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ABSTRACT

The traditional Kelvin—Helmholtz nolion of studying the sheat instability s not suutable for the case as-
sociated with shear line with the strong wind shear in the variex sheet, Since then, 1he shear instabilily be-
comes (he instability of the vartex sheet, If the velocity is induced by the vortex sheet, the inequalities
(L~ R, + Ri;)> 0und U()> U{4(r)) become the criterion of the vorlex sheet mstability, Thas criterion
indicates that 1) the disposition of environment field restrains the disturbance developing along the shear
lie, 2} There exist multi—scale interactions it the unsiable process of the shear line, The caleulation of the
necessary candition for the instability is also presented in this paper.
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1. Introduction

The stability problem originally comes from fluid mechanics. About a hundred years
ago. Helmholtz (1868), Kelvin (1871) and Rayleigh (1880) revealed that the necessary condi-
tion for the unstable shear flow was the existence of a flex point in the basic flow profile.
which was further consummated by Fiprtoft (1950) as U{L — U )< 0 somewhere in the fluid
field. Meanwhile. a series of experiments on the instability of pipeline flow {Reynolds, 1883)
showed that instability occurs as Reynolds number Reis beyond its critical value
(Re, = 13000). Kuo (1949} extended Rayleigh's result Lo rotating atmosphere, and obtained
the necessary condition of the atmospheric barotropic mnstability, Charney (1947) and Eady
{1949) proposed the baroclinic instability theory in the 1940’s, Howard (1961} developed the
Howard’s half a circle theorem through studying the stability of the inhomogeneous shear
flow. Later on. the studies of stability are extended. from linear, weak nonlinear to nonlinear,
from conservative system to dissipative system (Arnold, 1965, 1969). Gao and Sun (1986)
studied the high order approximation of the symmetric instability by invoking the criterion of
Richardson number. Zeng (1986) studied the atmospheric nonlinear instability by generalized
variational method. Lu {1989) studied nonlinear barotropic instability with frictional dissipa-
tion. Mu (1991) studied nonlinear instability of quasi—geostrophic flow. Besides that, many
theses, dissertations and monographes expounded and studied instability problems of differ-
ent types, Meanwhile, in respect of study methods. normal mode method is mainly used in
linear problems, and the high truncated spectrum method, A~B hybrid equation method,
variational method and generalized energy method are widely used in nonlinear problems.
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The several main aspects about stability have been mentioned abave, rest of many studies
of stability are not listed. So far it is known that the instability about barotropic. baroclinic,
linear and nonlinear problems and symmetric instability have been studied meticulously. But
the vortex sheet instability along the shear line is rarely studied. Although Scorer (1997), at
first, studied the vortex sheet instability in the region with the vertical wind shear and the in-
stability of the steady vortex. The vortex sheet instability with horizontal wind shear is not
studied vet. In fact. on the daily weather chart, we can quite often see the shear line with hori-
zontal wind shear on 700 hPa or 850 hPa, so | was motivated to study the vortex sheet insta-
bility along the shear line with horizontal wind shear,

2. The instability analysis of vortex sheet along the shear line
QOriginally, the K—H instability condition of the shear flow was defined as {Scorer, 1997}

t 1 )( a + ) 3
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where p., U, and p, /| are densities and speeds of basic Mow in upper and lower layer

respectively, Eq.(2.1) shows that as long as £/, # [/, there is always a range for wave number

K. Under the static stable condition and small p; — p,, Eq.(2.1) may be written as

K> K, = 2%3 ALY 2.2)

where p= {p, + p,)/ 2. pa— p, = Ap. p, p>= p°. and the ratio of K / K is the well known
Richardson number '

X
pi= 8% _ B {2.3)

Kplay K
But this perspective did not take two important situations into account, the first is the viscous
effect of strong velocity gradient; the second is the effect of a thin vortex sheet due to the in-
crease of the velocity gradient and its discontinuity construction. Since the vorticity in the
vortex sheet may produce inductive velocity, the change of stability of the vortex sheet is wor-
thy to be thoroughly studied,

For example, one of the main weather systems producing torrential rain in the Yangitze
River valley in China is the unstable vortex sheet along the shear line in lower atmosphere
(850—=700 hPa). Especially, in Meiyu period, the vortex—street—like mesoscale low—pressure
systems often form on the shear line with the inhomogeneous distribution of precipitation.
Where there is mesoscale low—pressure system, precipitation intensity is enhanced obviously.
According to the multi-scale~system interaction theory. the occurrence of the instability
along the shear line must have interactions, From this sense, the study of the vortex sheet in-
stabilily along the shear line is also the study of multi—scale system interactions.

A sharp velocity gradient constructs a vortex sheet along the shear line due to velocity
discontinuily. To describe this situation a coordinate relationship is set up as Fig. 1,
In Fig. 1. Ay is the vortex sheet thickness, and the vorticity component is defined as
nl= — &Uiy,r}/ oy
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Fig. 1. The schematic vorlex sheet along shear line.

If the displacement of disturbance in the vortex sheet is {= A(f)koskx. the coordinates of
wave cresl center B(0, A1)} are [v.A{tMcoskx— 1)] In the vortex sheet. the vortex element
with length 4x and width Ay is indicated by Avdx. According to the inductive velocity theo-
rem of point vortex (Tong et al.. 1994} at point 8 the .x component of inductive velocity in-
duced by the vorlex element may be wrilten as

= pArdx . Al — coskx)
"oaad ki (Al coskx— 11 ¥ x* + (Al hecoskx~ DY
A nAvdx | AUN1— coskx) (2.4)
2rx X ' -

For small disturbance, 4(z) is also very small, therefore, the terms associated with A7 (1) are

neglected here,
From Eq.(2.4). x component of the whole inductive velocity at point B is

o= (- pAr AL - coskx)dx

Jo Iy’
s sinl kx
_ qAvAl) 2 dx
K o, ’
kS X .
_ nA_pA(:)[l sin“—k.{l 4 t;AvA(J)j ksm.ﬂ.x dx
i X2 . 2 .
_ondeAw) [© sinkx 2.5)
n . X
[t . I" .
With kSl—r;—’—\ dx= kn, Eq.(2.5) may be finally written as

A Al Mk "
uylyt)= ALADE (2.6)
Due to the symmetry, the y components of induetive velocity at point B would offset other,
As a result, the integrative velocity component in y direction becomes zero.

As long as ug is known, at any point x| in the vortex sheet, the x component of induc-




528 Advances in Atmospheric Sciences Yol i7

tive velocity may be written as

j” " pAr AlrMcoskx, — coskx)
wix, )= ,

Jnlx— x, ¥

dx= %nAyA{!)kcoskx, .

Replacing x, by x. we can gel

n{xy.0)= wycoskx= %n.ﬁ_x‘A(!]kcosk.\’ . 2.7

As an approximation, Eq.(2.7) is considered 1o be suitable for the whole vortex sheet with Ay
width, Therefore, the inductive velocity components in the vortex sheet may be differentiated
with respect to x or ).

Because the inductive velocily is non—divergent, with non~divergent condition
Cu s 7xt+ &v s Ov=0and Eq.(2.7), the velocity component v can be oblained:

v=— [((u/ (xdr+ clx)= — %A}'A(!)kcoskxjmh‘-\" elxt) . (2.8)
With y= — (U (y.2)7 {1 representing the environment vorticity, Eq.{2.8) may be written as
r= % AvE (v A {Dkcosk c+ o{x.t) | 2.9

Since the disturbance is y—axis symmetric, the inductive velocity component v equals zero

wherever = knt % and 2kn{k= 0.1.2,3++), Therefore. c(x, ¢1in Eq.(2,9) may be deter-

mined as

)= = 2 AP ULAUD A kcoskx {2.10)

where the condition of {(A(r)= U(— AU is also mvoked. This condition means that the
speeds on both sides of shear line are the same but with opposite sign. so long as they have the
same A('} distance away from the shear line,

S0 Eq.(2.9}is finally written as

rlxy, )= %Ay Uiy ) At kcosky— % Ay U LANA( Wecoskx .11

From the vorticity equationT

“:)

T= (F« Yo~ oy V+ (@ v+ RAg— @) . (2.12)

~a

it is known that for the shear line with quasi—horizontal motion, the vertical vorticity compo-
nent is the principal component. that is @% wk.
Then we have

mix.y )= [n+ i+ (c:_v - E—u):'?f'

ix 6y

= (y;+ + %AyU(A(r'J)A(r)kz sinkx— %AyU(y,t)A(x)F sinkx

Dsee Appendix
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- lﬁ_”l A_\*A(r)kcoskx)(-' .
2oy

where f i§ the geostrophic vorticity component, it may be considered as a constant.
In(2.12), K.z and 7 are defined as

g, 1ip
K 2 VT o0
— 4. : - 3 ¢ — — .
g= - gf. a= WN (V" V}V= [[H‘F u)(T;-F VE]“LH- Wi+ vﬂ . {2.12 =)

U+ U, 0
3 .
With the horizontal non—divergent condition and @~ wk, Eq.(2.12) may be written as

where #{).1)=

Do — 7 vim+ Rag- D). (2.13)
Since R% g= — gi::'lo— i'is not along &, this term has no coniribution to the

k component of vorticity.
The 7 component in {2.12 * ) can be rewritlen as

[(17+ W (i + w)+ P— (F+ u):l = [E{,—u + lt—,ﬂ] I
[ ey x '
_ 1 .

== udl)y Apyk? sinkx

+ i Ayl Lv.t)% A(kcoskx

2
- %B_l’U(A(!)% Altecoskx]T (2,13 %)

with 4°{¢) terms neglected.
Substituting {2.13 * ) into the second term on the right side of (2.13) we have

= R[— %EA({)?;A)*kzsin.{'x+ %A_r(x'(v.!)g%ra!(t)kcoskx

- % AyU(A(!))g% A(r)kcoskx]k“.

Because
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— {7 Yim= — |:(§+ u}% + \% }( n+ it %&\'U{A{!)H(!)k:sinkx
—%Ay(,-'(l’.!JA(r)kzsink.\' éf_] rA(t)kcosk.‘r)F
= [~ 1mvum(r)m(r)k‘coskw %aA_l-L-'(r,z)A(r}k‘com
- ju— LAy Ak sinkx— - A\ Uiy :}—iA(;)Acos/.
+ % A)'U(A(I}% Al keosk IF

with A7 (¢) terms ignored, Eq.(2.13) may be written as

{1

= —(F Vit RMg— @)

ArE AUNAE coskx+ ]umt(\ 1Ak coskx

IJI—‘

f?T Av A1 Ve sinkx— l.&rb’(r.:).—_ Al Ykcoskx

|

baxpe—

+

AriiA r)}— Al Mecoskx]l+ Rl- 3 uA1 A sinkx

S Arlity IFA kcoskx

P2 pape L]

A\'L’(A(r})p—v Al ecoskx]k . (2.14)

(2.14) indicates that at the points of tan kx= 0 and coskx= 1, the condition which satisfies
(@A 0 is

— RUCAUDE  + fC Gk - L:t_v.r}“.—':{+ U(A[r!)%l + Ulr, l)—R v (A(rl}ﬂfb 0. (213

ar
. o2 QI_Q) (*.2_QZ cu
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and it leads to
Uiy, )> U(AGD .
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or
{1- R, + Ri,}>0 . (2,17

where R, is called the shear Richardson number and Ri, the mixed Richardson number.
If the horizontal gradient of density is not considered. the mixed Richardson number
Ri, equalis zero, Therefore. from Eq.(2.17], we get

R, <1. (2.18)

This result is quite similar to the result of the shear instability (Stone, 1966). Eq.(2.16) and
Eq.(2.17) together form the necessary condition of the vortex sheet instability along the shear
line. that is

T“_ R + Ri,1>0,

i 2.19)

. t))>l

uhereL(A(r))?ﬁ 0,
th(u;‘—— Gy .'—R)< 0, we have
aroay
f(lf R, + Ri, <0 .
1 (2.20)
‘L :))

Since ik’ > :4:1 is generally true. and the condition Li(y.¢)/ U {A())< | in Eq.(2,20) is easily

satisfied. the condition {1— R, + Ri, )< 0 does not hold. This means that Eq.(2.20) cannot
be considered as the criterion of the {nstability.

The condition given by Eq.(2.19) indicates that there is another option for the disturb-
ance wave length of unstable waves, that is

4

K2

E:
|2

Itk

¥

R . (2.21}

o

iy

RE—

For the shear line with the vortex sheet in the Yangize River valley. én/ ¢y must be
very large, generally in the order of magnitude of 107107 (if &9/ &y is relatively small.
the shear line is not considered as the shear line with the vortex sheet), Therefore, in inequality

(2.21), the term 1;;1 1078~ 10" is a principal term compared with — ;—f R~ 107"~ 1072
ey ¥
The wave length L= % for the optimum disturbance determined by the term ordinarily

ranges from 10 km to 100 km approximately. This is the typical scale for meso—small-scale
disturbance along the shear line. From the above theorstical analysis, it is known that if the
vortex sheet is very strong, and On/ 2y is very large (for example, ép/ 6y  ~ 107 Sme 1079),

the wave length L= % of the optimum disturbance will be 600 m to 1000 m, and this scale is

corresponding to the scale of the rain mass. It is clear that the sharper the shear line is. the
shorter the unsiable disturbance wave length,
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3. A case study of the vortex sheet instability along the shear line

From 21 to 24 July, 1998, the vortex sheel instability occurs along the shear line over the
Yangtze River valley. At 00UTC 21 July. there is a west—east oriented shear line at 700 hPa
near 30°N over the Yangtze River valley (Fig. 2). Corresponding to this shear line, there is a
rainfall zone from 110°E o 118°E in the Yangtze River valley with daily averaged rainfall
amount of about 15 mm.

24 hours later, at 00UTC 22 July (Fig. 3}, the rainfall amount related to the shear line 15
more than that on 21 July, and the rainfall distribution is inhomogeneous. In the middie part
of the shear line, near 110°E, there is the largest rainfall center with daily rainfall of more than
100 mm (Fig, 4), it hints the development of a mesoscale system along the shear line with the
effect of instability.

Figures § and 6 show the streamline distributions at 00UTC 23 July and at 00UTC 24 Ju-
ly respectively. From these two figures, it can be clearly seen that with the mesoscale system
developing (because the mesoscale system is hardly depicted in the streamline map), the shear
line is disturbed and transforms into a wave—like pattern. Corresponding to this shear line.
the distribution of the daily rainfall shows several torrential rain centers (Fig. 7) ¢.g. the center

80N

60N, !

AON

208

EQ
0 S0E 120F

Fig. 2. The streamline distribution at 700 hPa, at 00UTC 2t July 1998.(The bold and full line indi-
cates the shear line),

Fig. 3. The streamline distribution at 700 hPa, at 00UTC 22 July 1998, (The bold and full line in-
dicates the shear line),
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near 30°N, 118°F with 80 mm rainfall or more, the center near 28°N, 110°E with 60 mm or
more, the center near 30°N, 114°E with 50 mm or more, These are an indication of activities
of mesoscale rain mass induced by the instability along the shear line.

0 20 40 40 B30 100 126 140 1 180 200

Fig. 4. The precipitation distribution at QOUTC 22 July 1998,

Fig. 5. The streamline distribution at 700 hPa, at 00UTC 23 July 1998, (The bold and full line in-
dicates the shear line).
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Fig. 6. The streamline distributien at M0 hPa, at 00UTC 24 July 1938.(The beld and full line indr-

cales the shear line),
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Fig. 7. The precipitation distribution at 00UTC 23 July 1998,

Fig. 8 shows the wind vector distribution at 700 hPa, at 00UTC 23 July, From Fig. 8. it
can be seen (hat there exists evident wind convergence along the shear line. In the west part of
the shear line, the wind vector converges and meets with joining point, it means that at the
joining point, the mesoscale system must occur,
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. EO X A
1B0E 20E 140E  18CE
Fig. 9. The temperdture distribution al 700 hPa, at Fig. 10, The wmperature distribution at 700 hPa, at
OUTC 22 July 1998, OOUTC 23 Tuly 1998

Figures 9 and 10 show the temperature distribution at 700 hPa at 00UTC 22 July, and at
GOUTC 23 July at 700 hPa. respectively. The sharp temperature gradient appears near 40°N,
but near 30°N. the temperature gradient is relatively weak, At 00UTC 23 July, at 700 hPa the
temperature distribution shows that near 30°N the lemperature gradient gets larger than that
al 0QUTC 22 Julv. It implies that from 00UTC 22 to 00UTC 23 July baroclinity becomes
stronger due to the convergence of cold / warm air from north / south side of the shear line.
This also leads to the voriex sheel instability along the shear line.

According to the necessary candition of the vortex sheet instability mentioned in last sec-
tion, several parameters are calculated and compared with their theoretical values. The result
shows that after at 00UTC 22 July, the necessary condition is satisfied for the vortex sheet in-
stability. So the development of mososcale system on the shear ling is inevitable. For £ =700
hPa and R =constant, the absolute temperature 7 may be obtained from the temperature dis-
tribution on 700 hPa. So it is very easy to get the density value according to p= % At
OOUTC 23 July near 30°N, 110°E, for example, it is found that near the center of the shear

line it= 3.5 m s, &/ 8y=35% 107 m's™ di/ ey =-02x 10757, R= %ep/a;:

ET /6y = 08x107 m™". Asa result, the disturbance wave length is L= 3.5 km. Near

=
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the center, there exists the indication of voriex sheet instability {7 (xr,£)> [/{A4{r)) according to
Eq.{2.19).

4. Summary

The necessary condition of the vortex sheet instability is obtained from manipulating
vorticity equation, However, the final expression of this theory only aims at specific points
along the shear line. A brief case study shows that the instability does occur at some specific
points along the shear line, which implies that the shear line is unstable, As for the
application, however, synoptic knowledge and forecast experience are often required in order
1o find those specific points and the position of disturbance wave crest and trough.

In this study, the normal method is avoided. because in the normal mode, method @ in
the normal mode version must be expressed as wave form, while the vorticity distribution has
no wave—like form, So here we adopted the local or total change of the vorticity to explore
the occurrence mechanism of the instability. Finally it must be pointed out that the vortex
sheet instability along the shear line is only a form of the shear line instability and the other
forms of the instability of the shear line are not discussed in this paper. such as the instability
induced by the gravity wave chase and so no,

Appendix
%‘}’=m-vrﬁm-v-r+———”’”:zv : (n
In Eq.(1). 1/ pp is displaced by the momentem equation, that 1s
%Vp=§'*%.—f}'\7x?‘4 {2)
Substituting (2} into (1), we have
%?=w-v?—ai-v-v‘+%vpx(——(;—;Taﬁc-x f-’)_ 3

Since in the vicinity of the shear line the wind almost blows along the shear line.
g+ u)f is the dominant component of Coriolis force. Besides the densily gradient can be

. PR N _ e .
expressed by R= :—)Vp= ﬁ%‘e 7. which means B flu+ »)j= 0. For this reason, Eq.(3)

may be wrilten as
dos

1
gl TV — @ . T~ X (gF— T 4
ey B Gr— T 7 ; VpX (g— @) . (4)

¥

where 7= —.
dt
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