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ABSTRACT

The turbukence data are decomposed to multi—scales and its respective fractal dimensions are
computed, The conclusions are drawn from investigating the variation of fractal dimensions, With the level
of decomposition increasing, the low—frequency part extracted from the turbulence signals tends to be sim-
ple and smooth, the dimensions decrease; the high—frequency part shows complex, the dimensions are fixed,
about 1,70 on the average, which indicates clear self—similarity characteristics,
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1. Intreduction

The observed signals of atmospheric boundary—layer turbulence are very complex. Many
researches demonstrated that the spatial-temporal development pattern of turbulence data
has fractal characteristics, Analysis with the Fourier and wavelet transform, it can be revealed
that the turbulence data contain rich scales, scaling—law and self-similarity exist in some
scales,

How can these scales be distinguished so as to investigate the regularity? It is known that
a signal can be decomposed and reconstructed successively using the discrete wavelet trans-
form, then these scales can be distinguished and the information can be compressed, and so
on (Li, 1998; Hu, 1998). Using the discrete wavelet as a filter, the original signal can be de-
composed to the ' approximation’ (low—frequency} and * detailed’ (high—frequency) part,
The multi—scale decomposition tree is given in Fig. 1, it is shown that the successive approxi-
mation parts are decomposed in turn.

In this paper, the discrete wavelet transform is used to decompose the turbulence signals
to multiple scales, then the fractal dimensions of the turbulence signals for various scales are
computed using the “ variation method” (Dubuc et al., 1989). It is proved that the atmospher-
ic boundary—layer turbulence has self-similarity characteristics for some scales,

2. Discrete wavelet transform

For dealing with such discrete signals as turbulence, we usually construct a discrete
orthogonal wavelet function series (Chui, 1992; Daubechies, 1992). When the sampling © of
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Fig. 1. The multiple—level decomposition trees (S—original signal, A—approximation part, D—de-
tailed part),

the observation data is constant and the time series is k), k= 1,2,*=N, the discrete wavelet
transform is as below

Normal transform: W ,(i,j)= v L¥,, (k}fUK). m

Inverse transform:  flx)= 3, 2 W G, ()2, ()

fr—m = -

There is fast algorithm for the discrete wavelet transform, such as the Mallat algorithm
(Mallat, 1989), Generally the discrete orthogonal wavelet function could not be expressed by
specific mathematical formula, but its picture can be drawn, such as the noted Daubechies
wavelet,

Some physical criteria, such as isotropic, are respectively proposed to determine the time
scale that is related to large scale and small scale parts of turbulence (Hu, 1998). In addition,
based on abundant numerical experiment, it is found that the eighth level (namely, 2° time
scale) decomposed is pretty for our analysis to atmospheric boundary—layer turbulence
signal.

Here we decompose the wind velocity and temperature data of the atmospheric turbu-
lence using the third—order Daubechies wavelet, The time series came from the ultrasonic ob-
servation data of the HEIFE experiment in 1992, The observed data at noon on August 13
are given as an example, It must be noted in the process of decomposition, the detailed
(high—frequency) part of each level is the sum of all level detailed parts above, For the third
layer decomposition as an example, the approximation part 4, is obtained from the wavelet
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transform, and the detailed parts D (i= 1,2,3) of all the levels above are added up so as to
constitute the signal S to this level,
S5=A4;+ D, + D, + Dy, (3)

The signal of all variables has been decomposed to the eighth level. The decomposition of
temperature data to the forth and eighth levels is given in Fig. 3. It can be seen that the ap-
proximation (low—frequency) part shows simple and smooth, the detailed (high—frequency)
part shows complex, This can be indicated in the section below,

3. Fractal dimension

The fractal dimension characterizes the degree of complexity of a geometrical object. The
fractal dimension is larger as the object is more complex. It is of significance in revealing
stringent or statistical regularity of complex geometrical object having no characteristic scale
such as the observed curve of atmospheric turbulence, Here we introduce a simple methed for
computing the fractal dimension of curve (Dubuc et al,, 1989).
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Fig. 2. (a) The fourth level decomposition of real atmospheric turbulence data (T, HEIFE,
1992), (b) The eighth level decomposition of real atmospheric turbulence data (T, HEIFE,

1992).

The variation method determines the fractal dimension of a curve by measuring the total
area of boxes needed to cover the entire curve as a function of the length of the box’s base. Let
flx) be fractal and cover it with boxes with bottom edge equal to 2e. The vertical edge of the
box, called the ¢ oscillation v(x,e) of ), is

v(x,e)= supfix)— infflx), x'€[x— ex+ ¢l O]
where sup (superior) is the local maximum and inf (inferior) is the local minimum,

The total area of the boxes with bottom edge 2¢ needed to cover the curve is called the ¢
variation V (e.f) of f{x) and is

vi{eNH= |vix,eddx. (5}

In this equation, v(x,e)dx is the area of one box with dx equal to 2e. Integration of equation
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(5) gives the area covered by boxes with bottom edge 2e. A different area would be obtained

with a different ¢ and the fractal dimension D that describes this dependence is given by

1

D= lim[2— 8V ()
ot

loge

()

In practice, D is obtained from the slope of the least square line passing through the points

(log% , lmg(ﬁi2 Ve .

We used the above method to compute the fractal dimensions of the curves of all vatia-

bles decomposed to various scales. The results are shown in Tables 1 and 2,

Table 1. The fractal dimension of turbulénce for various scale (The approximation part)

Variables " v W r
Levels
1 1.61 1.65 1.74 1.69
2 1.59 1.63 1,72 1.68
3 155 1.60 1.68 1.65
4 1.50 1.55 1.63 1.59
5 1.44 1.47 1.53 1.51
6 1.36 1,36 1.45 1.41
7 1.28 1.29 1138 136
8 1.20 1.23 1.24 1.26
Table 2. The fractal dimension of turbulence for various scale (the detailed part)
Variables
Levels U v w T

1 1.74 1.68 1,73 1.68
2 1.75 1.73 1.73 1.69
3 1.75 1,74 1,76 1.70
4 1.74 1.75 1.76 1.70
5 1,73 1.76 1.76 1.70
6 1,71 1.72 1,77 1.70
7 1.67 1.69 1.75 1,70
8 1.67 1.67 1.75 1.70

It can be seen from the tables, with the level of decomposition increasing, the fractal di-
mension of the approximation (low—frequency) part decreases successively, the minimal value
is 1.20, indicating that it tends to be simple and smooth, The fractal dimension of the detailed
(high—frequency) part does not always increase, but it tends to be almost fixed, reaching a
value of 1.70 ot so, specially the vertical fluctuating component of wind velocity and tempera-
ture do. D=1,70 is also in agreement with the widely accepted relation between the power

spectral density (PSD) of atmospheric turbulence and frequency f
pPSD~1/f,

where 8=5/ 3 (Panofsky and Dutton, 1984). Recently, it is shown in general §=5-2D (West
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and Shlesinger, 1990), which predicts that D for wind speed should be 1.67, less than the value
found for the present data, but the difference is not considered significantly.

It can be indicated that the turbulence signal of various scales have obvious self—similari-
ty characteristics,

4. Conclusions

(1) We can decompose the atmospheric turbulence signals to various scales using the
discrete wavelet transform, the ' mathematical microscope’ , to investigate the variation of
outward appearance effectively.

(2) One of chaotic characteristics of turbulence, the multi—scale self—similarity structure,
is proved through computing the fractal dimensions of turbulence signals decomposed to va-
rious scales with the orthogonal wavelet transferm.
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