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ABSTRACT

The variational data assimilation schemne (VAR ) is applied to investigating the advective effect
and the evolrtion of the control variables in time splitting semi-Lagrangian framework, Two
variational algorithms are used, One is the conjugate code method—direct approach, and another is
the numerical backward integration of analytical adjoint equation—indirect approach. Theoretical
derivation and sensitivity tests are conducted in order to verify the consistency and inconsistency of
the two algorithms under the semi-Laprangian framework. On the other hand, the sensitivity of
the perfect and imperfect initial condition is also tested in both direct and indirect approaches.

Our research has shown that the two algarithms are not only identical in theory, but also iden-
tical in numerical caleulation. Furthermore, the algorithms of the indirect approach are much
maore feasible and efficient than that of the direct one when both are employed in the
semi~Lagrangian framework, Taking advantage of semi—Lagrangian framework, one purpose of
this paper is to ilustrate when the variational assimilation algorithm is concerned in the
computational method of the backward integration, the algorithm is extremely facilitated. Such
simpticity in indirect approach should be meaningful for the VAR dssign in passive model, Indeed,
if one can successfully split the diabatic and adiabatic process, the algorithms represented in this
paper might be easily used in a more general vision of atmospheric model.

Key words Variational algorithms, Semi—Lagrangian framework, Indirect approach, Direct ap-
proach

1. Introduction

Weather forecasting model is a set of partial differential equations (PDE). It should satis-
fy certain initial-boundary conditions, Cleasly, one of the most important improvements in
weather forecasting model is to optimize its initial and boundary conditions. For the simplici-
ty of discussion, we might regard the spatial boundary condition 2s a kind of initial condition
in spatial dimension,

An effective dala assimilation procedure is required in order to utilize widely collective
data for the weather forecasting model and find an optimal initial condition. The purpose of
the comprehensive utilization is to make the errors minimal and to improve the forecasting
quality good enough as possibly as it can,

Application of variational assimilation in atmosphetic model was best demonstrated and
developed by Lewis and Derber (1985), LeDimet and Talagrand (1986), and Talagrand and
Courtier (1987). Recently, it has been a popular interesting topic in China {(cf. Gao et al,
1995; Zhu et al., 1995; and the references therein).
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However, few people had ever linked this technique be applied in semi—Lagrangian
framework. Just in recent 10 years, meteorologists begin to rethink semi—Lagrangian frame-
work because it allows the use of large time steps without introducing computational instabili-
ty (see the review of Staniforth and Cére, 1991). Actually, the computational efficiency of the
semi—Lagrangian framework is 6 times faster than that of traditional Eulerian framework
(Robert, 1981, 1982). It is imaginable that semi—Lagrangian framework will become
increasingly important in numerical weather forecasting models. The research trying to com-
bine various VAR techniques with the semi—Lagrangian framework is therefore very
meaningful,

To speak convincingly, the variation algorithm is put place in two categories according
to their discretion fashion, namely, direct and indirect approach. The sieps for direct ap-
proach (it is also called conjugate code methed in the paper of Chen et al,, 1998} include: the
discretion of PDE and the corresponding numeric; then, writing out the numerical langent
linear model (TLM); finally, writing out the numerical adjoint programs (cf. Chao et al,
1992; and Rostating et al, 1993). For indirect approach, the steps are as follows: writing oul
the partial derivative adjoint equation indirectly from the linear version of PDE; then writing
out the numerical adjoint programs {cf. Lewis and Derber, 1985, for example). It is in our in-
terest to compare numerically the efficiency and accuracy of two approaches under
semi—Lagrangian framework,

Taking advantage of semi—Lagrangian framework, one purpose of this paper is to illus-
trate when the variational assimilation algorithm concerns in the computational method of
the backward integration, the algorithm is extremely faciliated under semi—Lagrangian
framework, The backward integrating process is actually taken place along the
semi—Lagrangian trajectories of air parcels; consequently, the numerical codes are almost
identical between backward and forward semi—Lagrangian integration,

Since few papers have been dedicated these aspects, so we will provide sensitive (ests in
an idealized cone test, For advection—dominaled airflow, such cone test provides a unique
analytical solution so that mainly through the comparison between modeling results and ana-
lytical solutions, the statistic significance presents a rigorous benchmark of accuracy in vari-
ous variational algorithms under semi—Lagrangian framework.

2. Principle for variatinal algorithm

The basic PDE equations in forecast model can be written in a compact form

dY

T F(Y), ({0
where the vector Y(1) belongs to a Hilbert space £, and F(Y) and represents a regular func-
tion of Q— Q into itself. I the initial condition Y¢, is given, under certain boundary condi-
tions. a time series of the forecast variables such as ¥(¢, ), Y{t,), ¥(r;), Y{¢, ) can be obtained
from the solutions of Eq. (1), Suppose that the estimate ¥(¢) of Y(z} is also available, ie,,
$4e,), ¥4e,).¥(,),¥(1,,) at the corresponding time levels, A cost function J with respect to in-

itial condition ¥Y(z,) is thus defined as;

JOY( )= % i< Wi, (Y, )~ B, 0¥ )— Yie)> ()]

The notation “ <,>" means the inner product in £ space, and W(z,) is weighting matrix.




No, 3 Wang Yunfeng, Wu Rongsheng and WangYuanetal 421

Notice that we do not assume the estimate ¥(z,) is exactly compatible with a solution of Eq,
(1). The idea behind the variational algorithm is to get an optimal solution of Eq. (1) with re-
spect to minimizing the cost function J, In other words, the initial condition has been adjusted
in the optimal way to suit medel integration. Such adjustment can be expressed as

Y= Y0 )t TG ) {3)
where v is iteration number; %7/ is the gradient of J with respect to the initial condition ¥(r,)

and p is convergent speed (or say, optimal step size), p in turn can be determined by
quasi—Newton scheme (Gill et al., 1982).

2.1 Indirect approach algorithm
Given the initial condition ¥(z,) and for the corresponding solutions of Eq. (1), the
first—order variation 8. resulting from a variation 3Y(r, ) of ¥{¢,) is equal to
SIY(r, N= 2 < W, )(V(,)— Y DSYE)> @
=1

Here the first—order perturbations §¥(¢; ) are themselves obtained by integration of linear
perturbation of Eq. (1), starting {rom the initial condition §¥(r| ). That is:

dsY _ o,
W F(1)0Y. (5}

Where F(t) is the linear Jacobian operator obtained by differentiating F(r) with respect to Y,
Since the Eq. (5) (namely of TLM, ie, tangent linear model} being linear, its solution at a giv-
en time 7, depends linearly on the initial condition at time ¢, , which can be expressed as

8Y(r,)= Lz, 1, Y11, ). 6)

Where L(z, 1, ) is called the resolvent of equation on {4) between time 1z, and ¢, . Substituting
Eq. (6) into Eq. (4), we get

SHY(r, )= i< Wiz, XY )~ Y LA, WY (e )>
= i< LY (0 WG Y0~ Y 08Y(0 )> 7

Since we have the relation d/= < 7J5Y> | thus

Y, )= ZL (¢,,11 YW Y ()= ¥, ) &

Clearly L* (1,,, } is the adjoint of Lz, .7, ) and it is indeed very difficult to evaluate. [n order

to obtain L™ (t,., ). we introduce at this point the adjoint equation of (5)

Y . .
—T—-F (t5Y " . 9)

Where Y * also belongs to the space Q, and F'* {r) represents the adjoint of F'(z). It is simi-
lar with Eq, (6) that
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SY " {t))=L" (¢, )8Y" (). (10)

Notice that Eq. {10} is compatible and indeed identical with Eq. (8), if and only if one takes
SY" (t.)= W, X¥(t,)— ¥(z, as the initial value at 1, time step and integrates Eq. (%)

backward from¢, tor, and summing the result §¥~ ;{¢,) in the period of [r ¢, ]:
TIOYU, W= T G 0 W0 HY @) - Y6, 0= 2aY 7 oy (1)
=1 =1

Since Eq. (11) is linear, $7/(¥(7; )) might be obtained through a single integration of adjoint
Eq. {9) from time ¢, to ¢, : and at each time step, the weighting difference Wiz, XY(?;)—
¥ir,)) is inserted.

The indirect approach algorithm can be expressed as lollows: firstly, obtain the partial
derivative adjoinl Eq. {9) indirectly from the basic Eq. (1): then, discretize the adjoint equa-
tion 1o obtain adjeint code (or call it adjoint model); finally, obtain the gradient of the cost
function by the adjoint model,

2.2 Direct approach algorithm { conjugate code method)

As we described above, the indirect approach is actually a general way, which is to find
adjoint equation analytically, then 1o express it numerically. Consequently, it leads the com-
plex expression of adjoint equation, On the other hand, the direct approach means that one
might obiain discrete adjoint model directly from the code, which is the discrete formulation
of model, i.e, Eq. (1). It implies that we view the forward—integrating numerics of Eq, (1) as
the result of the multiplication of linear operators, or sy, the mulliple subroutings or logical
loops, This idea of direct approach can be schematically expressed in an analogue form of Eq.

®)
3Y@ =L, L,  ~L §¥({,). 12)
Here each operator L, symbolically represents either a subroutine or a single logical loop,
Then the adjoint model simply turns to
Y ()= LI LI L) 8Y" (r,) 13)
Thus, substitute Eq. (13) into Eq. (11), we get 37/(Y(z,)); which is in turn inserted in Eq. (3),
the optimal initial condition is then obtained.
Clearly any L7 is the transpose matrix of L, in linear space, and it can be easily ob-
tained if the eperator L, is readily known (see the example in appendix of Navon el al, 1992),
Furthermore, define a multiple linear operator M= L, L,_ ==L, andM” = L] L] =L} 50

we have
8Y(r, )= MéY(z)), (14)

and
Y (1 )=M"8Y" (r,) (15)

Now it is seen that
< BY(r, )Y (1, )> = < MSY(r)8Y ™ (1,)> = < 8Y(, M"Y  (r,)>

< 8Y(,),0Y " (£, )> . (16)

I

il
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This formula means that the input of an inner production < §¥(z,J8Y ™ (7, )> at initial time
should be equal to the output < §¥{r_)6¥ " (¢, }> at final step, if the direct approach is

correctly constructed,
On the other hand, as we illustrated in indirect approach, by using Egs. (5) and (9), one
can easily verify that

s —_ e dOY() (s vy @Y ()
a1 < HY(NBSY' (1)> = < o SY T (> + < 8Y(), 0 >
= < F(8Y{OSY ™ (1)> — < 8Y(O)F ™ (Y™ (> = 0, (7
thus

< YY" (11> -, = < JY(@)SY (> . {18)

The consistency exisling in both Egs, (18) and (16) has demonstrated that indirect and di-
rect approach is theoretically identical. Nevertheless, the inconsisiency is generally arisen
from the analytical form of the adjoint equation with its imperfect discrete approximation,

3. Forward and backward schemes under semi—Lagrangian framework

Semi—Lagrangian numerical framework is a hybrid idea for traditional Eulerian and
Lagrangian scheme. It wants to get best of two schemes: the regular resolution of Eulerian
discretion and the enhanced stability of Lagrangian one. This is achieved by using a different
set of air particles at each time step, the set of particles being chosen such that they arrive ex-
actly at the points of a regular Cartesian mesh at the end of the time step. In the past decade,
the discretion under semi—Lagrangian framework has elicited considerable interest for the ef
ficient integration of weather forecast models, since they allow larger time steps with no loss
of accuracy than the Eulerian framework.

Although semi—Lagrangian framework is mainly described for a hierarchy of applica-
tions (passive advection, forced advection, and coupled advection} of increasing complexity.
However under methodology of time—splitting technique, Eq. (1} can be simply split into two
fractional steps (cf. Wang, 1997a):

% = F(Y) (adjustment step) (19a)
Y .
i U (advection step) {19b}

And the discretion of Eq. {19a) can be implemented by leapfrog time scheme, for instance;
and as demonstrated by Talagrand and Courtier (1987), the adjoint of the leapfrog time dif-
fergncing scheme is readily addressed. Therefore without loss of generality, only the discretion
of passive advection problem of Eq. (19b) under semi—Lagrangian framework is of interest
here.

For a passive quantity ¢, the passive equation without diffusion and source or sink reads

2o -y (Vo) ¥V Vo= 9V Y. (20)

Frequently, Eq. {20) is used in a form where — ¢/ - V has been neglecied, referring
— ¥ « g as the advection term, Note that W » ¥= 0 is a justified assumption for all me-
teorological flows, except in the very smallest scale which is not concerned here. Eq. (20} thus
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comes to
de _¢p  dx _te _
d o ar YT TV ve=o (21)
dx
& Vix,1). 22}

Here, x is the position vector {in 1-2— or 3D); 7 is the gradient operator, and V(x,s) is the
given function, The hyperbolic character of Egs, (21, 22 states that the transport of ¢ is con-
stant along a fluid trajectory (or characteristic path), The essence of semi—Lagrangian
advective scheme comes to be approximately integrating the Eq. (21} along the approximated
trajectory Eq. (22).

Easity, we get the corresponding perturbation and adjoint formula of Eq. (21),

ddg) _

2o, (23)

_dee’)_ g (24)
dr

And indeed it is the corresponding tangent linear equations of (5) and (?) under the certain
condition %7 « V= 0. Both of Eqgs. (23), (24) tell us, the backward integration of the adjoint
difference is analytically equivalent to integrating this difference backward in the model equa-
tions. As illustrated in Fig. 1{a) and Fig. 1(b), the characteristic curve PQ in forward integra-
tion is different with the backward curve QP. Both curves are numerically determined by
iterations (cf. Staniforth and Céte, 1991}, It is seen that in most situations, the numerical dif-
ference exists between (he backward and forward way since the imperfect approximation of
fluid path, excepl in the case of V= constant,

T T
(3) t0)
R
J ¥ S
s
~ :
P - : x, IS L
t - " 13 ?
¥ X % X o Q X
P

Fig. 1. {a) Forward semi—Lagrangian advection scheme; (b) Backward semi—Lagrangian advection

scheme,
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As shown in Fig. 1(a) and Fig. 1(b), the forward numerical integration can be expressed
as {0+ Ar)= p{P ). And the first guess fluid path is taken PQ= F | V|dv. Ou the other
hand, for backward numerical integration, we have ¢ ' (P i~ Af)=¢ (2, and QFP=
+ | ¥ldt as the guess path.

As mentioned before, the main idea in semi—Lagrangian advection scheme is that the ar-
riving point (i.e., the position Q in forward or P in backward integration, respectively) is al-
ways designed at the grid of mesh, And the departing point (i.e. the position P in forward and
Q in backward integration) is generally located in somewhere in the interval of mesh. There-
fore, {P,1)and @~ {Q,t) have to be determined by interpolation between the intervals, In
our case, (he optimal cubic spline (it means the cubic spline with natural boundary condition}
is used (Wang. 1997a). In order to keep the shape—preserving imerpolation function, the pro-
posed monotone constraint is also employed in the spline (see Wang, 1997b), Such con-
strained cubic spline interpolation has provided very high accuracy in the numerical advection
integration and the spurious numerical dissipation and dispersion are well eliminated to min-
imum. Such high—accuracy offers an opportunity to perform the advection scheme withoul
engagement of any kind numerical smoothness / diffusion / filter and so on.

Conclusively, ihe semi—Lagrangian advection scheme provides a unigque platform to
benchmark the pronounced two approackes, [t has been shown thal the indirect approach in
semi—Lagrangian framework comes to be extremely simple. For both of the forward and
backward integration, the possible inconsistency arising from smoothness (such inconsisiency
due to the smoothness can increase assimilating error to higher level, see the Fig. 8 in the pa-
per of Navon et al., 1992} completely disappears. Another inconsistency from the derivation
of the adjoint equation following by the discrete approximation is negligible, because the ex-
actly same analytical form persists in the adjoint equation and its corresponding TLM, as well
as the high accuracy of the numerical approximation in the proposed semi—Lagrangian
backward and forward scheme.

In summary, the crucial indirect approach of backward integration in semi—~Lagrangian
framework is outlined here:

Step 1: Determining the backward fluid path by using the first guess value of Q P=
+ |¥|dr, and then integration Eq. (22) backward,

Step 2: Integraling Eq. (24) following to the backward path, ie, dp (P A=
deg " (QL)

Step 3: Inserting 8¢ ~ {r,) into Eq. {11} in order to oblain the cost function.

The direct way begins to represent numerical formalism of Eq, (1) as we have already
mentioned. In fact the consequent construction of the codes is no difference with the scheme
proposed by Rostating et al. (1993).

Clearly, indirect approach in semi—Lagrangian framework is a very simple way in par-
ticulat; the direct approach is, as it was, a general way in natural. The two approaches will be
numerically tested in the following section and the statistic error—level comparison will be

given.
4. Numerical test

In order to assess the numerical aceuracy and efficiency in direct and indirect approach
under the semi—Lagrangian framework, the so—called cone test is introduced by rotating a
“ consine hill” passive scalar distribution in two dimensions. The numerical dissipation and
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dispersion of each approach can be easily visualized in such simpie test: A 2D underlying
function is one sonsine—hill distribution of concentration with a peak value of 3.87 (Figs.
2a.¢). Then this is advected in a rotational flow field, in which the angle velocity is a constant
in a clockwise direction (Fig, 2d), The peak value and distribution should remain constant
throughout the rotation, Therefore, 2 measure of the accuracy of a method lies in its ability to
transport the disiribution without change.

Meanwhile a noisy consine—hill distribution is constructed by its underlying contribution
perturbed by an artificial two—grids—noise maker with a reduced peak valve to 2.0; this is in-
troduced for the sensitive test of initial conditions, and here it is taken as an imperfect initial
field (Fig. 2b). Both the imperfect and perfect initial concentrations, in the two approaches,
are advected by same rotational wind field, and then compared with the corresponding ana-
Iytical solutions in a statistic fashion,

As we list in Table 1, four tests are conducted. That is: Case (1) is the indirect approach

(b}
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COATOIM FA0M 4 TO A3 Y 4
Fig. 2. {a) The 2D perfect initial distribution of cone; (k) The 2D imperfect initial distribution of
cone; (¢} The 3D perspective view of Fig. 2a; (d) The horizontal distribution of the background
wind field,
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with the perfect initial condition; Case (II) is indirect approach with the imperfect initial con-
dition; Case ([11) is the direct approach with perfect approach; Case (IV} is the direct ap-
proach with imperfect approach,

Table 1. Statistic assessment for various cases in cone test under Semi—Lagrangian framework

Case 1 Case 2 Case 3 Case 4
[nitial MAX 387 20 387 20
siate MIN 0.0 —0.05 Q1.0 —0.05
Model MAX 2544 1,313 1544 1.313
results MIN 5.39E-9 2.06E-% 5.39E-9 2.06E-9
without RMSE TH5E-2 0,239 T65E-2 0.239
VAR J 88,545 1746.61 #8545 1746.61
Model MAX 2755 2756 2.596 2339
resulis MIN 232E—6 2075E-6 227E-3 2.11E-3
with RMSE 5.35E-2 5.29E-2 6.96E-2 9.89E-2
VAR J 43,19 4213 72.16 197 84

In Table 1, the numerical results after six rotating cycles are also given. The number of
the time steps in every cycle is 6284, There are total 6 rotating cycles, and therefore 37707 time
steps. If one time step stands for 10 seconds, the total time will thus reach 4.4 days, which rep-
resents well the characteristic time—~scale for a typical weather—scale phenomenon, Afier each
cycle the model numerical solutions ¢, (f= 1,2,+--,7) are stored, The corresponding estimate
of solutions @, (/= 1,2,+7) of p, is all equal, in those ideal cases, to the analytical values de-

rived from the underlying function. Therefore the cost functicn J= % E(rpr. - (2:,-)2 here de-
=1

notes the discrepancy between the analytical solutions and the model solutions. In our

ileration procedure, since the * quasi—-Newton” scheme is used, so we have p= E-V—Jli’%

However, because the term is difficult to solve numericaily, it is thus replaced by p= % And

in order to accelerate the convergent rate, it can be multiplied by some certain coefficients,
The iteration is keeping until some criteria are satisfied. For example, it satisfies wJ/< ¢
where ¢ is a small constant,

As shown in Table 1, for four cases, the model results with both indirect and direct ap-
proaching YAR technique are superior than the results without VAR, The effect of optimal
initial conditions due to the VAR adjustment is thus in evidence. And we also can find that
the indirect approach can make the cost function or RMSE smaller than the direct approach
one.

As demonstrated by comparison of Cases (I} and (I[} or Cases (II) and (1V) in Fig. 3, we
find that it converges 10 the prescribed criterion more feasible with the perfect initial condi-
tions than with the imperfect one. Nevertheless, the convergent rate of the imperfect initial
conditions is larger than the perfect one, particularly at the beginning steps of the iteration,
Such sensitivity of initial conditions indicates that the perfect initial conditions possibly are
not the optimal initial conditions to the model, Indeed, the perfect conditions (ie., J=0 since
it is exactly equal to the analytical solution) have to be adjusted to minimize the errors from
the numerical approximation of model,
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To compare indirect and direct approach, ie, the comparison of the Cases (I} (II) against
the Cases (IIT} and (TV), we found that the simulation results for two approaches are nearly
identical in 2 numerical sense (the plotted results have not been shown), although the indirect
approach has shown somewhat superiority in the term of numerical accuracy. Furthermore,
the big differences between the cost function J, the gradient | 7/| in indirect and direct ap-
proach indicate that the indirect way is a faster way and therefore it is a time efficient for
semi—Lagrangian framework. This becomes much clear as shown in Fig. (3). It is seen that the
varying of the cost function J, the gradient | 7J|. the root mean square error (RMSE) with
iteration steps illustrated all the cost function J, the gradient | 77| and RMSE are gradually
reduced with the increasing of the iteration times,
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Fig. 3. The varying of the cost function J, the gradient | 77|, and the root mean square errar
(RMSE) with the iteration steps. (1a,1b, 1} in Case (I): (2a,2b,2c) in Case (IE); (3a,3b,3c) in Case
(ILI); (4a,4b,4c) in Case (IV) (see text).
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Nevertheless, the decrease of the cost function J and the gradient [%7J] in direct ap-
proach is much slower than the indirect approach is. Meanwhile the time varying of RMSE
for both approaches did not show a big difference.

5. Conclusion

The time splitting semi—Lagrangian framework was suggested by Leslie and Purser
{1991). It has been proved that the framework is one of the most fast algorithms (cf, the re-
view of Staniforth and Céte, 1991), 1t also offers the flexibility for grid configuration; for in-
stance, the framework can been used in Arakawa—A grid mesh (Leslie et al., 1981), and there-
fore it greatly decreases the numerical complexity.

In such framework, we have discussed the two approaches of VAR technique. It has been
verified that the direct approach (conjugate code method) and the indirect approach {numeri-
cal approxiration of analytical form of adjoint equation) are not only identical in theoretical,
they are also identical in numerical, However, the indirect approach is much efficient than the
ditect approach, since the inconsistency between the backward and forward integration in the
indirect way is negligible under the semi—lagrangian framework.

The proposed semi—Lagrangian backward scheme in fact can be directly used in passive
models, such as the dispersion (air poilution) and budget model. Generaily, we think that if
one can successfully split the diabatic and adiabatic terms in weather forecast model, the
algorithms of the indirect approach should be much more feasible and efficient than that of
the direct approach. This requires, of course, intensive sensitivily tests in future.
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