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ABSTRACT

The effects of oceanic forcing on the atmospheric low—frequency wave (LFW for short) in the tropics
are analyzed, where ocean and atmosphere are taken as an independent system, respectively, Here oceanic
effects are paramsterized as evaporation—wind feedback (EWF for short) and forcing of S§T. Under the
maodulation of EWF, forcing of SST plays a differeat role from that without EWF, So LFWs are diabatw
waves, farced by the interaciions of multiple factors, in the tropics,
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1. Introduction

Investigations about atmospheric LFW have been a focus of research since Madden and
Julian’s outstanding analysis works {1971, 1972), Many dynamical and thermal mechanisms
{Chao et al, 1996; Fu et al, 1998; Hendon et al, 1998; Krishnamurti et al,, 1988; Lau and
Chan, 1988) have been advised to explain LFW. Among them are oceanic effects, such as 88T
effect, thermal forcing and others. Usually atmosphere and ocean are taken as a coupled sys-
tem, which is used to explain ENSO or the refation between El Nino and intraseasonal
oscillations {(Hirst and Lau, 1990; Lau and Chan, 1988; Lau et al,, 1989; Li and Li, 1996; Li
and Liao, 1998; Tziperman et al., 1997; Zhang, 1995). Oceanic effects are also taken as forc-
ing to aumosphere, which is comsidered as a single system (Kessler et al,, 1995; Kleeman, 1991;
Liu et al,, 1993; Webster, 1981). Investigations have shown that there is a correlation between
SST anomaly and atmospheric potential height (Li and Li, 1996; Li and Liao, 1998 and Wu et
al., 1996}, In this paper, therefore, we parameterize oceanic effects as two forcing factors, 58T
effect and EWF mechanism, to analyze the characteristics of forced atmospheric LEW,
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2. Basic equations and analysis

In the equatorial f—plane and long-wave approximation framework, the pure baroclinic
model containing diabatic heating can be written as
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Equations (1) can be taken as the formulas about pure baroclinic components in a two—layer
model, details of derivation can be obtained in Fuet al. (1998). ¢, represents baroclinic wave
speed. the term O at the right side of {1c) represents diabatic heating rate, in the context of
this paper, it is expressed as
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where — 2 @ and e(T ey, ( o + :) are parameterizations for S8T effects caused by

radiative cooling and the precipitation related to SST effects, respectively: 4, [1 — e(T ), & is
the parameterization of EWF_ coupled with SST effects.
Thus. the solutions to Equations (1) can be assumed in the following form:
Wnf@)= [l e )eile™ (3)

where v is angular frequency and k is wave number in the x—direction.
Substituting (3} into (1) yields
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where ¢f = [1— exp(T, Yle2, . it is obvious that SST effects make the forced waves propagale
slowly for e(T ;< 1: the higher SST, the slower their phase speeds {The value of e(T ) corre-
sponding to different SST is given by Liu and Zhuang (1993)).

Equation {4) can be transformed as Weber—type equation
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when transformaltion ¥(y}= p(y)e3= " is chosen.
Equation (5) satisfying the following condition y— + ¢, p — 0 gives eigenvalue

1

¥ 2et\ 2e, id, Bt 2k

¢ P }‘“_Cj ¢ iA B+ 2k i+ 1. (n=0,120) ()
o 4uy” # 20




No. 4 Fu Zuntao, Zhao Qiang. Qiao Fangli etal 571

and corresponding gigenfunction

i
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with L;‘ = <l+ ’_ug o (,1 >L1 where 4, is arbitrary constant, H,{y / L,) is Hermitian
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polynomial. Thus
3 i .

v, ()= A H, v/ Lydexp i T, (a= 0,1.200) (8)

which satisfying the condition y = + °0_ v~ 0 yields the constraint on w

R (e‘(n+ tzj.a+ k)< 0 @)
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From Equation (6}, we get
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Setting

w=w,+ iw, . {11}

where w, is disturbance frequency and w, is disturbance growth rate,
When e(T_ )< 1, substituting {11} into {10), we obtain
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from which the [ollowing solutions can be obtained:
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where G = Lt G )jr" 7 le , on account of that when 4, = A, = e(T', )= 0, Equation (13)
R
musl take the following forms:
k
o= 0= - 2 (=012 (14a)
w=0 (14b)

Substituting (1) into (9) vields the constraint on w, and w;
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ke, + a+ i, o, < 0 . (15)

In order to get low frequency in {13), the following condition
Pe HYnint+ l)i_g + kZ](‘f
‘ 20+ 1

+ 8 (16)

must be valid for A, where 5,> 0. From Eq.(16), we know that the LFW would be the re-
sults forced by stronger SST forcing (4, is larger) under the modulation of EWF, when the
atmosphere is keeping an equilibrium of stronger radiation and convection (2, is small but
not zero). Then we can obtain smaller w, and o, > 0,

We know that solutions (13} can be also extended to
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for Kelvin wave. Similarly, in order to get low frequency in (17), the following condition
I Ak + 8, (18)
must be valid for 4, . Under the forcing of SST effect and EWF, forced Kelvin wave is LFW

and unstable.
Similarly, when 4, = 0, from (10), we can obtain
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for Rossby wave and
;2
= A, (20b)
W, = 7 - 2

for Kelvin wave,

Eq.(19) and (20) are the results when only 58T forcing is considered, From {19), we know
that w, # 0 and|w, |< |o, | are valid for 4, # 0 or (T, }# 0, so disturbance is unstable a0d
its speed can be slowed down, When 2, > 0, w, < @, which means that the positive anomaly
of sea temperature damps the waves, Furthermore, ), is real, so the following condition
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must be valid for i, From (21), we know that the lower mode is easier to reach its valid A,
and it can also have broader value limit, which shows that the forced modes in the tropics are
lower modes,

Similarly, the above analysis is also valid for {20}, and the constraint

A< akte? {22)

is the limitation for A, Comparing (21) with {22} shows that the Kelvin wave is most proba-
bly forced among all modes. This explains why the Kelvin wave plays an important role in the
LFW in the tropics.

When 4, = e(T_J= 0, from (10), we have

: p
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which is respectively the expression of angular frequency and growth rate of the Rossby wave
when only EWF mechanism is considered. From (23), we know that o, # 0 and |w, |> |w, |
are valid for 4, # 0, so disturbance may be unstable but its speed cannot be slowed down,
J;'ﬂ
If we define the non—dimensional cocfficient of EWF mechanism as " = - the damp-
L
k

ing scale as 1= AL and the non—dimensional zonal wavenumber as k_ = A
1

, where &, is

zonal wavenumber one, So the wave period can be expressed as

(24)

Fig. l. Variationof T withrt, Fig. 2. ¥ariationof T withk,.




574 Advances in Atmospheric Sciences Vol 17

From the resulis based an (13), we can oblain some numerical analysis about the forced
LFW, [t shows that the forced wave is not always damped, when the basic current is westerly,
the LFW can be amplified {figure not shown). Fig. 1 shows the variation of wave period with
damping scale 7, the labels 1, 2, 3 and 4 are corresponding to the choices #, = 0.8.n, = 0.5,
n,= 02 andn, =01 fork = 1and »n= 1 respectively. They indicate that the wave period
is slowed down by the increasing EWF effect when the radiative cooling effect is taken into
account, in which EWF mechanism plays a modulating role. The variation of 7 is slowed
down with the increasing damping scale, Fig. 2 shows the variation of T with &, for = 0
and 1= 4 days. in which labels 1, 2, 3, 4 and 5 denote 88T corresponding to 24°C, 23°C, 22°C,
21°C and 20°C. respectively, It is clear that the increasing SST makes the wave period longer
and the increasing zonal wavenumber slows down the period. The results of Fig. 1, and Fig. 2.
are the same in that the heating from the §ST effect is beneficial to the generation of LFW in
the tropics.

3. Conclusion

In this paper, we analyze the characteristics of LFW forced by SST and EWF forcing
when ¢{T, )< 1. Comparisons between (16) and (21), (18) and {22) show that under the modu-
lation of EWF, forced LFW is different from that forced only by SST forcing. Constraints
(16) and (18) arc looser than constraints (21) and (22), respectively, EWF cannot slow down
the speed of waves in the tropics solely, but it can make the waves unstable and make other
factors play as different roles, So there exist different mechanisms in the oceanic forcing, the
excitement mechanism (e{7T", ) effect) and modulation mechanism (long wave radiation cool-
ing and EWF effect) play dilferent roles in generation and development of LFW, The numeri-
cal results show that the diabatic heating from SST effect is really necessary to generate LFW
in the tropics.
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