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ABSTRACT

In this paper. the coupling equations describing nonlinear three—wave interaction among
Rossby waves including the forcing of an external vorticily source ar¢ obtained, Under certain
conditions, the coupling equations with a constant amplitude forcing, the stability analysis indi-
cates lhat when the amplitude of the external forcing increases to a certain extent, a pitchfark
bifurcation occurs, Also, it is shown from numerical results that the bifurcation can lead to chaotic
behavior of “strange™ atiractor, For the obtained three—variable equation, when the amplitude of
modulated external forcing gradually increases, a period—doubling bifurcation is found to lead 1o
chaotic behavior. Thus, in 3 nonlinear three—wave coupling model in the large—scale forced
barotropic atmaspheric flow, chaotic behavior can be observed, This chaotic behavior can explain
in parl 30—60—day low-frequency oscillations observed in mid—high latitudes,
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1. Introduction

Since nonlinear three—wave inleraction among Rossby waves in the large—scale unforced
barotropic flow was investigated by Longuet—Higgins et al. (1967), a considerable study on
this aspect had been made (Loesch, 1974; Jones, 1979). Egger (1978), Cree and Swaters (1991)
and Luo (1994) had extended nonlinear three—wave coupling among Rossby waves to include
large—scale topographic forcing and attempted to explain the onset of atmospheric blocking
situation and the appearance of 30—60—day oscillation, However, no chaos was found in all
these studies.

Wersinger, Finn and Ott (1980a,b), Hughes and Proctor (1990a,b; 1992) had investigated
in detail the non—conservative nonlinear three—wave mode coupling, and found that when
one of the three wave modes is linearly unstable and the other two are linearly damped (they
are assumed to possess the same damping rate), this model can be reduced to three—variable
gquations, In certain parameter ranges, chaos can be detected. However, in the atmospheric
flow, all Rossby waves are usually damped, In this case, if the external forcing is not consid-
ered, chaos may not occur in the atmospheric three—wave mode coupling model, the external
vorticity source forcing must be required.

In the present paper, we constuct a new chaotic model of three—wave mode coupling
among Rossby waves in a large—scale forced flow, and give some numerical solutions. The
main outline is as follows. In Section 2, the nonlinear equations describing nonlinear
three—wave near—resonant inleraction among Rossby waves in a large—scale forced
barotropic {low are obtained. Under ceriain conditions, these equations can be reduced to
four— and three—variable equations, In Section 3, for the constant amplitude forcing the
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stability analysis of the four—variable equations without dissipation is made, and a pitchfork
bifurcation is found. In addition, the numerical solutions of this system are given in this sec-
tion, and chaotic solutions of “strange” attractor are found. In Section 4, we give the numeri-
cal solutions of the three—variable equations for 2 modulated external forcing, and the chaotic
solutions of this system are found. In Section 5, the numerical solutions of the three—variable
equations for a modulated external forcing and with a stronger dissipation are given, The
conclusions are given in Section 6.

2. The forced barotropic model and nonlinear three—wave coupling equations

2.1 The forced barotropic model

The nondimensional barotropic vorlicity equation of the large—scale barotropic flow
with dissipation and external vorticity source on an infinite beta plane can be wrilten in the
form (Charney and Devore, 1979)

[ N
5 VU WV o= VT - RV, )

2 2w .
where ¢ is the streamfunction, f= %ﬁo and 8, = F-D-u:osazo. W " is the streamfunction of
a

external vorticity source, and its coefficient has been combined into itself, R, is the
nondimensional friction coefficient and R, < < 1.0, L= 10°m and U= 10 m/ s are the
characteristic horizontal length and velocity scales, respectively, The other notation can be
found in Charney and Devore (1979). In this paper, for simplicity we assume that the external
vorticity source is weaker so thatyy * = O(&°) is allowed like Luo (1994,

2.2 The forced three—wave coupling equations
In this subsection, based on the ¥~ = O(¢’)case, we assume R,= R, and

v =gy, , where P e< <10 and 3= SN 0.1 is the local Rossby number. In this

S L
case, we introduce
=g, 2)
and expand ¢ as
y=—ay+ L'y, oyl 3)
n=|

where # is the zonal mean westerly wind and a constant.
Substituting (2} and (3) into (1), we obtain

) _ A a )
O Ly )= (e%+ uf; W)= ﬁ—(a—x’—= 0, (4a)
O ELW)= — o= T, — I T W)= R VY, + Y, (4b)

Eq. (4a), being lincar and not including any forcing, permits a solution consisting of the
superposition of three Rossby waves in the form
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W, = LA, e + co (5
n=1
where 0, = k,x+ m,y— @, t{n=123) k, and im,are the =zonal and meridional
_ k
wavenumbers of the nth Rossby wave respectively, a, = wk, — kﬁ—# is the frequency
L3 "

of the nth Rossby wave, 4,(T) denotes the complex amplitude of the sth Rossby wave, and
cc the conjugate of its preceeding terms.

In the Northern Hemispheric mid—high latitudes, the external vorticity source usually
has the “ zonal wavenumbers 2—37 structure. Here, the prescribed external vorticity source is
assumed to be of the form

¥, = FiTlexplikyx+ m,y— w1+ @+ ce, (6)

where F(T) is the real amplitude of the prescribed external vorticity source, k; and ney are its
zonal and meridional wavenumbers respectively, w, is its frequency and a constant, (T} is
an arbitrary slowly varying phase. As pointed out hereafier, the wave three is only forced by
the external vorticity source. When F(T'} is a constant, the external vorticity source is a con-
stant amplitude forcing, while when F(¥') is a slowly varying function, the external vorticity
source is a modulated forcing,
In Eq. (4a), if we take (k, m, )= (k,— 2m) (k,,m,)= (2k,m) and {k,, my )= (— 3km)
as the zonal and meridional wavenumbers of the three Rossby waves for zonal wavenumbers
1

———— is5 the zonal wavenumber of the wave one, and
6.371cos(p, )

1-3 considered here (where k=

m= En;), then when the three Rossby waves in Eq. (4a) satisfy the conditions
B+ E+EK =90 o+o+u=A (7

for a small frequency mismatch Aw, three—wave near—resonance among the three Rossby
waves may occur (Craik, 1985; Luo, 1994; Luo, 1998). If we choose L= 3~ 3.5, then Aw=

0.0634~ 0,0365 at 45°N. In this case, the three~wave near—resonant interaction is permitted.
On the other hand, if we assume w,= w, + Awy and Aw= gAw, for the small Aw, then by
substituting (5) and (6} into Eq. (4b) the nonsecluarily condition requires that

%=—RMAI+S]A{ A; gt (8a)

d—d':,—z= — RgAd;+ 5,4, 45 & T (8b)

%= ~ R A+ SSAI. A; 2wt 4 F(T)e'l' Aoy T+ em], )

where s, =2 (lell;-l &5 5= bzqmll;-!zm '2),s,= baq,c]q;-!zm il
1 3

b= kymy— ko, by =k my— kymy, by = kymy—~ kym; and A, * denotes the com-
plex conjugate of A,

When R, = 0, Aw,= 0 and F(T)= 0, Egs. (8a—) reduce to the three—wave resonance
equations derived by Longuet—Higgins and Gill (1967}, Jones (1979) and Cree and Swalers
(1991). However, when R, = 0, F(T)= 0, and Aw,# 0, Egs. (8a—¢) raduce in form to the
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three—wave quasi—resenance equalions in the geophysical fluid derived by Luo (1994), For
cases without forcing and dissipation, the analytic solutions of Egs. (8a—) had been obtained
by Weiland and Wilhelmsson (1977) and Craik (1985) in terms of Jacobi elliptic functions. In
addition, when A(T)= 0 and R, in Eq. (8a) is negative, Eqs. {8a—c) are similar to the
three—wave coupling model investigated by Wersinger, Finn and Ott(1980a,b), they found
that the dynamical behavior of these equations depends strongly on the parameters. In a cer-
tain parameter range, the period—doubling bifurcation and chactic behavior of " strange”
attractor were found.

In Eqgs. (8a—c), because §,<0,8,<0and §,< 0, we can make the transformations
A=+ 5 B . A=Y~ S, B, and 4;= JEB3, In this case, Egs. (8a~c) can be

rewritlen as

dBl. * * 1A

7 RoB — B, B, e AT (9a)
dB, Y

—7 = T RuB:i— 1B By e denT (9b)
dB, oo e F(T) - seyT+ 0T

a7 = " RaBit B By EA"T"'{—ST“E ' . (9¢)

where y= 4 5, 5,5, .

It is clearly found from (92) and (9b) that 8, and B, have the same equation in the
form. If the variables in Eq. (9a—c) have the initial amplitude, then both £, and B, have the
same time variation and identical period. On the other hand, Ghil and Mo (1991} lound that
in the mid-high latitudes, 30—60—day low frequency oscillations show wavenumber
one—through—three nearly equal amplitudes, Based on such observational evidences, we may
assume two waves of the three Rossby waves being of equal amplitude. In this case, if we as-
sume B, = B, (Wersinger, Finn and Ott 1980 a,b; Hughes and Proctor. 1990a, b, 1992), we
obtain from (8a—c)

aB e o

7.,~T'—= — R, B, — 1B/ By ™7, (10a)

dB ; .

d; — = R B,+ B 2T 4 F'(SL) il BT+ O (10b)
3

Here. we will divide two cases to discuss the dynamical property of equations (10a—b),
First, we consider ®(T)= 0. It implies that the external vorticity source is in phase of the
wave three. Second, we consider @(T)# 0. For this case, the external vorticity source has a
slowly varying phase difference in comparison with the wave three. On the other hand, it
should be pointed out that Eqs, {10a—b) are alsc different from the two—mode coupling equa-
tions derived by Miles (1976} in investigating resonant oscillations of water waves in closed
containers subjected to periodic forcing even though Awy, = 0 and ®(7)= 0 are allowed. In
the following, we will divide two cases to simplify Egs. (10a—b),

2.2.1 The four—variable equations for ®(T)= 0

In Egs. (10a—b), if ®(7)= 0, then these equations cannot be reduced to the three—variabls
equations similar to those derived by Wersinger, Finn and Ott (1980a,b), Hughes and Proclor
(1990a,b, 1992), but can be reduced to the four—variable equations. Here, if we assume
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B, = b (T)™ " and B, = b,(T)e” ™7 and define X(r}= eRe[h, (er)],Y{t)= elm{#, (et)],
Z{t)= eRelb, (e1)], and W(r)= elmlb, (e1)], then the following four—variable equations can be
obtained as

‘;—‘f= — R X+ AwY— 3(XZ— YW), (11a)
4y

7= T RY - AoX+ iAW - Y 2), (11b)
aZ ) 2

= T ORI AW XY A, {lic)
dd—"f= — R, W+ AwZ— 2xXY, (11d)

In Eqs. (11a—d), if f{z) is a constant, then the stability analysis of these equations can be
made. As an example, for Eqs. (11a—d) we only consider the f{r}=constant case, Thus, we
may assume f{r)= f,(f, is a constant). Moreover, the stability analysis of system (11) will be
discussed in Section 3, and its chaotic solutions are also given,

2.2.2 The reduced three—variable equations for @(T)# 0

In Eqgs. (10a—b), when @(T)# 0, the external vorticity source has a slowly varying phase
difference in comparison with the wave three. Here, if B, (T)=r, (T)e™*"* 917 and g, (T
=7, (Tt denT+ 2100 4re allowed, then @(T) may be assumed to satisfy @(T)= — 2 (7).
In this case, if one uses t= T / ¢ and defines

X()= ery (Teos®, Y (1)= er,(T)sin®, Z(:)= &' r, (T) (12)

for ®= — 2, (T)— @, (7T), then we obtain from Eqs. (10a—b)

%= — R X— AwY+ xZ— 23+ fle), (13a)
dy _
Sr = RY+ AwX+ 2XY, (13b)
4z _ _ 2Z(R, + xX), {132
dt

& Fier)

whete R, = &Ry, Aw= g5 Aw and flr)= 75,
SS

When fir)= 0, and only when R, and Aw in Egs. (13a—b) are replaced by — R, and
~— Aw respectively, Eqgs. (13a—c) are identical in form to the three—variable nonlinear equa-
tions in the conext of waves in plasmas derived by Wersinger, Finn and Ott {1980z, b),
Hughes and Proctor (1990a, b, 1992), who investigated in detail the bifurcation and chaotic
behavior of this system, Hughes and Proctor (1990b) reduced these equations to a
one—dimensional, bimodal map of successive maxima of | X{, and found that the dynamics of
these equations can be described in térms of the bimodal one—dimensional map, which allows
bifurcation sequences etc, to be simply constructed, On the other hand, when flr)s 0, Eqs.
(13a—c) obtained here are new forced three—variable nonlinear equations, which has not been
investigated yet. In this paper, we will apply the fourth—order Rung—Kutta methed to solving
Eqs. (13a—c). In fact, because R, is always positive in the large—scale flow, these equations
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may have different properties in comparison with the threc—variable equations obtained

by Hughes and Proctor (1990b), If we define E= X'+ v+ Z, thenf;—f = — IR, E+ 2fI)X.

In this case, the total energy E of the three coupling waves is nat a conserved quantity. This
indicates that the dynamical behavior of the three coupling waves is rather complex,

3. The stability analysis without dissipation and numerical solution of system (11) un-
der the constant amplitude forcing
3.1 The stability analysis without dissipation and pitchfork bifurcation
In this section, the stability analysis of system (11) is made. For simplicity, we consider
the inviscid case. When f; > 0(fz)= f,), by setting R, = 0 and dX _dy _dZ _dW _ o)
' ¢ 0h e dar dt  dr ot :
three stationary solutions of Egs. (10a—d) are easily obtained: with P= (X,Y ,Z W), they are

B % B (Aw® + f,8) _Aw
Pﬂ—m,o‘o;@),?,,z—m,i f——éz 0= . (14)

When f;, < 0, the three stationary solutions of Egs. (l1a—d}are

Aw’ — £;8) .
py= 00000y b= B gote

Aw 52 (s)

In order to investigate the stability of the stationary solutions, we linearize Eqgs, (11a—d)
by P'= P— P,(i= 01,2} to yield

0 Awt W, 0 oY,
| - e— ) 0 3y, 0
pr= ‘i=0,1.2, (16)
0 —2Y, 0 -Aw
— 25, 0 Aw O
Xl
YI

for f, > 0, where P'=

For the stationary solution P, the characteristic equation of systems {11a—d) without
dissipation is
3,
(A + A0® WA+ A’ - af—°2)= 0, (17)
Aw
but for the stationary solutions P, ;, their eigenvaiue equation is
A+ AR+ HAW + f,0F Haw’ + £,8)/,8=0 {18}

4
When f§< é;;—, Eq. (17) has four imaginary roots. In this case, the stationary
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4
solution P, is stable, While whenfﬁ > %4 Eq. (17} has four imaginary roots. In this case,

the stationary solution P, is unstable. On the other hand, it is found that Eq. (18) only ilas
four imaginary roots. This shows that simultaneous with the loss of the stability of £, the
2

stable two fixed points P, and P, are born. Thus, as jj increase through I—A;J—l P, and P,

become the attractors of the system. The basin boundary separating the basins of attraction
for the attractors P, and P, is the two—dimensional stable manifold of P, (Jackson, 1990,
and Ott, 1993). For f,< 0. there exists similar pitchfork bifurcation. Thus, when |7, | in-
creases, a pitchfork bifurcation will occur (Guckenheimer and Holmes, 1986). In next
subsection, we will find numerically that the piichfork bifurcation can lead to chaotic solu-

tions.
3.2 Numerical results

321 Case fy> 0

For the constant f, case, we will give the numerical results of systems {11a—d). Without
the loss of generality, if we choose the initial data X{0)= ¥ (0)= Z{0)= W(0)= 0.3 and
R, =0.0001, then under the condition f; > 0, the fourth—order Rung—Kutta scheme may be
applied to computing systems (11a—d) for the given fy. For f, =0.62,0.074, 0.11, 0.16. 0.18
and 0.20, the projections onto the (XY }-plane of trajectories of systems (10a—d) are shown in
Fig. 1. while the corresponding time evolution solutions for X of systems {I11a—d) are des-
cribed in Fig, 2.

1t is found from systems (11a—d) that under (XY ,Z, W)= (— X.— ¥ ,Z, W), system (11)
possesses invariance. This character is consistent with that found in the Lorenz system. As
pointed out by the stability analysis of the fixed points of system (11), carried out in the above
subsection, when the parameter f}, increases, the pitchfork bifurcation occurs and produces
an interesting arrangement of limit cycles. The limit cycle. which is invariant under
(X.Y.ZW)= (— X,— ¥ ,Z W), becomes unstable and two stable limit cycles are formed. We
see in Figure | that when f, =0.02, the phase trajectory in the (XY )—plane for the solutions
of system {11} is a symmetric period—two orbit, and its main period is near 40 days. While
when f, =0.074, a period—three orbit is observed through the bifurcation, As f,, increases
further, chaotic motions can occur through the pitchfork bifurcation, For example, when o
=0.11,0.16,0.18 and 2.0, the solutions of X(r) are found to possess chaotic behavior, while
the corresponding phase trajectories are found 1o be strange attractors that seem to have
“inkfish™. “ dragofly”, “ petal” et al. patterns. [nierestingly, it can be noted that these strange
attractors found in Figs. lc—f are symmetric in the X direction. Thus, the pitchfork
bifurcation can lead to chaos as f; is increased. Although system (11) is a new chaotic model,
its symmetry is found to be the same as the Lorenz system. In system (11), the pitchfork
bifurcation is only observed, while in the Lorenz system subcritical Hopf bifurcation can be
found except the pitchfork bifurcation. For the Lorenz system, the onset route of chaos was
given in detail in Sparrow (1982) and Drazin (1993). Here, for system (1 1) we only give the
numerical result of chaos onset, Interestingly, we note that with the variation of the parameter
#, in the range from 0.02 to 0.2, the dominant period of X varies from 50 days to 80 days,
which belongs (o low—frequency period band (Luo, 1997).




458 Advances in Atmospheric Sciences Vol, 16

0.75 0.78 5
.50 4 0.50 4
0.25 4 0.25 §
5 .00 § {a) >~ 2.00 3 (b)
—0.25 -0.25
-0.50 3 =0.50 J
-0.75 3 -0.75
=1 v -1.00 T Trere
Ry et g i L —11 0.7 04 0O 04 0.7
X X
1.00 1 1.50 3
E 1.00 3
.00 ] © 0.50 §
c 3
> ] 5. 000
_0.50-
-1.00 3 100
3 —1.50
i o i O TR Ay T
X X
2.00 1.25 4
1.00
1.00 3
0.75 §
> 000 3
0.50 4
-100 % 0.25 3
Rl T OO T TR a.80% By T

X

Fig. 1. Projections onto the (¥.¥) plane of trajectories of system (11): (a) 7y =0.02, (b} £, =04074,
(<) fy =011, (d} f, =0.16. (&) £, =0.18, () £, =0.20.

3122Case fy< 0

For f, < 0, if we choose f, =—0.0162, —0.031, —0.04, -0.07, —0.16 and —0.18, then under
the same conditions as in Fig. 1 the projections onto the (X,Y )—plane of trajectories of system
(11} and evolution of X(¢) are shown in Figs. 3 and 4, respectively.

It is found from Fig. 3 that when f, =—0.0162, the phase trajectory in the (X,Y }-plane
for the solutions of system (11) looks like a sunflower, which seems to be a period—two otbit,
In fact, we note from the evolution of X(r}in Fig. 4 that when f,= — 0.0162, X(¢) is
approximately a periodic solution, When f, decreases, a period—doubling bifurcation is ob-
served. For example, when £, =—0.04, a quadruple—period limit cycle is observed in Fig, 3¢.
However, as f, decreases forther, the period—doubling cascade can lead to chaotic solutions
(Drazin, 1993). For example, when f, =—0.07, —0.16 and —0.18 the phase portraits in Figs.
4d-f are found to be strange attractors that look like the “ petal” pattern. This shows that the
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Fig. 2. Evolution of X(¢) for the solutions in Figs. 1a—f: {a} f, =0.02, (b} £; =0.074, (c} f;
=011, (d}f, =0.16, (e} f; =0.18. {01 f, =020,

strange attractor pattern depends on the sign of f,, Different from Figs. l¢—f, these strange
attractors are symmetric in the ¥ direction. On the other hand, by observing the evolution of
X(z) we find that the solution of X{7) is a chaotic solution when f, =—0.07—~ —0.18, Thus,
chaos can occur through the pitchfork bifurcation in system {11} as f; reaches a certain extent
for £, <0.

In the chaotic three—wave coupling models without forcing proposed by Wersinger, Finn
and Ott (1980a,b) and Hughes and Proctor (1990a,b,1992), they assumed that one wave is
linearly unstable and the other two are linearly damped. In such a system, the * chaotic” be-
havior of a “strange” atlractor was detected. However, if the three waves are lingarly damped,
and the external forcing is excluded, no chaotic behavior can be found. In the real
atmosphere, all Rossby waves are linearly damped if the dissipation is included. Thus, their
obtained model cannot describe nonlinear three—wave coupling among Rossby waves in the
large—scale forced barotropic flow. In this case, it is necessary to re—establish a new nonlinear
three—wave coupling model, It should be pointed out that if the dissipation is very strong, on-
ly decay solutions can be found in system {11), For example, when R, =0.1, all solutions of
system (11) tend to reach stationary state (figures omitted). In addition, we note that in the
nonlinear three—wave coupling model, if the external forcing is included, in the general case
the coupling model cannot be directly reduced to the three—variable equations. Only under a
special condition the coupling model can be reduced to the three—variable equations derived
by Wersinger, Finn and Ott (1980a,b) and Hughes and Proctor (1990a,b, 1992). For example,
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Fig. 3. Projections onto the (X,Y F-plane of trajectories of system (11): (a) £, =—0.0162, (b] f,
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when @(T)=0 the forced coupling model like Egs, (8a—c) can be reduced to the four—variable
equations such as system (11). While when @(T)= — 2¢ (T, the forced coupling model can
be changed into the three—variable equations. In this section, the numerical study of system
(11) indicates that if the external forcing is considered, chaos can also occur though the three
waves are linearly damped. In the next section, we will investigate whether chaos can occur in

system (13),

4. Numerica] result of system (13} under a modulated forcing with weak dissipation
(R, = 0.0001)

n system (13), the external forcing f{1) is assumed to be of the form fiy= f, + fycosQ,
where Q is the frequency of the prescribed modulated external vorticity source, In the
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Fig. 4. Evolution of X{z) for the solutions m Figs. Ja—T (a) f, =—0.0162. (b) f, =—0.031, () f,
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Northern Hemispheric mid—high latitudes, Lav and Holopainen (1984} had shown that the
period of the net forcing due to transient eddies is longer than ~ 7-10 days but less than a
season {~ 90 days). Usually the period of the large—scale transient forcing is chosen to be
about 20 days. Here if the transient eddy vorticity forcing is considered as an external
vorticity source, the period of the external forcing fy) may be chosen to be 20 days, ie,
Q={0.361. Il we choose the initial data X{0)= Y ({0)= Z(0)= 0.1 and R, =0.0001, then for f;
=0.02 the phase portrait in the (XY }-plane for the solutions of system {13) and the time evo-
Jution of ¥{s) for different f; are shown in Figs, 5 and &, respectively.

It can be seen from Figs, 5 and 6 that for £, =0.02, when {; =0.0, the phase protrait in
the {.Y.Y }—plane for the solutions of system (13) is a peried—one limit cycle, and the solution
X(t) possesses a nearly 16-day pericd. When f, =0.0124, a double—period limit cycle
appears, and a long periodic oscillation is observed, which can be found from Figs. 5b and 6b.
As f, conlinues to increrase, further bifurcation can be detected. For example, when /|
=0.087 a triple—period limit cycle is found in Fig, S¢. For this case, the main period of the so-
lution X(¢) is near 40 days, which is within the range of 30—60—day period. When f; increases
further, the chaotic solutions of system {13) can be found. For example, when f, increases
from 0.0425 to 0.92, chaos appears. Figs. 5e—f describe two “strange” attractors at f; =0.54
and 0,92, Morecver, under these conditions X{t)is a clearly chaotic solution. Thus, for
perscribed modulated external forcing, when its modulated amplitude reaches a certain
extent, chaos can occur through a series of period—doubling bifurcation. Unfornately,
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when f; =0.0, no chaos can be detected even if f, is arbitrarily chosen. Consequently, when
the modulated amplitude of forcing increases, 30—60—day low—freqeuncy oscillation can be
excited through period—doubling bifurcation.

5. Numerical result of system (13) under a modulated forcing with stronger dissipation
(R,=0.1)

Under the same condition, if we consider stronger dissipation (for example, R, =0.1),
then the phase portrait in the (¥, ¥ )—plane for the solutions of system (13) and the time evolu-
tion of X{z) for different f, are shown in Figs. 7 and 8, respectively,

Tt is found {rom Fig. 8 that for R, = 0.1 when f; =0.0, the solution of system (13) be-
comes stationary state solution. However, when f, gradually increases, the solution of this
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system becomes oscillatory ones. In a ceriain parameter range, this solution may be apericdic.
Unfortunately, the long aperiod of this solution is not longer than that in Fig. 7. On the other
hand, the comparison between Figs.5 and 7 indicates that the dissipation does also have an
important influence on the phase portrait, Thus, only in a moderate dissipation parameter
range, long periodic oscillation and chaotic motion can be observed.

In the geophysical fluid, nonlinear three—wave coupling among Rossby waves in
large—scale free or forced barotropic and baroclinic flows had been investigated in detail by
many investigators such as Longuet—Higgins and Gill (1967), Jones (1979), Cree and Swaters
(1991), Luo (1994) and Luo (1998), some results were obtained. But, unfortunately, no chaos
was found. Here, for the forced three—variable equalions obtained, when the parameters
reach a certain extent, this sytem can exhibit chaotic behavior, Thus, the forced three—varia-
ble equations obtained here may be considered as the generalization of the three—variable
equations derived by Hughes and Proctor (1990b).

6. Conclusions

In this paper, new chaotic models describing nonlinear three—wave interaction among
Rossby waves in a large—scale forced barotropic flow are obtained. In the reduced four—vari-
able model, a pitchfork bifurcation occurs and leads to chaos when the prescribed external
vorticity source is a constant amplitude forcing and gradually increases. For the reduced
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three—variable model, it is found from numerical results that chaos can oceur through a series
of period—doubling bifurcation when the prescribed external vorticity source is a modulated
forcing and the modulated amplitude increases, These chaotic behaviors can explain in part
the aperiodicity of 30-60—day low—frequency oscillation, Cer(ainly, if the prescribed external
vorticity source has different form, the obtained conclusion may be different, On the other
hand, the dissipation has an important influence on the model behavior,

Although chaotic behavior of new "strange” attractor is found in this paper further work
on this subject needs to be carried out in the future.

This work has been sponsored by the Sichuan Youth Science and Technology Foundation.
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