Vol. 18 No. 5 Advances in Atmospheric Sciences September 2001

Forecasting Monsoon Precipitation Using
Artificial Neural Networks

Xiaodan Wu', Cao Hongxing (B H2¢Y,
Andrew Flitman', Wei Fengying (R.2)* and Feng Guolin (3 E# )’

! School of Business Systems, Faculty of Information Technology, Monash University, Australia
IChinese Academy of Metearological Sciences, Beijing 100081

(Received September I, 2000)
ABSTRACT

This paper explores the application of Artificial Intelligent (AI) techniques for climate forecast. It pres-
ents a study on modelling the monsoon precipitation forecast by means of Artificial Neural Networks
(ANNSs), Using the historical data of the total amount of summer rainfall over the Delta Area of Yangtze
River in China, three ANNs models have been developed to forecast the monsoon precipitation in the corre-
sponding area one year, five—year, and ten—year forward respectively, Performances of the models have
been validated using a ‘new’ data set that has not been exposed to the modeks during the processes of model
development and test, The experiment results are promising, indicating that the proposed ANNs models
have good quality in terms of the accuracy, stability and generalisation ability,
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1. Introduction

The Delta area of the Yangtze River is one of the vital important industrial and agricul-
tural areas in the Peoples’ Republic of China, During the past, however, there often occur
some meteorological disasters, such as the extraordinary rainfall in summer and the flood,
unfortunately,

Disaster climate can claim for thousands of people’s life and billions of dollars’ loss in
economy, as what happened during the floods in the summers of 1998 and 1999 in China. It is
highly desirable that operationally accurate tools be available for predicting the occurrence of
such a climate event so that measures can be taken to reduce or avoid its impact,

Conventionally, statistical analysis and human judgment are the main vehicles in opera-
tion to produce the monsoon precipitation forecast of which the accuracy is by no means very
satisfactory, Aiming at the improvement, this paper explores the applications of the emerging
information processing methodology, namely, Artificial Intelligent (Al) techniques. Applying
Artificial Neural Networks (ANNs), one of the main branches of Al, operational models
have been developed to forecast the monscon precipitation over the Delta Yangtze for
one—year, five—year, and ten—year forecast periods respectively. These: models have been
validated using “hold—out” observation data samples and shown promising results,

2. Experiment data

The original experimental data is the monthly precipitation during the monsoon season
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(June, July, August) collected from ten weather observation stations distributed in the area of
the Dealt Yangtze in China. The time span of the data series is 49 years dated from 1951 to
1999, Because the target output of a forecasting model to be developed in this paper will be
the total amount of rainfall during the monscon season, the original data points have been
averaged over the entire monsoon season for each year to obtain a new data series of an an-
nual monsoon precipitation,

The experimental data has been divided into three categories for the Neural Network
modelling. The first category consists of the first 39 years of precipitation observations and is
used to develop the forecast neural networks, To ensure the resultant forecast models have
good quality in generalisation, this data set has further been subdivided, with 79% being used
as training data and 21% being used as test data, Thus the networks will be trained using the
training subset, with the network model being saved each time an improvement is registered
on the test subset, The subdivision into training and test data categories has been performed
using random sampling. The third data category consists of the last 10 years of data that is
used as a validation data set, Thus none of the modelling techniques will be exposed to this
data set during model development. The validation data is simply used to compere the models
with the amount of the annual monscon precipitation in a practical actual—use scenario, It is
the forecast results against the validation data set which are of particular interest, as any sta-
tistical or neural network modelling approach can be applied to fit historical data with a good
estimation criterion such as the R—square,

3. Modelling with artificial neural networks

3.1 Artificial neural networks

Artificial Neural Networks (ANNs) technique is one of the main branches of the so—cal-
led Artificial Inteltigence family, Tt emulates or mimics the functions of the human brain, The
components of an ANN are based on a simplistic mathematical representation of what pecple
think bioiogical neural networks look like. Much research has been conducted looking at the
application of neural networks technology for classification and forecasting for various time
series such as stock market pricing and customer demand forecasts and prediction of business
failure (Selvaraj and Verma, 1998; Mohammadian, 1999). This paper investigates the devel-
opment of a neural network system to forecast the monsoon precipitation over the Delta
Yangtze area in China.

ANNs are nonlinear dynamic computational systems where, rather than relying on a
number of pre—determined assumptions as in the case of statistical modeliing, data is used to
form the model. When using the ANN technique, model developers do not need to deal with
the assumptions which are imposed by statistics and which limit their modelling ability.
Furthermore, ANNs are capable of handling the noisy and approximate data, hence, dre
promising to be applied into the fields such as the climate forecast of which the data is typical-
ly non—linear, noisy and compilicated in nature,

There exist many different architectures and learning algorithms for meural network
models, Most applications utilise a three—layer back—propagation (BP} design, as illustrated
inFig 1,

In such a model, when the input neurons receive data (in our case the total amount of
summer rainfall of previous years), a calculation is performed at each neuron, with a subse-
quent signal sent to each connected hidden neuron, which in turn passes a signal to each out-
put neuron. The output layer then performs the evaluation (in our case the forward



952 Advances in Atmospheric Sciences Vol 18

lnput Hidden Qutput
Neurons Neurons Neurons

VM OP—DVp< —COVZ -
W—HCVAHCOD HAn>OMIO™

Fig. 1. Basic neural network architecture,

12~month, 5—year, or 10—year total amount of summer rainfall),

The neural network learns by using training data. Input attributes are supplied and
resultant output is compared to the desired output. The network then adjusts the
interconnection weights between layers, This process is repeated until the network performs
well on the training set. The network can then be assessed on data not included in the training
set, the test data, to estimate its performance,

The essential difference between neural netwotks and other forecasting techniques is that
the neural networks use the training data to develop their representation for the modeled enti-
ty. This eliminates the sitvation associated with most models which ‘must pre—determine as-
sumptions about the modeled environment. This suggests that, in those cases where we are
forced to make the most assumptions in order to model a problem using traditional models,
neural networks may provide better results,

3.2 Development of the neural network model
3.2.1 Back—propagation neural network modelling

We first have experimented with the most popular and yet successfully used network de-
sign, the three—layer back—propagation (BP) architecture as sketched in Fig 1, Three models
have been constructed for one—vear, five—year, and ten—vear forecasting time horizon
respectively, The basic information fed into a model, i.e, the principle input variable of our
neural network models, is the lagged precipitation observation, That is, for a one—year ahead
forecast model, we use the precipitation of previous year as the input; for a five—year ahead
forecast model we use the value of annual precipitation five years ago (Lag5y), and so forth.

Neural networks are like people. The more useful information provided the easier it is for
them to understand a problem under consideration. When deciding on variables during the
neural network development, it is usually better to use more variables than it is not enough.
All of the ones that seem reasonable can be included in the initial model since neural networks
can find subtle differences in data patterns that we human may not be able to discern, If a va-
riable has no influence on the outcome, the network will learn to ignore it,

Additional input variables have therefore been created as listed below. They were derived
from the raw observations existed to help the neural networks learn the underlying patterns of
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the data and make correct forecast.

* Cly-Lagly: represents the change amount of the annual precipitaiion between two suc-
cessive years with 1 year’s lag; used for 1 year ahead forecast model,

* (Sy-LagSy: represents the change amount of the annual precipitation at five years’ in-
terval with 5 year’s lag; used for 5—year ahead forecast model.

* C10y-LaglOy: represents the change amount of the annual precipitation ai ten years’ in-
terval with 10 years’ lag; used for 10—year ahead forecast model.

® S§YAve—LagSy: the mean of annual precipitation averaged over the last five years with 5
years’ lag; used for 5—year ahead forecast model,

* 9YAve-LaglOy: the mean of annual precipitation averaged over the last nine 9 years
with 10—years’ lag; used for 10—year ahead forecast model.

* 10YAve—LaglOy: the mean of annual ptecipitation averaged over the last ten years; used
for 10—year ahead forecast model,

® SYanomaly—Lag5y: the average anomaly for last 5 successive years with § years’ lag,
used for 5—year ahead forecast model,

* 10Yanomaly-Lagl0y: the average anomaly for last 10 successive years with 10 years’ lag,
used for 10—year ahead forecast model,

Apart from the input variables, another important issue of concern in the neural network
development is the mathematical function assigned to each calculation element (the neuron)
in the network, While the connection weight will be modified during training of the network
as observation patterns are passed along, activation functions should be decided before the
network training. The selection of an activation function for the hidden layer is most impor-
tant, since this is the layer that actually performs the feature extraction from the observation
patterns processed. Accordingly, we have experimented with different forms of activation
functions. It is not intended here to discuss activation functions in any detail; instead we refer
the interested reader to Hertz et al. (1991).

Selection of the number of hidden neurons is yet another basic decision to be made in
building a neural network, Heuristics have been suggested (Baum and Haussler, 1988). One
must take care, however, when using them in practice, as the issue is case dependent and an
inappropriate decision may degrade the accuracy of the network in generation (i.e, forecasting
accuracy on new data). We have therefore experimented with the inclusion of different num-
ber of hidden neurons into the network to obtain an optimal model,

3.2.2 Recurrent neural network modelling

Considering what we are dealing with is a typical time series—forecasting problem, the
appropriateness of using Recurrent Networks for modelling the precipitation forecast has al-
50 been investigated.

Recurrent networks are of the modified 3—layer backpropagation architecture. They are
known for their ability to learn sequences, so they are excellent for time series data. In such
network architecture, the user has a choice of feeding the input, hidden, or output layer back
into the network for inclusion with the next pattern, which means that features detected in all
previous patterns are fed into the network with each new pattern, Feeding the output layer in-
to the input layer shows what the outputs of the previous patterns have been.

The main difference of a standard BP network and a recurrent network in structure is
that there is one extra slab (a group of functionally similar neurons) in the input layer that is
connected to the hidden layer just like the other input slab. This extra slab holds the connects
of one of the layers as it existed when the previous pattern was trained, In this way the
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Fig. 2. A recurrent network,

network sees previous knowledge it had about previous inputs. This extra slab is sometimes
called the network’s long—term memory (Ward Systems Group, 1996),

There are different ways that can be used to develop a recurrent network. We have found
that the most appropriate one for our problem is as follow:

A BP network with stand connections, as illustrated in Fig, 1, responds to a given input
pattern with exactly the same output pattern every time the input pattern is presented. A re-
current network as shown in Fig, 2 may, however, respond to the same input pattern
differently at different times, depending upon the patterns that have presented as inputs just
previously. Thus, the sequence of the patterns is as important as the input pattern self.

3.3 Training the neural networks

The networks are trained using basic supervised learning error—back—propagation, The
input data was normalised in the range (—1,1) by applying a scaling function. Such scaling is
essential as it minimises the effect of input magnitudes, and also aids the back—propagation
learning algorithm,

For training of the stand back—propagation networks, the observations have been pres-
ented to the network in random order to minimise bias due to the network memorising the
position of the training data. After every 200 complete pass of the training data through the
network, the partially trained network has been tested using the test sub data set, and the av-
erage error in forecasting has been calculated and recorded, If there is an improvement in the
forecasting accuracy, the network parameters were saved, Thus, we use the network perform-
ance in its processing of the test data rather than of the training data to determine the quality
of the network. This approach helps to reduce the risk of saving a network that has
memorised the features of training data, without the ability to generalise on new data,

The above training—testing process has continued until a number of successive tests using
the test data subset yielded no further improvement. We have allowed for around 1000 tests
on the test data without improvement, before concluding our training.

Recurrent networks are trained the same as standard back—propagation network except
that patterns must always be presented in the same sequence without gaps in the data; ran-
dom selection is not allowed. The network must also be tested with the patierns in sequence.
This is because that the positions of the observation patterns play an important role in net-
work learning as mentioned previously. We have used the last portion of the training data as
the Lest subset,
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3.4 Validation of the nerwork

Once the training session of a network model has been completed, validation of the mod-
el is carried out using the validation data set, This set, represented the observations of the
monsoon precipitation in last ten consecutive years, has not been exposed to the network at
all during its training and test. The outputs of the neural network in processing this data set,
compared with the actual observed values, represent a type of objective assessment on the per-
formance of the forecasting model developed. A number of key statistics have been calculated
in determining the quality of each resultant neural network model: R-squared, Mean Squared
Error, Mean Absolute Error, Min. Absolute Error, Max. Absolute Error, Correlation
Coefficient,

4. Results and discussion

The aim of our modelling task is to forecast the monsoon precipitation. Two kinds (in
terms of architecture) three categories (in terms of time horizon) of neural network models
have been developed which can respectively be used to carry out the forecast 1—-year, 5—year,
and 10-year forward. Obviously the accuracy is significant to characterize the success of a
tesultant model, Other aspects such as the model’s generalization ability and error stability
are also important to be considered in assessing a model's quality. In order to make compari-
sons and to evaluate the overall performance of each model as a tool for predicting the mon-
soon precipitation, we use the following statistics as standard criteria for model assessment:

®* MAE, Mean absolute error, it measures thie average error rate with the best being nearest
toQ;

* STDEV (standard deviation), which measures the dispersion of the errors that a estima-
tion model generates around the mean value of these errors; the best is that nearest to 0;

* R—Squared, which measures the actual variation explained by the model (i.e. explanation
capacity), ranging from 0 (none explained) to 1 (all explained),

* RSQ (correlation coefficient), which measures the correlation between forecast and ac-
tual time series, ranging from 0 (poor fitting to the model) to 1 (good fitting);

Based on the above criteria, the performance of each model in processing the training

and the validation data has been evaluated and summaries are listed in Table 1,

Table 1 (a). Neural network forecasting result on training data

Standard backpropagation nctworks Recurrent networks
Model I Modei I Model IIE Model IV Model ¥V Model VI
(1 yt forward) | (5 yr forward) [(10 yr forward)[ (1 yr forward) | (5 yr forward) |(10 yr forward)
MAE 0.025 0.094 0.182 0.030 0.088 0.098
STDEYV 28,46 5397 112.86 26,18 57401 100,34
RSQ 0,956 0.794 0.243 0954 0.802 0.556
R-squared 0.958 0.713 0.135 0,953 0.851 0,385

Model I is a standatd backpropagation neural network used for 1—year ahead forecast. It
consists of 4 layers and has 2 input variables Lagly, Cly—Lagly.
" Model II is a standard backpropagation neural network used for S—year forward fore-

R
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cast. It consists of 4 layers and has 2 input variables Lagdy, C5y—Lag5y.

Model I11 is a standard backpropagation neural network used for 10~year forward fore:
cast, It consists of 4 layers and has 4 input variables Lagl0y, Cl0y-LaglOy,
10Y Ave~Lagl0y, 9Y Ave—Lagl0y.

Model IV is a recurrent neural network used for 1—year forward forecast. It has 3 layers
and 2 input variables Lagly, Cly-Lagly.

Table1 (b). Neural network forecasting result on validation data

Standard backpropagation networks Recurrent networks
Model I Model Il Madel ITT Modsl [V Model V Model VI
(1 yr forward) | (5 yr forward) |(10 yr forward)| (1 yr forward) | (5 yr forward) |(10 yr forward)
MAE 0.066 0.106 0,250 0.043 0.098 0.150
STDEV 74.21 97.41 195.61 28.57 69.51 118.03
RSQ 0.956 0.951 0.454 0.992 0.39%% 0.836
R-squared 0.885 0.738 0.050 0.985 0.825 0.648

(Best results in bold font)

Model V is a recurrent neural network used for S—year forward forecast. It consists of 2
layers and has 3 input variables Lag5y, C5y—-Lag5y.

Model VI is a recurrent neural network used for 10—year forward forecast, It consists of
3 layers and has 4 input variables Lag10y, C10y—Lagl0y, 10Y Ave—LaglOy, 9YAve—LaglOy.

[t is important to understand the relative significance of the results on the Training / Test
data sets and the Validation data set. Since the former sets are used to develop the models, it
is then usual for the results on these sets to be on the optimistic side, as can be seen from the
above tables, Therefore the results from the validation set will be by far more significant.
However, looking at both result sets can provide useful insight.

The training set results in Table 1(a) show that the quality of both standard BP and re-
current networks are comparable with the recurrent models performed marginally better than
the standard BP models, However,. larger differences can be detected, particularly for the
long—term forecasting, from the validation results in Table 1(b). Bearing in mind that
validation results are more significant and that long~term forecasting is usually much harder
than the short—term one, we ¢an clearly see that the recurrent networks outperformed the
standard BP networks in terms of forecast accuracy (indicated by lower MAE), error struc-
ture stability (indicated by lower STDEV), higher correlation between the forecasted and ac-
tual precipitation (measured by RSQ), and better model explanation capacity (measured by
higher R—squared).

Further more, by comparing the validation and training results horizontally within a sin-
gle model, we see that the recurrent networks show less degradation in quality against all as-
sessment measures from the training to the validation data processing, compared with what
achieved by their standard BP—network counterparts. This indicates that the recurrent net-
work forecast models have better generalization ability.

We have therefore decided using the recurrent neural networks as our forecast models.
The following tables and figures provide the actual monsoon precipitation and the corre-
sponding forecast values produced by these forecast models. '
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&, Conclusions

This paper explores the application of Artificial Intelligent Techniques to Climate fore-
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casting. Artificial Neural Network technique has successfully been applied to develop models
that are used to forecast the annual monsoon precipitation over the Delta Yangtze in China
for respectively one year, five years, and ten years time horizon, These models have demon-
strated of good quality in terms of forecast accuracy, error—structure stability, and generaliza-
tion ability; especially when they were used to make forecast upon unseen validation data.
Various neural network design issues have been discussed; different paradigms of artificial in-
telligent techniques, the fuzzy approach and neurofuzzy approach, have been investigated.
The research clearly indicates that Al techniques are valuable tools for improving the climate
forecast in operation.

Table 2(2). Delta Yangtze summer rainfall prediction 1—year forward

1990 1991 1992 1993 19%4 1995 1996 1997 1998 1999

Actual 411 847 382 660 361 534 622 516 469 949
Actual

- + - + - + + + - +
Anomaly
Forecast 39865 81306 376.68 64201 35295 512.7 653.28 50092 44741 90274
Forecast

- + - + - - + - - +
Anomaly
Alignment between the Actual and Predicted (validation data) Anomaly: 80%
Table 2(b). Delta Yangtze summer rainfall prediction 5—year forward

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

Actual 413 847 382 660 361 534 622 516 469 949
Actual

- + - + - + + + - +
Anomaly
Forecast 416,63 71872 38928 59688 378.89 50511 590.23 48963  451.84 80095
Forecast

- + - + - - + - - +
Anomaly

Alignment between the Actual and Predicied (validation data) Anomaly: 80%

Table 2(c). Delta Yangtze summer rainfall prediction 10—year forward
- 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
Actua] 413 847 382 660 361 534 622 516 469 945
Actual

~ + - + - + + + - +
Anomaly
Forecast 442,14 65753 39713 61538 42195 55274 47262 341.87 498.6 739,02
Forecast

- + - + - - - - - +
Anomaly

Alignment between the Actual and Preditted (validation data) Anomaly: 70%
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