poincare inequality

Suppose that p and b satisfy the system

Vip=b, {Ala)
el ey =0, fo ., dx=0, (Alb)
I bdxdy=10, (Alc)
D
j pdxdy=10, (Ald}
Jal
§ vbaxdy=[ yv?pixay=0, (Ale)
D o
Decompaose p into Faurier series of x
p=Vir, n+Wix, p.1), (A2a)
Wix,y, )= E[Um(hrkOS(Egi)*'Vmbnﬂﬂn(ﬂﬁi)]. {A2b)
m=1
Then by (Ala)-(A1d), we oblain the conditions for ¥'= V(y,0). U, (», Y and ¥ (3, 1}
¥
[ vay=o0. (A2c)
-y
V(£ ¥)=0, (A2d)

U, (Y. 0=V, (£Y,0=0, [m=12+1].
Now, from (Ale), we have

H4
j_ny”.dy=0,

or equivalently. integrating by parts and using the boundary condition (A2d), we have

WY)—¥v(i—Y)=0 . {AZe)
By the known Poincare inequality, it is readily to see
2
| wiasayzof wiaxdy, w=2 (A3a)
D D X
1 2 "Tz
§ wizaf wiasay, 4= o (A3b)
The key inequality to be proved is
¥ ¥ 2
2 2 =F_
I_yV).dyZvj_yV dy , v-y2 . (A4)

I (A4) is true. then by (A3) and (A4), we have
2 - 2 , 2 ) 2
jﬂ | ¥ p|* dxdy = ID Vidxdy + L W, dxdy + jD W3 dxdy

>minGd+ @I| Vixdy+ | widxdy) (a35)
D D
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= min{v,/ + #)j Prdxdy .
D

Since the domain is the periodic channel, and ¥ < ? X, wehave

min(v,A + p)=1+pu .

Thus, {AS5) turns into

ID | pl* dxdy 2 (J_+u)jp Pdxdy . (A6)
Now we shall prove (A4) by considering the variational problem
L
i j _ Uy oo,
v=min——— , j Frdy#£0 (AT}
vidy o

with conditions (A2c), (AZe) and V},( —¥Y)=V, (Y.
According to the variational principle, v is the eigenvalue of the following ordinary
differential equation:

2
2V y=0, (A8)
Y

with the boundary condition (A2¢) and
V(n=v (- 7). (A9)

The above problem is well-posed. Its eigenvalues are discrete, and v 2 0. The general so-
lution of problem (A8} can be formulated as

V=C costv' "2(p+ ¥) + Cysin(v' 2y + Y)) .

By the boundary condition (A%) we have
C, (os2y' " )= 1)+ Cysin(r' P ¥) =0
—C,sin2y' "2 ¥) + Cy(cos2v' ? ¥} - 1)=0 .

It follows from |C, |+ |C, | #0 that
[cos(2v' P ¥)— 1T +sin’ (/P =0 .
Hence

cos(' I Ny=1,
and therefore
2 ¥ =2nn, n=0]12,
From the condition jvdy =0, we have

v={x/¥)" .
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The eigenfunction cosﬂ]%i corresponding to the eigenvalue v = (n / ¥)* satisfies the con-

dition (A2d), too. Hence v is also the eigenvalue of problem (A8) under the boundary condi-
tions (A2c), (A2e) and (A2d).

Now we can prove our improved Poincare inequality as follows:

Multiplying both sides of {Ala) by~p, then integrating it by parts and using (Alb). we
obtain

j | v pl*dxdy = —j pbdxdy (ALD)
D 0

Then applying the inequality (A6) and Holder inequality to (A10), we have

G| pdedy<| inlzd.rd):SJj pzdxdy\/j” pldxdy . (ALD)
n D o o

Hence, we have

| pacay <¥2 v . (A12)
)

Thus, from (A11) and {A12). we obtain the important improved Poincare inequality

b dxdy

2 .sp;___
fﬂiwl dxdy T (A13)
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