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ABSTRACT

The physical characteristics of mesoscale are analyzed. and results show that the unbalanced
forced motion is the fundamental cause, which leads to the evolution of some important mesoscale
weather systems. In this paper. an alternative asymptolic expansion method, which is quite differ-
ent from the conventional Rosshy—number expansion, is used to simplify the potential vorticity
equation. And the quasi-balanced (QB) mode! based on nonlinear balance equation is derived.
The QB madel, which is in analogy with the quasi -geostzophic model, can describe the fundamen-
1al characteristics of the mesoscale accurately and may be used as the basis of thearetical studiss on
the mesoscale atmospheric dynamics,
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1. Introduction

It is now widely recognized that the potentiat vorticity has become a very iluminating
and powerlul theoretical tool for studying geophysical flows on a range of scales. A funda-
mental problem in meteorology and oceanography is how to simplify Ertel's potential
vorticity conservation on fluid particles so that it is conceptually and computationally easier
to be dealt with than ils more general form in the primitive equations. For the midlatitude
large-scale motions, characterized by a small Rossby number in the atmosphere and ocean,
quasi—geostrophy is a successful siandard method for achieving this simplification.
Specifically one expands all dependent variables in a series in Rossby number and solves lead-
ing order 1o obtajn simplified, quasi-geostrophic dynamics (Kuo, 1973; Pedlosky, 1987). The
quasi—geostrophic theory has become the conceplual cornerstone for the large-scale atmos-
pheric dynamics and provided a dynamical framework for much of our understanding the
slowly evolving, meteorologicaily significant large-scale phenomena in middle latitudes. To
relax some of the restrictive assumptions in guasi—geostrophic model while still retaining sim-
plicity relative to the primitive equations, many intermediate approximations have also been
proposed (Xu, 1994; McWilliams and Gent, 1980, Hoskins, 1975). It is well known that the
fundamenta! assumption of the quasi—geostrophic model, or any model based on geostrophy.,
is thal the actual wind is nearly geostrophic. However, geostrophic balance has obvious limi-
tations on timescales of the order of, or less than, the inverse of the Coriolis parameter. It is
thus inaccurate for many quantitative applications and not generafly applicable to the
mesoscale dynamics, which may be defined as atmospheric circulations for which the Rossby
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number is of order unity. Due (o the evolving processes of the mesoscale atmospheric motions
are very complicated and diversified, there is still not a rational and unified theory for the
mesoscale motions just like the quasi—geostrophic theory for the large—scale motions. We al-
ways hope to use the basic principles of the atmospheric dynamics to analyze the developing
evolution of the mesoscale guasi-balanced motions, and further establish a theoretical
framework of the quasi—balanced dynamics for the mesoscale atmospheric motions. It is well
known that the shallow~-water equations are frequently used in the simplified dynamical stud-
ies of the atmospheric and oceanographic phenomena. Although the mesoscale atmospheric
motions are basically three—dimensional, for mathematical simplicity and dynamics clearness,
and under the condition of not affecting the essentials of problems, we may still adopt the
barotropic model, which could be governad by the shallow—water equations. Moreover, it still
embaodies the general characteristics of flows under the actions of gravity and Coriolis forces.
Furthermore, when the dynamic equations are to be further applied to our understanding of
the atmospheric phenomena, it is permissible to simplify them beyond the point where they
can yield the acceptable weather predictions (Lorenz, 1960). The dynamical definitions of
mesoscale are reviewed in Section 2. The physical analysis emphasizes the characteristics of
balanced and unbalanced motions and ils application to the diagnostic studies of the
mesoscale weather systems in Section 3. We present an alternative asymptotic expansion
method to simplify the potential vorticity directly and obtain the simplified governing equa-
tion for QB model in Section 4, and the results are summarized in Section 5.

2. Dynamical definitions of mesoscale

It is well known that the atmospheric motions systems have the multi-time and
multi-space scale characteristics. Therefore, many researchers classified the division of scales
for the motions of different atmospheric phenomena {Orlanski, 1975, Emanuel, 1983). How-
ever, as for the definitions of mesoscale, there exists a great difference. For example, Orlanski
classified mesoscale as meso—a (200—-2000 km), meso—§ (20-200 km) and meso—y {(2—20 km}.
Emanuel defined the Lagrangian Rossby number Ry =2n./ Tf, (where Lagrangian time
scale T is that of acceleration following a fluid parcel; f; is the typical value of the Coriolis
parameter) being 1~ 10 as mesoscale, his dynamical definition of mesoscale includes motions
which the ageostrophic advection and the Coriolis acceleration are essential clements. Pielke
(1984) defined the mesoscale as: (I} The horizontal scale is sufficiently large so that the
hydrostatic equation can be applied; (11} The horizontal scale is sufficiently small so that the
Coriolis term is small relative to the advective and the pressure—gradient forces (although it
may be important), resulting in a flow field that is substantially different from the gradient
wind relation above the planetary boundary layer. This definition approximates to the
Orlanski’s meso—§ scale and the Emanuel’s definition. In conclusion, a consistent dynamical
definition of mesoscale might then include motions, which the Coriolis force, the
pressure—gradient force and the ageostrophic advective term play an important role in the
weather systems, and they have hydrostatic, anelastic and substantially ageostrophic charac-
teristics. Its substantially ageostrophic characteristics constitute a great difference from the
quasi—geostrophic characteristics of the large—scale systems; and the important roles played
by the Coriolis force and the hydrostatic approximation are its great difference from that of
the small-scale systems.
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3. Physical analysis of mesoscale and its application

We only consider the mesoscale motion for which the Rossby number is order unity, that
is, the inertia, Coriolis and pressure—gradient forces are essential elements. The governing
equations of the barotropic model with a rest basic state (i.¢. shallow—water equations) are

D/ +ud/dx+vd/8y— fp= —gdh/ dx,
@/ dt+ud/dx+od/dyp+ fu= —gdh/ay,
(Eree+ut/ox+od/dpdh+(H ) Pu/dx+ 807 8y)=0, (1)

where 7 is time, (u,0) are velocity components in the (x, ) coordinate directions, fis the
Coriolis parameter, g is the gravitational acceleration constant (often viewed as reduced by an
internal stratification factor, Ap / p, in geophysical application), &# and # are the mean and
perturbation fluid depths respectively. The shallow—water equations, which are the typically
hyperbolic systems, govern two classes of motion with different time scales: low~frequency
Rossby—lype molion and high-frequency inertia—gravity motion, the former is the
large—scale motion, and the latter corresponds to mesoscale. The momentum equations of
Eqgs. (1) can be transformed inio the Lamb’s formation

du/ét—(f+ = —3¢B/ dx,
do/dt+{f+Du= —¢B/dy, (2)

where { = @du/ dx — du /3y and B = plgh) + (u® + 0"}/ 2 are the relative vorticity and the
Bernoulli function, respectively. We may also deduce the following potential vorticity equa-
tion from Eqs. (1}

@/er+ud/dx+ud/3p)g=0, (3)
where
_ ftre
153 (4)

is the potential vorticity. Egs.(2} actually describe the quasi—balanced dynamics characteris-
tics of the mesoscale motions under the co—actions of the inertia, Coriolis and pressure—gra-
dient forces. For the sieady motions (i.e. quasi—balanced state of forces), we have

(F+Dv=08/3x, (f+Du= —3B/ 0¥, (5}

the above notation is similar to the large—scale geostrophic balance and called the generalized
gradient-wind balance (Noting that the gradient—wind balance referred in textbooks or liter-
atures is a horizontal force balance between pressure—gradient, Coriolis and centrifugal forces
along a fluid trajectory, which takes into account the curvature effect and neglects the
particle’s tangential acceleration). For the mesoscale atmospheric motion, if the quasi-bal-
anced condition {3} is introduced (just as the large—scale quasi—geostrophic model), then the
problems of the mesoscale dynamics may be simplified {Yeh and Li, 1980). In fact, if we de-
fine

w" =(1+{/ pu=(1+Rodu, v’ =(1+{/ fo=(1+ Rop, (6}
we name ¢ - and¢”  as the equivalent geostrophic winds, then {5) can be written as
fut=-aBsdy, fT =08B/0x. (7

This notation is the same as the geostrophic balance in the mathematical formula. fmay be
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considered as a constant for the mesoscale, from (7) we may get the following relations,
D' =0, Rg"=ViA, 8)

where D° and {" are the divergence and the vorticity of the equivalent geostrophic winds,
respectively, and Vﬁ is the Laplacian operator. It can be seen clearly that although the

quasi-balance (£ * = ¥ ; B) is identical to quasi—geostrophy (f = ¥ 2 »}in the mathematical
formula, it denotes a quasi-balanced state of forces among the inertia, Coriclis and
pressure—gradient forces. And, under the condition of steady motions (¢ / &t =0), we also
have the following relations {obtained from {3) and (5)}

udg 7 éx +uvdg /8y =0, udB/dx+vdB/dy=0, 9

those show that under the condition of stationary motion, the isoline of potential vorticity
and isoenergy are streamlines. Zeng {1979) also pointed out that only all flow parcels in mov-
ing processes did not advect energy and potential vorticity, the motion is steady. If anyone’s
conditions did not be met, then the advections will absolutely lead to the atmospheric motions
change. However, the siudies of stationary flow field {(balanced motions} make sense.
Actually, the factor, which causes the flow field changes with time; namely, destroys the con-
dition of balanced motions. Therefore, analyzing the condition of steady flow field, from an-
other point of view, it depicts the factor’s role in governing evolution processes. Furthermore,
the physical apalyses of the mesoscale quasi-balanced motions also have practical
application, if we find out the balanced and unbalanced relations in the atmesphere, then the
results can be applied to the diagnostic analyses of the occurring and developing dypamics
mechanism of a weather system, Both observed facts and theoretical researches show that the
formation and the development of the rainstorm systems have very close relations with the
distribution and the evolution of the environmental vorticity and divergence. Accordingly, it
is much more convenient to use the vorticity and divergence equations to diagnose and ana-
lvze the structures of flow field than other equations (e.g. the momentum equations). Sun
(1982} used the divergence equation to study the rainstorms in southern China. Based on the
facts that the occurrence of heavy rainfall is often related to the low-level jets, his studies
mainly focused the influence of the non—uniform distribution of horizontal wind field on the
divergence changes, and he proposed that

A=9/dx(udu / 6x+vou/dy)+ 3/ dpluds 7 8x + vdv / 8y) (10}

is used to analyze the horizontal divergence changes and its relations with the upcoming
rainstorms, and the practica! operations also obtain relatively good results. Meanwhile, he al-
so pointed out that there often exist the ageostrophic parts in the meso— and small-scale at-
mospheric motions. And from his compuling results we see that the value of 4 seems to be
small (1~2x 10 *s ~?), however, the ageostrophic vorticity £’ = (£ — V ; @) in the real at-
mosphere is generally large (Wang and Sun, 1988). When £’ exceeds A4, even though 4 is pos-
itive, it cannot make the low—level convergence increase. In this way, the magnitude of A
cannot reflect the divergence changes accurately. Therefore, using 4 alone to diagnose the di-
vergence changes sometimes will cause numerous errors. On the other hand, the divergence
equation can be obtained from Egs. (1)

ap/at=(ff—Vig)—A—pu, {11

where D is the horizontal divergence, 8 = 87/ 9y is the Rossby parameter. 1f we consider the
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mesoscale motions, then the fu term of (11) may be neglected and the divergence equation
(11} may be simplified to

D/ dt=(f—-Vipl—A=f—A. (12

Apparently, the condition, which A4 can describe the divergence changes accurately, is that the
ageostrophic vorticity (£') is small. However, in the activity areas of mesoscale, the diver-
gence changes caused by the ageostrophic vorticity are large terms in the equation (12). And
from the computing results, we can see that the divergence variations caused by the nonlinear
terms also cannot be neglected, which is usually equivalent to the ageostrophic vorticity’s role
(Wang and Sun, 1988). Tt is obvious that only using 4 to determine the divergence changes is
restricted. I we introduce the equivalent geostrophic wind ¥, (u” .v" ), accordingly, the di-
vergence equation {12) may be rewritten as

aD/et=f" ~Via. (13)

It can be seen clearly from (13) that the physical content is described by the divergence equation.
For the mesoscale motion, the cause of drastic changes in the divergence field is that the equiva-
lent vorticity {* and energy B fields do not salisly the quasi—balanced relation

£’ = ¥ :B. This is quite similar to the situation which the vorticity and geopotential fields of
the large—scale motion not satisfying the quasi—geostrophy will lead to the drastic divergence
changes. Because the two terms in the right of (13} are casily calculated, and its credibility is
good, {13) can be used in the practical operations to analyze the evolving trend of the divergence
field. Comparison of (12) and {13) indicates that for the mesoscale atmospheric motion, wunder
the condition of the quasi—geostrophic approximation (ff = V f, ), maybe there are still relative-
ly strong changes in the divergence field {4’s role). However, under the condition of the
quasi—balanced approximation (f° =V iB), the divergence field has not clear variations
(3D 7 =~ 0). Thus it can be seen that £* ~ V ; B depicts the quasi—balanced characteristics of the
mesoscale atmospheric motion much more accurately than the quasi-—geostrophy (f~ V 2o,
it integrates 4 and ageostrophic {£") terms. Thus the application of (13) to diagnose the divergence
changes maybe pets a better resull. IF (ff* — V iB) < (,then the unbalanced forced motions will ex-
cite convergence grow; on the contrary, if (£ — V f, B) >0, then the unbalanced forced mo-
tions will excite divergence increase, Numerous example analyses showed that the rainstorm sys-
terns often occur at the area where the intense convergence grows in the low~level atmosphere.
Hence, under a favorable environment, if the negative value of (ff f oy i B) in the low—level
atmosphere reaches a certain intensity, then the unbalanced motions will force the low—level at-
mosphere to reach a certain intensity, then the unbalanced motions will force the low-level
convergence to intensify swiftly and subsequently cause rainstorms. This maybe is the dynamic
mechanism for the unbalanced forced motions in the atmosphere triggering the rainstorm weath-
er, so we can use the distribution of (£f* — ¥ ? B) values to quantitatively describe the
dynamical factors, which excite the rainstorm weather systems. Chen (1993) used the divergence
equation, which is in analogy with {13}, lo investigate the dynamical mechanism of the unbal-
anced motions in the atmosphere triggering the heavy rainfall weather systems. The above dis-
cussions mainly focus on the application of the divergence equation to diagnose and analyze the
evolution of the mesoscale weather systems, and obtained ideal results. The reason is
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that the horizontal divergence is an extremely active physical factor in the development
of the mesoscale weather systems and the occurrence of rainstorm than that of the
vorticity. The low-level convergence ceaselessly producing and subsequently exciting the
ingrila—gravity waves conduce to triggering the development of the mesoscale weather
systems and the formation of the torrential rains (Chao, 1980). Accordiagly, in order to
understand the dynamics essentialities of the heavy rainfall systems, it is absolutely nec-
essary to investigate the divergence’'s evolution of wind field. In fact, through the discus-
sions of the coupling interactions between the vertical vorticity and horizontal divergence
equations, we also find out that when the divergence change becomes an important phys-
ical quantity in the process of a rainstorm, there will appear the coupling oscillations be-
tween the vertical vorticity and the horizontal divergence. The main physical mechanism
of these oscillations is due to the existence of ageostrophic motions and nonlinear
interactions, if only these oscillations exist, then the mutual adjustments will continue,
Obviously, these oscillations possess the characteristics of the inertia—gravity waves, and
certainly conduce to triggering convection and accelerating rainstorm development (He,
1989). Moreover, these kind of nonlinear interactions are very important to the devel-
oping evotution of the mesoscale weather systems. For example, some theoretical studies
have shown that the formation and the evolution of the squall lines are those nonlinear
evolving processes of the solitary waves, which can be described by the famous K—d¥

equation (Li, 1981). In brief, there exists a quasi—balanced relation £* = ¥ 2 B {from the
deducing process, we can see that it actually describes the quasi—balanced state among
the inertia, Coriolis and pressure—gradient forces) in the mesoscale motion, which des-
cribes the quasi-balanced characteristics of the mesoscale more accurately than the
quasi—geostrophic balance UC%V,?Q)). Therefore, it is appropriate to introduce the
guasi—balanced relation £° = VﬁB in the diagnostic analysis of the mesoscale atmos-

pheric motion. And the nonbalance (;7" # V,z,B} between its energy and vorticity field
will cause the divergence change. So we can use (13} to diagnose the evolving trends of
the divergence field, and further study the unbalanced motions in the atmosphere which
can excite the development of a mesoscale weather system and diagnose the dynamical
mechanism of the occurrence of the heavy rainfall. In order to understand the dynamics
of the mesoscale weather systems (e.2. the heavy rainfall processes), it is essential to in-
vestigate the internal balanced and unbalanced motions in the atmosphere, which drive
the evolution of the divergence field.

4. Potential vorticity simplification and quasi-balanced mode!

From the point of view of dynamics, the different space-scale motions in the atmos-
phere. they undergo different kind of forces. For the large—scale raotion, its main charac-
teristic is the gquasi—balanced state of forces beiween the Coriolis and pressure—gradient
forces which leads to the quasi—geostrophy, which is also the physical basis of fundamen-
tal assumption in the quasi—geostrophic model. When this guasi-balanced state breaks
down, firstly, the velocity and pressure fields undergo a drastic adjusiment, that is the
so—called geostrophic adaptation stage; then enter the quasi—geostrophic evolution pro-
cesses and finally enter its quasi~steady stags. While the dynamical characteristics of
mesoscale motion are the quasi—-balanced state of forces among the inertia, Coriolis and
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pressure—gradient forces, there also exist the adjustment stage, the developing stage un-
der the quasi—balanced state of forces and the quasi—steady stage {Yeh and Li, 1964),
The real development of a weather system large— or small-scale, which can be observed
in the atmosphere, is actually the evolutional processes undergoing in quasi—balanced
state of forces., And this nonlinear evolutional process is the main driving force for the
development and the evolution of the weather system. For the mesoscale atmospheric
motion, the physical analyses show that the dynamic processes are basically controlled by
the co—actions of the inertia, Coriolis and pressure—gradient forces. That is to say, the
mesoscale motion usually proceeds under the quasi—balanced state of forces among the
inertia, Coriolis and pressure—gradient forces.

It is well known that, for the large—scale atmospheric motions, the actual winds are
generally decomposed into:

u=u, tu,, v=uv,to, (14)
where (v, ) are the geostrophic components of the winds, (#,.v,) are the ageostrophic
components. Moreover, ¥, < <u .5, < <uv, and (ug,vg ) satisfy the following relations

B, =dos0x, fi, = — e /ey,
du, Sdx+adv, /8y=0 (15)

for the large—scale motions, Re <1, the relative vorticity is generally smaller than the
geostrophic vorticity, that is

I~U/L~(Ro}f~( < f (large — scale). (16}
Since < < H, and the potential vorticity (4) may be reduced to

H+h H(O+E/H) H I f H
~L Lirp fgk @ _ 2
U R g - R LU -2, (17)

where 13 =4£ /gH=/ /¢, W, =gh/ f, is the geostrophic streamfunction, and
M=y ﬁ ¥, - In the above expansion series, we only retain the two terms and neglect the
small term (C/ fh/ H). Neglecting the constant coefficient 1/ H, we have the
quasi—geostrophic potential vorticity g = f+{ (™ —iﬁu,bg = f+ Vﬁdag —Azwg, for a
midlatitude tlangent plane with the Coriclis parameter f= f+ f +By. And the
guasi—geostrophic potential vorticity equation is 8 / &t + 4§, .4} = 0. Many researchers
used the asymptotic theory to expand all dependent variables in a serious in Rossby
number and solve leading order to obtain the simplified, quasi—geostrophic dynamics
(Pedlosky, 1987). Here we use allernative method to simplify the potential vorticity and

obtain similar result.
Similar to the above procedure, for the mesoscale atmospheric motions, the actual

winds are decomposed into:
v=u, tu,, v=u, +u, (18)

where (u, v, ) are the balanced and non-divergent components of the winds, (u,.v,) the
nonbalanced components (which contain the divergent part). Moreover, u, < <u,,
v, < <, and (u, v, } satisfy the following relations
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(f+0, =8B/ éx, (f+i)u, = —3aB/ 8y,
Bu, /8x +dv, / 8y =0, (19)

Comparison of {15) and (19) indicates that the geosirophic balance of the large—scale mo-
tion is replaced by the generalized gradient—wind balance of the mesoscale motion, but the
mesoscale motion still possesses the horizontal nondivergence characteristic. From the non-di-
vergent  relations. we may introduce a  streamfunction ¢y, = — 3¢, /8y,
v, =&y, / éx, the momentum equations in Eqs. (1} can be transformed into the following
so-called nonlinear balance equation

Vie=[Viy, +20@EY, /ox.dv, / 8, (20
where J(A,BY= (84 / 6x)@B /7 3y)— (34 / dy}dB / 0x) is the Jocobian operator. By a

formal scaling analysis of mesoscale, fmay be considered as a constant and Ro % 1, so we
have the following refation

I~ A L~{Ro)F{ = f (meso —scale) n
For the mesoscale atmospheric motion, its potential vorticity (4) may be deduced to
JSre e _fte = L _ N
H+h HO+h/H H - Pm Ut iUt Oy el
1 f C(U) f + E(UJ
s LU0 R e = U [ =), (22)

1]

where @™ = gh. Neglecting the constant coefficient // H and using (20) to obtain the
quasi—balanced potential vorticity

=1+ Clm F L(D) o
Co
+ V2
- e viv, - T g, 429 e, / 2x00 /09 @3
/]

so the governing equation of the QB model is the following quasi-balanced potential
vorticily equation,
dq, SO+ I, 4,1=0, (24}

where the streamfunction , is determined by the nonlinear balance equation (20), the
potential vorticity g, = ¢,(¥,) is & function of ¥, . Comparison of (17) and (22) indicates
that, for the mesoscale motions, the relative vorticity {, which is neglected in the
large -scale potential vorticity compared with %, must be retained. The equaticn (24) is
consistent with the results of theoretical analysis (Yeh and Li, 1982). That is, for the
adiabatic and [rictionless atmospheric motions, large— or small-scale, there exists a po-
tential vorticity equation, which depicts the developing and evolving processes of the at-
mospheric motions under the quasi—balanced state of forces and can be reduced to
dq / 8¢ + J(.g) = 0 formation. Vallis {1996) also obtained the potential vorticity equa-
tion {24) in his studies, but the potential vorticity obtained by Vallis is

q= f+ W0 (ﬁ / gH)[w[D) +2vy h* 2](!#‘;0) ,w?) )]’ (25)

where sireamfunction rlr(”’ is determined by the nonlinear balance equation. This is in
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analogy to our results, but (23) is more accurate than (25), in fact, the potential vorticity
obtained by Vallis is only the geostrophic potential vorticity plus the small Jacobian
term. From comparison between the quasi—balanced and quasi—geostrophic models, we
can clearly see that the physical basis of the fundamental assumption in the QB model is
the nonlinear balance of the mesoscale motion, it replaces the geostrophic balance in the
quasi—geostrophic model.

5. Conclusion

The physical analyses have shown that there exists a quasi—balanced relation in the
mesoscale motions, £° = ¥ i B. Although the quasi—balanced relation is identical to the

quasi—geostrophy (£~ V ,2, @) in the mathematical (ormula, it denotes a quasi—-balanced
state among the inertia, Coriolis and pressure—gradient forces and describes the
quasi—balanced characteristics of the mesoscale motion more accurately than the
quasi—geostrophic balance. And the nonbalance between the energy and vorticity field
(" #V i BY will cause the divergence change. So we can use the divergence equation
(13) to study the unbalanced forced motions in the atmosphere which can excite the de-
velopment of 2 mesoscale weather sysiem, and diagnoses the dynamical mechanism of the
occurrence of the heavy rainfall. In order to understand the dynamics of the mesoscale
weather system (e.g. the heavy rainfall processes), it is essential to investigate the internal
balanced and unbalanced motions in the atmosphere, which drive the evolution of the di-
vergence field.

The mesoscale dynamic equations are the basis of theoretical studies on the
mesoscale atmospheric dynamics. Therefore, according to the characteristics of the
mesoscale motion, the formal scaling analysis and the asymptotic theory are applied to
simplify the governing atmospheric dynamics equations, which are based on fMuid dynam-
ics and thermodynamics. So they can describe the fundamental characteristics of the
mesoscale motion more accurately, these procedures are essential for the development of
the mesoscale dynamics. Based on observational data and theoretical analyses, we know
that the atmospheric motions, large— or small-scale, usually proceed under the
quasi—balanced state of forces. When this quasi~balanced breaks down, there must be a
mechanism to bring the motions back to the state of quasi—balanced forces swiftly. The
real development of a weather system, which can be observed in the atmosphere, is
actually the evolutional processes undergoing in the quasi—balanced state of forces. And
this nonlinear evolutional process is the main driving force for the development and the
evolution of the weather system. So this quasi-balanced characteristics may be intro-
duced into the momentum equations to simplify mathematical processing of dynamics
problems. In fact, the quasi—geostrophic model is often used to investigate the
large—scale atmospheric dynamics and a great success is achieved. It is well known that,
the fundamental assumption of the guasi—geostrophic model, or any model based on
geostrophy, is that the actual wind is nearly geostrophic. The corresponding assumption
made in deriving the QB mode! is that the wind is nearly generalized gradient—wind bal-
ance and non—divergent. In this paper, the QB model, which is in analogy with the
quasi—-geostrophic meodel, is derived. Many comparative analyses and numerical
simulations have shown that the nonlinear balance equation has high—degree validity
(Gent and McWilliams, 1982; Raymond, 1992; Whitaker, 1993; Gent, et al. 1994). So the
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QB model, which is based on the nonlinear balance, can describe the basic characteristics
of the mesoscale motion accurately and may be used as the basis of the theoretical studies
on the mesoscale atmospheric dynamics. Moreover, the numerical experiments on the po-
tential vorticity evolution and inversion for the QB model, and the application of the QB
model proposed in this paper to numerical simulations of some mesoscale systems will be
published elsewhere.
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