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ABSTRACT

Atmospheric disturbances at 300 hPa are decomposed into normal medes, referred as
discrete—spectrum disturbances which can propagate freely izt the observed zoral mean flow, and
non-modal transient disturbances, referred as continuous—spectrum disturbances which are
continuously shzared and eventually absorbed by the zonal flow, It is shown that normal modes
represent only a small fraction of the observed atmospheric disturbances, while continuous~spec-
trum disturbances represent the majority of observed disturbances, even when the basic flow is

unstable.

Daily variabilities of the observed continuous—-spectrum disturbances are presented, They are
shown to follow the results of wave—packet theory, Calculations suggest that there are abundant
sourcss to excite continuous—spectrum disturbances in the atmosphere.
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1. Introduction

Maintenance, development and decay of middle latitude atmosphetic disturbances are
central to the understanding of synoptic weather processes and short—term climate variability.
Frontogenesis and surge of cold waves are typically associated with rapid development of
favorably configured small disturbances in the upper troposphere, These disturbances further
act as interactive transient forcing lo cause low frequency variabilities, They also affect the in-
tensity of westerlies and the equator—to—pole temperature gradient of the atmosphere,

Studies of small disturbances have traditionally used the normal mode method (e.g.
Eady, 1949; Charney, 1947), in which disturbances are treated as a sum of various character-
istic waves, or normal modes. These waves can either propagate freely in the background
flow, or decay and develop exponentially. However, recent studies of atmospheric disturb-
ances have called meteorologists’ attention to the non—modal form of atmospheric motions
{e.g. Zeng, 1979; Farrell, 1982, 1984, 1985; Held, 19%5). The non—modal disturbances repre-
sent transient and dispersive eddy motions that are continuously sheared by the basic flow. Tt

(1'This research was parily supporied by the Institute of Atmospheric Physics, Chinese Academy of Sci-
ences. Additional suppert is provided by NASA Grant NAGW3517 and DOE Grant

DEFG0285-ER603 14 to SUNY at Stony Brook.
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has been shown that this form of disturbances can account for rapid disturbance growth with-
in a stable basic flow, and they resemble more to the actual structures of observed atmospher-
ic disturbances.

Given the apparent success of the normal mode approach in explaining certain aspects of
atmospheric phenomena, and evidences that non—modal forms of disturbances are probably
more representative of the real atmosphere, a question naturally arises: How much of the ob-
served atmospheric disturbance belongs to modal forms of motion and how much of it be-
longs to non—modal forms of motion? The present study uses the approach in Zhang and
Zeng (1997, referred as ZZ1) to project observed atmospheric disturbances onto modal and
non—modal components. The purpose is to quantitatively clarify the magnitudes of modal
and non—madal components of disturbances in the real atmosphere, which has been previous-
ly studied only in idealized models (e.g. Farrell, 1982, 1988; Farrel and loannou, 1993).

In ZZ1, it was shown that the free evolution of an initial disturbance in a shear basic flow
can be described by the sum of discrete spectrum disturbances (modal form) and continuous
spectrum disturbances (non—modal form), with each of them expressed as spectral functions
of the discrete spectra and continuous spectrum functions of an atmospheric model, Since the
real atmosphere is subject to various exiernal and internal forcings, the behavior of the ob-
served disturbances must differ from either the discrete or continuous spectrum disturbances
that are described by a free model. Yet, if the forcings are sufficiently small or the time period
examined is short, partition of observed disturbances into modal and non—modal parts can
provide an approximate prediction of the evolutionary processes of disturbances. This infor-
mation has practical importance in initializations of numerical weather prediction. The parti-
tion alse provides insights about the nature of atmospheric forcings.

The paper is organized in the following order. The second section gives a brief descrip-
tion of the theoretical framework to decompose atmospheric disturbances into modal and
non—medal components, The following section presents the decomposition results, including
{ime evolution of the decomposed components, and the partition of energy and generalized
enstrophy. The last section summarizes the results. An appendix is included to show an alter-
nate approach of energy decomposition by using spectral functions of the adjoint model.

2. Decomposition of atmospheric disturbances into discrete— and continuous—spectrum
disturbances

We first outline the dynamic framework from which the decomposition of atmospheric
disturbances is made. A detailed discussion of the theory can be found in ZZ1. If an initial
vorticity field {’I,:O = (', is released into a basic flow v,, and it follows the barotropic

quasi—geostrophic model on a sphere:
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its evolution can be expressed as (see ZZ1)
WAL= ¥ (A8,0+ ¥ (10,0)
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where (0)= 7, /{asin?), and the eigenvalue ¢ is outside the interval of [, 2yl . G ()

is defined as spectral functions of the discrete spectra of the model since ¥ s are isolately dis-
tributed, In ZZ1, it has been shown that the number of ¢f for a given k is limited beyond any
sufficiently small neighbor of [ %, . mau.] G (1) is the same as the commonly refarred normal
modes. The disturbance i,(18 ¢) that is entirely described by normal modes or a modal so-

lution is called the discrete—spectrum disturbance.

_ G'(0c)also satisfies (4)-(5), but the associated ¢ covers the whole interval of
[« Aax |- 1t is called a spectral function of the continuous spectrum, and it has first—order
discontinuities, The disturbance ¥, (4,#,¢) that is enlirely described by spectral functions of
the continucus spactrum represents the non—modal form of the solution. It is called a contin-
uous spectrum disturbance. Following the Riemann—Lebesgue lemma, as ¢ = <€ 3’ (4,0 L)
— 0, even though the disturbance can have substantial growth at an initial stage {e.g. Farrell,
1984, 1985; Lu et al., 1986].

The solution given in (3} not only describes the evolutionary process of small disturb-
ances ——complete with both modal and non—modal motions, but also provides a basis for de-
composition of a disturbance field. I ¢ is set to zeto, (3) gives a complete expansion of any
given disturbance in terms of spectral functions of the discrete and continuous spectrum of
the model Numerically, if the grids from co—latitude 0=90 to §=nx are represented by
0,0, 0, , (inclusive of the boundary grids}, a complete set of eigenfunctions (vectors)

can be obtained from (4)~(5) for a given zonal wave number £# 0 as {Gf, [= 1,2 00w f}
where
G} = [G}0,), GI 0y G 0, T (6)

It can be shown that the numerically calculated G¥ s are weighted—orthogonal to each other
in the analog to (39) in ZZ1 (also see Held, 1985; Luetal,, 1988):

(G.6G)), ZQ,(o ore, }ﬁ:, y=0, o

when I+ /, where y= cosf, and E—*— (ds diy,. Qf = DG:‘ which represents the finite dif-
ference form of the vorticity of eigenfunction G* ;D is the finite difference analog to (46) in
Z7Z1. This set of basis functions can be normalized by letting

G[.G!), = 1. @)

For an observed disturbamce vorticity field and stream function
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Lia0)= );,c" @™, yiA0)= ;w*w)e‘“, ©)
where k= + 1, 2 s> and { * satisfies the following boundary conditions
(8= 0)= * (0= m= 0. (10)
Hence, ifl
G = RO B ) O ) = ;Ai‘cl“= it {an
then
= (00,050, 0,0 DT = JZA}‘Q?= zh+ z*. 12)

Thus, the coefflicients Af can be calculated by

.
Ab =t Qh, = T (e,-)Qi‘wj)iﬁ——’ Ly, (3)

w’,; and t.f:f are the projections of the disturbance ¥* on the discrete—spectrum functions and
the computationally distorted continuous—spectrum functions.

3. Results of decomposition

3.1 Mean states

We first present results of decomposing the time—averaged 300 hPa stream functions,
The decomposed states carry the information of stationary forcing of the discrete— and con-
tinuous— spectrum disturbances. In addition, the decomposition serves to illustrate the pat-
terns of. and the difference between the two types of disturbances, Fig, 1(a} shows the mean
disturbance stream function of January 1982 on 300 hPa, The zonal flow used is January av-
eraged one (the same as in Fig. 4a of Z71), As expecied, stronger eddy activities are found in
the Northern Hemisphere than those found in the Southern Hemisphere for this season.
Cyclonic eddy motions {positive disturbance vorticity) prevail at the locations of the iroughs
of the three planetary stationary waves in the Northern Hemisphere, pamely, near the east
coasts of Asia and North America, and to the east of Europe (Wallace et al,, 1983).

Figures 1b and 1lc show the corresponding disctete— and continuous—spectrum disturb-
ances. It is seen that the discrete—spectrum component of the disturbances has very large spa-
tial scales, with wavenumber one dominant in the zonal direction, and wavenumber two in the
meridional direction. On the contrary, the continnous—spectrum component captures virtual-
ly all synoptic—scale structures in the total disturbance field. Difference between Figs, 1a and
1b is appreciable only in the subtropics. This suggests that there are rich sources of forcing to
excite non—modal forms of disturbances in the atmosphere, These could be forcings from sur-
face boundaries, featuring localized characteristics, or from atmospheric internal heating, or
from non-linear wave—wave and wave—mean flow interactions. On the other hand, the
modal forms of motion in the atmosphere are probably excited by continental scale
land—ocean contrast.
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Fig. 1, Dristurbance stream function of the monthly averaged (low for January 1982 at 300 4Pa
{contour interval: § % 10° m*/ s). (a) total disturbances, (b) discrete—spectrum disturbances, (c)
continuous—spectrum disturbances.

Since the decompositions are made based on linear theory with zonal mean basic flow, it
is possible 10 examine the discrete— and continuous—spectrum disturbances by using different
zonal wavenumbers. Figure 2Za shows the latitudinal distribution of the amplitude and phase
of the discrete—spectrum disturbance for zonal wavenumbers 1 to 5. Consistent with Fig, 1b,
farge amplitudes in middle to high latitudes are restricted to wavenumbers 1 and 2. For
wavenumber larger than 3, the disturbances are confined in low latitudes. Note that these
low-latitude confined disturbances have simple phase structures and are asymmetric to the
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Fig. 2. Meridional distribution of the amplitude {solid, uniL: 10° m?/ s) and phase {dotted) of
stream functions for zonal wavenumbers k=1 to k=35 in January 19%2. {a) discrete—specirum dis-

(urbances, (b) continuous—spectrum disturbances.

equator, Figure 2b gives the amplitude and phase of continuous—spectrum disturbances for
various zonal wavenumbers. For zonal wavenumbers k= 1 and k=2, the magnitude of con-
tinuous—spectrum  disturbances is comparable with that of the discrete—spectrum
disturbances. But for larger zonal wavenumbers, the amplitude of the continuous—spectrum
component is much larger in middle and high latitudes; and they exhibit complicated
meridional structures,

Figure 3a is the observed mean disturbance stream function in July 1982 at 300 hPa. The
corresponding decompositions of § into y’, and y’, are given in Figs. 3b and 3c. The
discrete—spectrum component has a basic wavenumber ong structure in both the zonal and
meridional directions. The continuous—spectrum component, once again, resembles closely to
the total disturbances in many details; in particular, it captures the majority of disturbances
embedded in the middle latitude jet cores.
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Fig. 3. Same as Fig. 1 exoept for July 1982,

Meridional profiles of [y, | and [¥/, | for different zonal wavenumbers in July 1982 are
shown in Figs. 4a and 4b respectively. Also shown are the phase structures of the separated
components. The relative contributions of the continpous—spectrum disturbance are much
farger than that of discrete—spectrum disturbance when the zonal wavenumber is larger than

K3
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Fig. 4, Same as Fig. 2 except for July 1982,

3.2 Evolution of disturbances

Ii we consider the observed disturbance stream function on a given day as an initial con-
dition ¢, (4,6), with an initial vorticity field {'y. and if the evolution of the disturbance °
can be deseribed by (1), then the time variation of %/ follows i " (4,8 ,1)= ¢ ', (2,08, ¢ )
+ ', (4,0.1). The characteristics of the discrete—spectrum disturbance ¢/, describing the
neutral or unstable normal modes, have been discussed in many previous theoretical studies.
In real observations, freely travelling waves in the atmosphere have been reported by Madden
(1979), Kasahara (1976) and Ahlquist (1982). However, their magnitudes are very small in
comparison with observed atmospheric variances (Wallace and Blackman, 1983), Using the
decomposed discrete—spectrum component of observed disturbances, it is possible to give a
quantilative measure of all the normal modes combined. Figure 5 shows a time series of the
observed discrete—spectrum disturbances on 300 hPa superimposed on the mean zonal flow
for three days in January 1982 (days 1, 2, and 4), It is seen that the magnitudes of free wave
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Fig. 5. Time variation of observed 300 hPa discrete—spectrum disturbinces superimposed an the
mean zonal flow {contour intervals: 10 x 10° m® 7 s) in January 1982, (a) January 1, (b) January 2,

and (¢) January 4.

activities are very weak. There are indications of wave propagations. For example, two
synoptic—scale troughs in the Northern Hemisphere (labelled as a and b) moved eastward
from day 1 to day 2; the trough of a weak middle planetary wave in the Southern Hemisphere
{labelied ¢) maved westward from about 60°E in day 1 to 30°E in day 4. However, since the
discrete—spectrum  disturbances shown here include modes with ali zomal scales and
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Fig. 6. Same as Fig, 5 except for July 1982,

meridional scales, and furthermore, there must be influences of external forcing on the modes,
it is not fruitful to attempt 1o identify the individual modes from this figure, These figures
show the combined magnitude of all the daily free travelling waves in the atmosphere, which
will be contrasted with the magnitude of continuous—specirom disturbances on the same
days. Figure 6 shows the corresponding figure in July 1982. Free wave activities are even
weaker. It should be pointed out that in July 1982, the 300 hPa zonal flow is barotropically
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unstable as discussed in ZZ1,
The original form of the continuous—spectrum component

Y (A00= ¥ [_' B ()G (0.0)e™™ ) ge

LY

can be represented by a combination of wave packets (Zeng et al.,, 1986):

oy + B2
g 8= 2 B ()G* (8,0)e™ ' de
L b2
= YT BE@. 0™ 1= T Y%, (14)
k! k!
where k+ 1.4 200+ dc/2€ e € Ay, — dc /2, and
et de 72 )
B}"(G_E:)=j B ()G B,0)e™ 1"V de (15)
;= 8072

is a slowly varying function of ¢, € is a small parameter proportional to dc. Each wave packet
has a phase speed c:‘ and amplitude Bf varying slowly with time, Therefore, the evolutionary

properties of continuous—spectrum disturbances can be examined using results from the wave
packet theory, In the Norihern Hemisphere, a wave packet located on the side of dasdf> 0
with northeast—southwest oriented trough—ridge lines, or located on the side of dA/ df< 0
but with northwest—southeast oriented trough—ridge lines, is a developing one. On the con-
trary, a packet on the side of /> - d8> 0 but with northwest—southeast oriented trough—ridge
lines, or on the side of 44/ ¢ < O bul with northeast—southwest oriented trough—ridge lines,
is a decaying packet (Lu and Zeng, 1981; Zeng, 1983a, 1983b),

Figure 7 shows the lime series of continuous—specirum disturbances on 300 hPa
superimposed on the basic flow on three days at the beginning of January in 1982 {days 1, 2,
and 4), In the Northern Hemisphere, troughs denoted by a and b are developing from day 1 to
day 2; trough ¢ develops from day 1 to day 2 and then decays; trough ¢ decays from day | to
day 4. In the Southern Hemisphere, the three troughs labelled ¢ to g all have decaying struc-
tures and they significantly weaken from day 1 to day 4, These characteristics are quantitative
illustrations of the wave packet results in the interpretation of daily variability of observed
disturbances,

Figure 8 shows the time series of continuous—spectrum component of disturbances in the
corresponding July 1982, Major disturbances are in the Southern Hemisphere. Starting from
day 1 (Fig, 8a), most of the disturbances in the Southern Hemisphere exhibit decaying struc-
tures according to the wave—packet theory, excepl for the small trough near east coast of
Africa around 45°E. By day 2 (Fig. 8b). the small trough has grown to merge with an existing
trough 1o the east, and all other major troughs and ridges remain similar to those in the pre-
vious day. But by day 4(Fig. 8¢), it is seen that most of the troughs and ridges have
dramatically weakened. At the meantime, the westerly is strengthened. This is consistent with
Zeng and Zhang (1999) who show that continuous—spectrum disturbances carry out most of
the angular momentum transport and contribute the most to the maintenance of the westerly
flow.

According to the Riemann—Lebesgue Lemma, and consistent with the wave packet theo-
ry, it can be inferted from (3} that the free continuous—spectrum disturbances should
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Fig. 7. Time variation of observed 300 hPa continuous—spectrum disturbances superimposed on
the mean zonal flow {contour intervals: 10 x 10° m® / s} in January 1982, Troughs referred in the
text are Jabelled, (a) January 1, (b) Japuary 2, and (¢} January 4.

eventually decay to approach zero magnitude (Zeng et al,, 1986; Lu et al,, 1986), although ini-
tial growth can take place to a significant degree (Lu et al, 1981, 1986; Zeng, 1983, a,b;
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Fig. B. Same as Fig. 7 except for July 1982,

Farrell, 1982). This feature has been also numerically confirmed by Zeng et al, (1981)Tin which a
free disturbance is constructed by using the linear combination of continnous—spectrum func-
tions and it is absorbed by the basic flow after several days of integration, Figures 5 to § also il-
lustrate that continuous—spectrum disturbances dominate the total disturbance field on any giv-
en day, This, together with the final fate of free continuous—spectrum disturbances, suggests rich
sources of external forcings to excite continnous—spectrum disturbances in the atmosphere.

DZeng, Held, and Holloway 1981, unpublished results
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3.3 Partition of energy and generalized enstrophy

We now examine the partition of energy among the decomposed components. Such par-
titton often provides a useful measure of the energy distribution, and therefore energy sources
and sinks, of the different components. Since energy is a quadratic quantity, if the decom-
posed components are not orthogonal, then the energy cannot be partitioned exactly into the
same components. This is the case for the decomposition of disturbances into discrete— and
continuous—spectrum disturbances, Nevertheless, if one modifies the basis functions appro-
priately, namely, using the spectral functions of model (3) as one set of basis functions and
those of the adjoint model of (3) as another set of basis functions, one can project the veloci-
ties in the kinetic energy quantity using two sets of basis functions, corresponding to the same
discrete spectra and continuous spectrum. The disturbance kingtic energy can then be written
as the sum of two terms representing the discrete— and continuous—specirum disturbances
separately. The derivation of this procedure is included in the Appendix. In the following dis-
cussion, we still use the spectral functions of (3) as the only basis functions 1o project the ve-
locities. Since the energy associated with pure discrete—spectrum disturbances is small, it can
be expected that the coniribution of the cross product of the discrete— and continuous—spec-
trum disturbances to the total energy is also small,

The total energy can be writien as:

T rln
E= j j %[(V’M-I- Ve ¥+ (gt v, P la’ sinfdidd= E, + E,, (16}
o Yo

where E is the kinetic energy of the pure discrete—spectrum disturbances:

n p2n
b= [ [ 3+ 00 i, a

¢ va

and E, = E— E is the residual:

bl g
E= J.v.[ {%[(V';_,f P (0 Y H v+ v, Ja® sinddido. (18)
4 Yo
Furthermore, if the disturbance is represented in the form of Fourier series e™ we can write:

E= Y E'= Y E+ Y E'=E,tE, (19)

k= 1 2= k= 120 =120

where E’:; is the spectral power of the pure discrete—spectrum disturbances, and Ef is that of

the residual energy for wavenumber k. Note that if £ and £, are small, E* and E, are con-
tributed mostly by continuous—spectrum disturbances alone. There is also cancellation be-
tween v/, ;v and v’y ,v' . in (1) in our calculation,

Figure 9a shows E* as a function of zonal wavenumber & in the first ten days of January
1682 (ihe ordinale scale is the days), In the ten—day period, maximum energy has shifted from
wavenumber 5 in days 1 and 2 to wavenumber 3 in day 9, featuring the shift of synoptic wave
activities to planetary wave activities. Figures 9b and %c show the corresponding distribution

of E:} and E},. Except for wavenumbers 1 and 2 in the late part of the period, E f is much

R L P L v
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Fig, 9. Time varialion of kinetic energy for different Fig. 10. Same as Figure 9 except for July 1982,

zonal wavenumbers in the first ten days of January
1982 (unit: 102 m?/ &%, interval is 5). (a) E* of total
disturbances, (b) EX of  discrete—spectrum
disturbances, (¢) E* of residuals,

larger than Ef}, and it accounts for the energy cascade from synoptic waves to planetary
waves. This is consistent with the previous results that continucus—spectrum disturbance is
dominant in the real atmosphere.

Figure 10 shows the energy distribution and the decomposed values in the first ten days
of July 1982, Maximum wave energies are concentrated around zonal wavenumbers 2—4, and
6, although the basic flow is unstable to modes wave zonal wavenumbers 1, and 3 to 5. Simi-
lar to January, energy in the discrete—spectrum disturbances is negligible in comparison with
that associated with the continuous—spectrum disturbances,

We next show the partition of enstrophy between the continwous— and discrete—spec-
trum disturbances. To make the decomposition orthogonal, we employ the weighted
enstrophy (Zeng, 1982; 1983, a b} rather than the enstrophy itself. From the basic governing
equation (1), we have the conservation of the following total weighted enstrophy, dF / dt= 0,
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where

T op2n
F= J. J [ /{— &7 / asinddd)la’sindddd . 0
¢ Y0

1t follows from the weighted orthogonality that
x lx
F=F,+ F = j I 172 7 (— @€/ asindif)a’ sinddfdA
0 Jo

x plx
+ J [ [t?2 7 (— 81 / asinld))a’ sinfdfda. (21)
0 ¥o

Figure 11 shows the mean of F, F, and F, in January and July of 1982. As for the parti-
tion of the kinetic energy, the contribution of continuous—spectrum part takes the largest
part. It should be pointed out that in the July case, there are points where &{ / 69= 0. Since
¢’; and {’. should also be equal to zero at these points as can be inferred from (1), the de-
fined weighted enstrophy F, and F, still exist.

4. Summary

In this paper, based on the analysis of spectra and spectral functions of the
quasi—geostrophic model in an earlier paper (ZZ1), we have shown that observed atmospheric
disturbances are largely composed of continuous—spectrum disturbances rather than
discrete—specirum disturbances, The partition of energy and weighted enstrophy between the
continuous—spectrum and discrele—spectrum disturbances also shows the dominance of the
continuous—spectrum part for zonal wave number & >3, The discrele—spectrum disturbances
make an appreciable contribution mainly in the ultra—long waves and in the tropics. It is also
illustrated that the behavior of the continuous—spectrum disturbances resembles wave packets
in shear basic flow, This is consisient with the fact that wave packets can be described by the

continuous—spectrum disturbances.

Enstrophy

[ (b
100 100 (&)
= [
=
60 g 60 p
1=
]
]
=
20 20
. ded X BN TR N S S dossd i
1 3 4 7 9 11
Zonal wavenumber k

Zonal wavenumber k

Fig. I1. Mean weighted enstrophy of the total disturbances{solid), continugus—spectrum disturb-
ances {(dotted), and the discrete—spectrum disturbances {dashed), as functions of zonal wavenumb-
er & {ordinate) {unit is 10' m / ), (2) January 1982, (b) July 1982,

11
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These results are in agreement with previous diagnostic studies of the atmospheric gener-
al circulation about the evolution of atmospheric disturbances. For example, although freely
traveling waves in the aimosphere have been reported in previous studies (eg., Madden, 197%;
Kasahara, 1976), their magnitudes are very small in comparison with the atmospheric vari-
ance (Wallace and Blackman, 1983), The major component of atmospheric disturbances is
dispersive in nature, interacting with the basic flow, instead of propagating freely within the
basic flow. And because of this, it is plausible that continnous—spectrum disturbances also
play a major role in the maintenance of the zonal basic flow. Indeed, our calculation confirms
this speculation (Zeng and Zhang, 1999),

The model used in this study is the barotropic quasi—geostrophic model on the sphere, It
is similar to that used in Borges and Hartmann (1992). It is applied to the 300 hPa flow in this
study. Lack of baroclinic processes certainly affects the applicability of the current results,
Thus, this work to project the atmospheric disturbances onto spectral functions of this model
is a first step for the understanding of the barotropic effect of the shear basic flow on disturb-
ances, It is desirable to use three—~dimensional baroclinic models in the future for the deriva-
tion of spectral functions and for the diagnosis of disturbances. It is expected that spectra ina
three—dimensional model are much more complicated since there exist at least two kinds of
continuous spectrum. On¢ is the barotropic one analyzed in this paper, and the other is the
baroclinic one analyzed in Burger (1966) for an idealized model,

Appendix: Energy decomposition using the adjoint operator

Moadel {1} can be also written as:

(M+ L)X=10, (22)
where
X= (v“g,v’i,%‘.i")r, (23)
and
B T Ky é ]
s — 2w+ A)cosd 7
oY 64 . i) i
L= 2{w+ icosd+ 5§sm6 'lﬂ vy 24)
o . i
i Esm@ A 0 |
99 0
ot
Y (29)
dt
0 0 0

where f, = 2wsind,, and ¥ is the stream function. Use X= XF M4+ e ap eigenvalue prob-

lem is formulated as:

(L, + isM)X* = 0, (26)
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where M, is just the same M but 8/ dr replaced by 1, and

ire iy &
ik Aw+ A)cost 20
_ Teogit Ty o ol
L, =| 2{w+ Dcosd+ 70 sind ki Jksin(i‘ . 27)
;—gsinﬁ ik 0
100
M,=|0 1 0] (28)
000
Define an inner product of two vectors as:
(X,Y)= J’"xv‘ sinfdd, 29
[}

where star represents complex conjugate, then the following operator is the adjoint operator
of L,

— ki 2w+ Lcosd+ %sinﬂ — 2 sing

a0
L,=| — 2wt oot — ik} —ik | G0
- ﬁsinﬂ _s—ﬁlf 0
such that
(L, X* ¥ )= (X, L, Y"), €3}
where
Yt = (V”s,v”i,'%‘f!”k)r- (32)

If we write the eigenvalue and eigenvector of the adjoint operator ik aspand Y* | then

(L, — igM )Y =0; 33
and from (26), (33} and (31) we obtain

ilo— u' )M, X" M, Y)=10, (34)
and the orthogonality of the pairs of X* and Y** | ie. (M, X* M, Y*)=0 wheno# p" . Be-

sides, one can take also the normalized condition wheno= 4" | ie.,

M, X" M, Y )= J (EwE + vk sinfdd= 1. (35)
0
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Since the spectrum of eigenvalues of the adjoint operator L is the same as that of the op
erator L, including both the discrete spectra and the continuous spectrum, an arbitrary vector
H*,

H* = (r} 056 (36)
can be expanded along with either the spectral functions of L or those of L:

H = TA/X) = Y4'Y]. (37)

{ {

As a consequence, following (38),

2Kt = f (vEvE" + V5% ingdf= Y. ¥ AF (M, X )AL (M, Y])
L]

P ¢
= Y4kar M XE M YE = Y Ak At =28+ 268 (38)
i !
where energy of the discrete— and that of continuous— spectrum disturbances are separated.
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