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Diagnostic Equations for the Walker Circulation?
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ABSTRACT

Two linear partial differential equations are derived in spherical-isobaric coordinates for the numerical
simulation of the Walker circulation with the assumption that the meridional motion equation remains in
gradient balance. One is for the Walker circulation along the individual latitude in the tropical area, the oth-
er for the meridionally—averaged Walker circulation over a tropical zone.
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1. Introduction

Large interannual fluctuation in the intensity of the Walker circulation is closely related
to the variations of large—scale monscon circulation and ENSQ (El Nifio and the Southern
Oscillation) which is a recurring ¢limate event bearing blames for many global weather disas-
ters (Schneider, 1996; Suplee, 1999). One of the characters of the Walker circulation is the
significant correlation between atmospheric quantities existing over Indonesia and the west-
ern Pacific Ocean and the eastern Pacific Ocean. The strongest correlation is the ' southern
oscillation index” (Walker, 1923; Troup, 1965) which is a measure of the difference between
the standardized sea level pressure anomalies at Tahiti (151°W, 18°8) and Darwin (130°E,
11°S). This index is considered as a firm indicator of variations of El Nifio (Trenberth, 1976).
From this point of view, the Walker circulation considered in this study is a zonal circulation
along 15°S latitude (or those single and meridionally averaged tropical latitudes with relative-
ly strong zonal gradient of divergence) rather than right on the equator (see equation 1).

The motivation of this project is Lo investigate the evolution mechanisms of these particu-
lar Walker circulations through numerical simulation with given forcing functions. This arti-
cle focuses on the theoretical part of this work: the derivation of diagnostic equations for the
Walker circulation along the individual latitude (Section 2) and the meridionally—averaged
Walker circulation over a tropical zone (Section 4). Section 3 discusses how {o calculate the
values of some special forcing factors. The general analytic solution of the equation is given in
the appendix.

2. The derivation of a linear diagnostic equation for the walker circulation

To figure out the mechanisms responsible for the variations of the Walker circulation
numerically, the best approach is to derive a linear diagnostic equation through assuming that
the meridional motion equation remains in gradient balance, that is
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Except for the gradient balance assumption, the rest of equations used in the present study are
all in their primitive forms in spherical—isobaric coordinates (4,¢,p,1), which include the con-
tinuity equation
Ml o
1 Gu, |1 o(vcoscp)+ dw

acosp 84 acose O op =0, @
the zonal motion equation
fu vy cu 1 o tang ] b
e ~ S — = =+ At
ot adp “ep " Zacosp 04 a "~ acosp 04 Mt £y 3)
the hydrostatic equation
N
oo _
P R (4)
the first law of thermodynamic equation
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and the atmospheric state equation
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Reordering the gradient balance equation (1) yields
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To eliminate the derivatives of u with respect to ¢,¢¢ and p in (3}, differentiate (1} with respect
to 1, and p respectively, which generate the following formulas,
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and then substitute {7)-(10} into (3). The result comes to be
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Multiplying (12) by (11) gives
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To take the thermodynamic processes into account, rewriting the first law of thermodynamic
equation (5)
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and then manipulating terms I, IF, III and IV in (13) respectively with the use of (7) and (14)
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According to the new forms of term I to term 1V, (13) can be rewritten as
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where the coefficients D and E are defined as
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Coefficient D can be further simplified since those terms associated with fand § cancel each
other out. Equation (15) is the linear diagnostic equation for the Walker circulation in terms
of (v,w). With given forcing on the right—hand side of the equation, (15) is not solvable yet
because there are two unknowns u and w. Therefore the two unknowns must be reduced to
one. This is accomplished by introducing a stream function for the Walker circulation.
According 10 Stokes’ theorem, the Walker circulation is associated with the y—compo-
nent of the curl of velocity, Vector analysis shows that the curl of velocity is non—divergent
(Phillips, 1950), so the Walker circulation is only associated with the non—divergent part of

velocity (v, , @, ) in the zonal plane. In spherical—isobaric coordinates, that is
é fw
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It is easy to prove that formally the solutions of (16) are
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However, (16) is only part of the original continuity equation (2). To handle the rest of (2), a
theorem is applied. The theorem states that if a vector function is piecewise differentiable ¢v-
erywhere and vanishes at infinity or outside a finite region, then it can be expressed as the sum
of an ir—rotational vector and a non—divergent vector (Phillips, 1950; Weatherburn, 1966).
Normally, a velocity field in the zonal plane is considered piecewise differentiable and van-
ishes at infinity, so this velocitly can be represented as the sum of an ir—rotaticnal vector and a
non—divergent vector

T=T,b T, or u=u +v,, o=oF0,. (18)

With (16) and (18), the original continuity equation (2) can be rewritten as
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Up to now, (2) is partitioned into (16) and (19). Quantities u, and o, in (19) are eliminated
respectively from the candidates of horizontal and vertical branches of the Walker circulation,
So, they must be predetermined and can only appear in (15) as given forcing factors (see Sec-
tion 3).

Since the two unknowns for the Walker circulation now become #, and w, , with (17),
they can be replaced by the stream function ¥ for the Walker circulation (one unknown),
Substituting (17) and (18) into (15) yields
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This is the final form of the linear diagnostic equation for the stream function y of the Walk-
er circulation, With given forcing on the right of (20), the stream function ¢ of the Walker
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circulation can be obtained through solving (20). Then the corresponding horizontal and ver-
tical branches of the Walker circulation are calculated with the use of (17). Equation (2¢) re-
veals that the forcing associated with horizontal pressure gradient force, Coriolis force,
frictional force, temperature advection, diabatic heating and the change of temperature with
time will have impact on the Walker circulation, The effect of sea surface temperature on the
Walker circulation will come from the lower boundary condition of temperature in this model
domain, Since this diagnostic equation is a linear equation in terms of the stream function ¢.
the numerical evaluation of the contribution from each individual forcing process will enable
us to investigate the mechanisms responsible for the evolution of the Walker circulation.

The general analytic solution of the diagnostic equation (20) for the Walker circulation is
{see the appendix)

Yl p)= i [x(p, N+ J‘Z flg" lglxplololdo |

where ¢ [x(p, )] stands for the given top (or bottom) vertical boundary value of the stream
function and f{g " [g(x.p),¢]¢} is associated with the forcing function. This solution indicates
that as long as the sign of the integrand varies, there will exist zonal circulations in a global
zonal plane.

3. Predeterminationof u, and w, as forcing factors

Since v, and @, are eliminated from the candidates of horizontal and vertical branches
of the Walker circulation respectively, those terms associated with w, and @, must be treated
as forcing terms and predetermined in the diagnostic equation (20) for the stream function
¥ of the Walker circulation, So far, there are two possible ways to determine #, and o, . One
results from the partitions of ¥ and v into geostrophic and ageostrophic components

=gt Uy, v=v v, 21)

The assumption of constant Coriolis parameter gives
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The substitution of (21} and (22) into (2} yields
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Equation (23} indicates that any vertical circulation (either the Walker circulation or the
Hadley circulation) is mainly associated with ageostrophic wind. In other words, u, . the
geostrophic component of horizontal wind does not belong to the horizontal branch of the
Walker circulation. Since #, is also non—indicator of the horizontal branch of the Walker
circulation (see Section 2), thers must exist a relationship between w, and u,. One choice
could be

24)

To determine the degree of this approximation, reexamine the continuity equation (19) in
terms of (1, ,v,w, } and (23) in terms of (u,v, L) with f= constant, If u, ¥ u, is 2 good ap-
proximation, then the substitution of u, ® u, and its by—product u, & u,, into (19) and (23)
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should lead to an identical form of continuity equation, That is exactly the case since on one
hand, with the application of #, ® w, and (22), the continuity equation (19} becomes
1 8y, cosp) + Caw,

acosy fele dp =0. (25)

On the other, with #, = ,, and the application of (18) and (16), the continuity equation {23}
becomes
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As what we expect, it ends up being the same as (25). Because the only assumption required in
the above analysis is /= constant, it is the only approximation involved inu, = u,. With (25),
o, can be obtained as

_ ooscp) v gﬁ
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with the effect of Coriolis parameter as a function of latitude and «w, = 0 at the top of model
domain. Equations (24) and (26) present one of the possible ways to predetermine the forcing
factors v, and ,.

There is another way to determine 1, and w, . It starts with the calculation of “ observed”
y—component of vorticity {{,),, with the use of " observed” zonal and vertical motions
(#4255 ). Then the Poisson equation 7, = ({, ). can be solved to yield the " observed”
stream function i, associated with the Walker circulation {this i, field can serve as the
standard solution to test the accuracy of the simulated steam function y field). With the use of
(17) and this ¥, field, (u, ,®, )., can be computed, which are the corresponding * observed”
zonal and vertical branches of the Walker circulation, Finally, the forcing factors », and w,
are predetermined through u, = u,, — (1, )y . 2nd @, = @, = (0} oy .

The second approach is accurate theoretically. Numerically, however, the value of u,
calculated in this way may be contaminated by the truncation errors, round—off ertors and
discretization errors to a higher extent (than the value of , = u_) since a complex Poisson
equation in the spherical—isobaric coordinates must be solved numerically in order to get u,.
Besides, the vertical branch of the * observed” zonal circulation w,, would be calculated with
many assumptions,

4. The derivation of a linear diagnostic equation for the meridionally—averaged Walker
circulation

As for the meridionally averaged Walker circulation, a better gradient balance assump-
tion is expected with the meridionally averaged properties u,¢ and pressure gradient force.
that is )
ey 129 @7

w7+ o

where the meridional average and its deviation are defined as
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If ¢, =0°and ¢, =20" are considered, then the averaged latitude will be o =10° with
0°<|g’|< 10°. However, meridionally averaging the rest primitive equations in
spherical—isobaric coordinates requires extra work since cosg is involved in the denominalor
of several terms associated with unknown property u. To handle this problem, the Taylor ex-
pansion of cosg = 1— p* /2! and the binomial theorem (1+ x)~ ' 1— x with— 1< x< |
are used to get an approximate expression for 1/ cose under the condition that the value
oflp’| is n)o’| / 180< | in radian. The result is
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Obviously, the smaller the absolute values of ¢ and @’ are, the better this approximation will
be, With (29), the meridionally—averaged continuity equation is approximately
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For the zonal motion equation, an approximate form for the meridionally—averaged zonal
advection of momentum in (3) can be given by
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Applying the binomial theorem to the fifth term on the left—hand of (3) with 0< tangtanle
< 1, this term becomes
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Adopting the above approximate forms, the meridionally-averaged zonal motion equation
becomes
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In the same way, the meridionally averaged zonal advection of temperature in the first law of
thermodynamic equation (14) can be approximately expressed as
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So the first law of thermodynamic equation comes to be
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Reordering the gradient balance equation {27) yields
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Multiplying (37) by (36) yields
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With the use of (32), term (I) on the left side of (38) becomes
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With the use of (33), terms (IT1) and (IV) on the left side of (38) become respectively
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where the coefficients D and E are defined as
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the continuity equation (30) is approximately split into two parts
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It is easy to show that the formal solutions of (42) are
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After substituting (43) and (44) into (39), the linear diagnostic equation for the
meridionally—averaged siream function of Walker circulation emerges as
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where the given forcing factors: the averaged », and @, are approximately
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5. Remark

As part of general circulation, the Walker circulation interacts with other important dy-
namic and thermodynamic atmospheric systems to modify the global weather. To take these
dynamic and thermodynamic processes into account, the derivation of diagnostic equations
for the Walker circulation starts with all atmospheric equations in their primitive forms ex-
cept for the gradient balance form for the meridional motion equation,

The bias due to the gradient balance assumption may be reduced with meridionally—av-



176 Advances in Atmospheric Sciences Vol 18

eraged quantities, However, with this meridional average approach, not only extra work is
needed but the average forms of equations are merely approximate for those primitive equa-
tions including the product of zonal motion » and 1/ {cosg). For this reason, no comment is
made on which version is better: the diagnostic equation for the Walker circulation along the
individual latitude or the diagnostic equation for the meridionally—averaged Walker circula-
tion over a tropical zone before any quantitative result is reached.

The next step of this study will be designing finite difference equations for numerically
solving those two diagnostic ¢equations and followed by some case studies,
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Appendix

The General Analytic Solution of the Diagnestic Equation
for the Walker Circulation ~

The diagnostic equation for the Walker circulation (20) or (45) can be generalized as

%f + aGep = fep) A

l'[’(X,P[))= ‘l’o(x) (A2)

with periodic boundary in x coordinate, where ¢, stands for the top (or bottom)} boundary
value of . To solve (A1) and (A2), the variables (x,p) are replaced by (£,7) with the relations

=p, (A3)
¢= glxp) (A4)

where, according to strikwerda (1989), = g(x,p) is determined by
%’:- = alxp) with x(zg)=¢ . (A5)

Correspondingly, there exists a relationship beiweeny and y " -

Ylxp)= o " (1),
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where i and ¥ " represent the same stream function but in different coordinates. The pur-
pose of changing the variables from {xp) to {¢,7) in this way is to obtain the characteristic
curves x(7)= g" (£,2) or £(p)= glx p) along which the stream function i * (&,7) satisfies an
" ordinary’ differential equation (A6) instead of the partial differential equation like (Al)
since with (A3)—(AS), the derivative of ¢ * with respect to 1 is

W _ddp  dpdx_ oy oy _
G T pdt oxdt op "‘X’P)guﬁ fxp) (A6)
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The solution of (A6} is
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With (A3), (A4), (A5) and (A7), the solution of (A1) and (A2) is
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with periodic boundary in x coordinate,
Example: Find the solution for the equations with variable coefficient

élk + xé‘k = x , (Ag)
ap éx
W(x,00= o {x) . (A10)

Following the above procedure, the corresponding characteristic curve can be determined ex-
actly by solving

dx _

—_—=x with x0)=¢ . (AlD)
dt

The result turns out to be
x(D)=¢ef=g" () or E=xe "= glxp). (A12)
With (A12), the differential equation fory * becomes
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Therefore, the solution of (A9) and (A10) is
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It can be verified that (A14) satisfies {A9) and (A 10).
Prove: According to (A14), the derivatives of  with respect to x and p respectively become
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The substitution of (A15) and (A16) into the left side of (A9) yields
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Withp= 0, (A14) gives
¥ (x,00= gy (x) .
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