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ABSTRACT

The spatial and temporal variability of land carbon flux over the past one hundred years was investi
galed based on an empirical model directly caleulating soil respiration rate, Our model shows that during
1901-1995, about 44—89 PgC (equals to 0.5, 0.9 PgC - yr respectively) were absorbed by terrestrial
biosphere. The simulated net ecosystem productivity (NEP) after the 1930s was close to the esumaled value
of " missing C sink” from deconvolution analysis, Most of the total carbon sink happened during 1951-1985
with the estimated value of 33-50 PgC, Three major sinks were located in the tropics (10°S—10°N). North-
ern mid-latitudes (30°-60°N) and Southern subiropics (10°-40°8), During 1940s—mid -1970s, carbon sinks
by terrestrial ecosystem increased with time, and decreased afier the mid—1970s. These may be due to the ch
anging of climave condition, as during the 1940s—1970s, temperature decreased and precipitation increased,
while after the mid-1970s. an opposite climate situation occurred with ¢vident increasing in lemperature
and decreasing in precipitation, Usually, warmer and dryer chimate condition is not favor for carbon
absorption by biosphere and even induces net carbon release from soi1l, while cooler and wetter condition
may induce more carbon sink, Our model results show that the net carbon flux 1 particulacly dependent on
mosture / precipitation effect despite of temperarure effect. The changing of climate in Lthe past century may
be a possible factor inducing increases m carbon sink in addition to CG. and V fertihzer.

Key words; Climate, Terrestrial biosphere, Missing curbon sink. Model
1. Introduction

Currently the global carbon budget cannot be balanced, The CO, released by fossil fuel
and land—use changes is apparently greater than the amount remaining in the atmosphere and
removed by the known sinks (Keeling et al,, 1989; IPCC, 1992; Sundquist, 1993), The " miss.
ing carbon sink” is estimated to be 1.3—4.7 PgC # vr (Tans ct al, 1990; Sarmiento and
Sundquist, 1992; Fan et al., 1998; Woodwell, et al, 1998}, Although there is a wide ranges of
the * missing sink” which stems from uncertainties in estimates of other carbon sinks and
sources, terrestrial ecosystem is thought absorbing most of the missing carbon (Ciais et al.
1995; Fan et al,, 1998), It is important to balance the carbon budget or it will impose consider-
able uncertainty on predictions of future atmospheric CO, concentrations and future climale
(Dixon et al., 1994; Houghton, 1995; Woodwell et al., 1998).

There are many possible mechanisms that could resolt in the increases in terrestrial car-
bon sinks, such as CO,—fectilisation, nitrogen (N} fertilization (from pollution deposition)
and changing climate induced growth in ecosystem (D’Arrigo and Jacoby, 1993; Solomon
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ct al., 1993; Delucia et al,, 1999).

The effect of climate variability on terrestrial ecosystem C—cycling has been widely stu-
died, The current / decadal—term (and time—lag) correlation between climatic variables, such
as temperature and precipitation, and atmospheric CO, growth rate indicates that terresirial
ecosystem has complex feedback to climate changing (Siegenthaler, 1990; Keeling et al,, 1995:
Braswell et al. 1997; Woodwell et al., 1998; Cao and Woodward, 1998: Yang and Wang,
2000),

In an important exploratory study, using very simple " empirical” relationships between
climate and net primary productivity / soil respiration, Dai and Fung (1993} suggested that
the terrestrial biosphere sequestered up to an additional 20 PgC between 1940 and 1988 due to
climate variability that would represent half of the budget deficit, They identified middle lati
tudes in the Northern Hemisphere as an important region for C flux, They highlighted the pos-
sible critical role of climate in influencing the spatial and temporal variability of the terrestrial
ecosystem C flux focusing on the possible large variability in both time and space domains. In
Dai and Fung’s (1993) models, the heterotrophic respiration (R, ) is derived from Raich and
Schiesinger’s (1992) soil respiration data, which is the sum of R, and root respiration. Here
we use a new method dirgctly calculating soil heterotrophic respiration rate,

2. Climatic data

Space—time climatic data s demanded in understanding the role of climate in
biogeochemical cycles, A newly 0.5% x 0,57 latitude / longitude menthly climate data over rela-
tively longer period of 1901-1995 was provided (New et al., 1999: New et al., 2000) that could
be used in searching for biosphere response to climate changes. Annual precipitation (P),
mean temperature (MAT) and mean biotemperature (7, ) were three basic factors used in our
models, 7, is the mean annual temperature considering only positive monthly temperatures
(< 30°C). The annual precipitation is the sum of monthly rainfall value.

3. Description of carbon flux model

The net ecosystem productivily (NEP) or net carbon flux between the atmosphere and ter-
restrial biosphere can be expressed as

NEP= NPP- R, . (1)

where NPP is the net primary productivity, A modified Miami model (Friedlinstein et ai,,
1992) was used to calculate NPP, Soil heterotraphic respiration R, can be estimated by
Rh = CO Rl . (2)

where ", is the mean soil carbon density (kgC / m?) at steady state, and R, is the soil respira-
tion rate. If we assumed that C; kept lixed on short-time scales, the changes of Ry could be
thought mainly due to the variation of R, , Compared with the large soil carbon density, the
relatively small variation of soil carbon on decadal time scales can be neglected.

We used a new way in calculating soil respiration rate R, At equilibrium situation,
NPP= R, .so R, canbe expressed as

R,=NPP/C, . (3)

Zinke et al. (1986) compiled more than 3500 soil carbon density data (I meter in depth)
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Fig. I. The relationship between sl respiration rate R, and PETr.

over the world, We chose the natural vegetation and undisturbed sites from the data set, and
calculated the averaged value of the carbon density on 0.5 % 0.5° grid for sites located in the
same grid (this is done due to the same resolution of climate data we used). In so doing. total
975 grid—averaged soil carbon data were obtained. The respiration rate R, for each soil car-
bon data can be calculated by using the NPP model,

Among the climate variables, we found R, is closely related with potential
evapotranspiration rate (PETr) (Holdridge. 1947). PETr can be expressed as (Post el al.
1982}

PETr= 58937,/ P . 4)

where P is annual precipitation (mm) and 7, annual mean biotemperature ("C). Figure |
shows the relationship between R, and PETr, and the peak value of R, appears at PETr=
0.8, These calculated R, data were divided into two groups based on its PETr value. Figure
2a shows the regression function of R, for PETr< 1.0 (representing wet soil condition: R, )
while Fig. 2b for PETr > 1.0 (representing dry soil condition: R, ).

R, = 0.061PETr*™"  when PETr<1, (5)

R,= 0.0476PETr ***  when PETr> | . (6)

They are significant at 99% and 95% confidence level, respectively. Combining these two
equations into one, we have

R,y= min{R, .R;) . (7)

R, reaches its highest value of 0.05 (yr ) at PETr =0.8. Temperature effects on soil res-
piration rate can be obtained by dividing R, by R, . Figure 3 shows the relationship between
temperature effect £ and annual mean temperature MAT. Equation (8) is the regression (unc-
tion:



No. 6 Yang Xin, Wang Mingxing and Huang Yao 1195

0.6

y = 0.061x" ™%
0.5 F 8 R*=0. 153

0.4 F

0.3 1 ° ov

Rw (/yr)

0.2

0.6

0.5 1 y = 0. 04765 "0
2= 0.03

0.3 1

Rd (/yr)
-]

1 10 100 1000
PETr

Fig. 2. The relationship between R, and PETr for {a} PETr< 1.0 and (b) for PETr > 1.4 Repres

sion functions are given in the figures.

F=0,6323exp(0.0512MAT) . (8)

Then, the soil respiration rate can be expressed as
R =FR, ., 9
R, = 0.6323exp(0.0512MAT)min(R, ,R,) . (10}

The net soil carbon flux NEP can be changed into
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Fig. 3. The relstionship between temperature effect Fand annual mean biotemperature T .
Regression function is guven in the figure.

NEP= NPP— (.6323expl0.0512MAT)min(R,, ,R ¥, . (11)

The positive value denotes the net carbon flux from the atmosphere to land biosphere, vi-
ce versa. It should be noted thal the net carbon flux is dependent on €', and further on the cli-
mate period used in calculating €. In this paper we use a mean climate condition during the
period of 1920—1949 as done by Dai and Fund (1993). However, another long time mean data
from 1901 to 1990 were also used in order to make a comparison,

According to Eq.{8). the temperature effect on carbon decomposition is evidenl, as
Q.= 1.7. This Q,, value is a little lower than some estimated values of 2,0-2.4 (Raich and
Schlesinger, 1992; Esser, 1993},

4, Model Results and analysis

Figure 4 shows the global map of modeled soil carbon density. It can be found that the
lowest carbon density {< 2 kgC / m?) appears in extremely dry climate condition, such as in
desert / desert bush. The soil carbon density in the (ropical areas is not s¢ high as in most of
mid— to high-latitude areas reflecting the evident temperature effects on soil carbon decompo-
sition. However under very wet condition, such as in some regions of Southeast Asia, the soil
carbon density is even larger than 20 kgC / m?. The higher carbon density in the southeast
part of the Tibet an Plateau is mainly due to high terrain effects on both rainfall and tempera-
ture. The total soil carbon pool is about 1150 PgC which is a little lower than the previous esti-
mated valuves of 1200-1500 PgC (Schiesinger, 1977; Post et al,, 1982, 1983),

Figure 5 shows the relationship between observed (Post et al,, 1985) and modeled mean
curbon density in 38 vegetation types of Holdridge life system. The correlation coefficient be-
tween them is very high with R® = 0.6 {significant at 99.9% level), indicating that our model
has a good ability in describing the soil carbon density at various vegetation tvpes under
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different climate conditions,

Figures 6a, 6b, and 6c show the geographic distributions of mean net carbon fluxes of
three periods; 19311950, 19511985 and 1986~ 1995 respectively (using mean climate data of
1929—1949 in calculating € ). Figure 6a shows that terrestrial biosphere exisls as a weak car-
bon sink from 1931 10 1930, with a total accumulative carbon sink of 9 PgC (0.45 PgC 7 vr).
A near zero net carbon flux (—1 PgC) was obtained based on the mean climate data of
1901-1980 in calculating C ;.

Figure 6b shows that most of terrestrial biosphere served as carbon sinks during the peri-
ad of 1950-19835, Over these 35 years, about total carbon of 30 PeC (equal to 1.4 PgC - yr)
was absorbed, which is larger than Dai and Fung's (1993) estimated value of 20 PeC. It we
used mean climate data of 1901-1990 in calculating €, the total sink reduces to 33 PeC
{equal ta 0.9 PgC / yr). It can be found that there are some regions, such as the tropical areas
(Amazon, Southeast Asia), Northern middle latitudes (eastern Asia and south part of North
American) and most of the Southern Hemisphere (< 40°S), absorbing more carbon from the
atmosphere, These results indicated that the tropics are important regions in determining the
global carbon cyeles, especially for Amazon basin and tropicul southeastern Asia,

There are some evident discrepancies between Dai and Fung’s (1993) results and our
modeled results, these differences are likely due to the different expression of soil respiraiion
rate used in models, although both of then used the same NPP model. In South America, our
results showed a large net sink. however Dai and Fung (1993} gave a net source. Anather evi-
dent difference appeared in Eurasia, our model showed that eastern Asia was a major carbon
sink, whereas Dai and Fung’s (1993) result did not show the similar conclusion instead they
found a significant sink located to the north of 45°N,

The tropical regions play an important role in balancing the global carbon budget.
Woodwell (1998} pointed out that a sink of 0.6 PgC / yr in the tropical forests was needed in
order to balance global carbon budget over the period of the 1980s. These estimates were con-
sistent with previous measurements and model studies showing that Amazon ubsorbed car-
bon by 0.2-0.4 PgC 7 yr (Grace et al,, 1995; Tian et al., 1998, Prentice and Lloyd. 1998;
Phillips et al. 1998) Our model showed that the total carbon sink in tropical areas
(10°S—10°N} over the period of 19511985 and 1980-1989 was about 0.4 and 0.2 PgC/ yr
respectively (C,: 1929-1940). The large sink in tropical areas may be due to the evident in-
creasing in precipitation but little variation in temperature, In low latitude band, precipitation
increased with a rate of 5% per century, but temperature showed near zero increasing trend
ouer the past century (IPCC, 1996).

The carbon fluxes in Northern mid—latitudes (30"-60°N) were about 0.6 PgC / vr for
19511985 and 0.5 PgC / yr for 1980—1989 respectively (C,: 1929-1940). These value is con-
sistent with direct measurements in Northern temperate and boreal zones (Woodwell et al.,
1998; Dixon et al.. 1994; Houghton, 1996). The net flux in Southern subtropical (10°-40°5)
band was about 0.3 PeC / yr for 1951-1985 and 0.3 PgC / yr for 1980—1989 respectively ((y:
1429-1940).

The 1otal accumulative carbon sink during 1986—1995 was about ~2 PgC ((:
1929-19490) and ~7 PgC (C,: 1901-1990), Figure 6c shows that during this period most of re-
gions had changed to sources except for Northern mid—latitudes, This result is consistent with
the recent studies indicating that current terrestrial ecosysiem were changing from net carbon
sinks to net sources (Houghton, 1995: Woodwell et al,, 1998], This changing may be due to
the alternation of climatic situation,

Figure 7 shows that our modeled net carbon flux is in good agrecment with the estimated
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Fig. 9. 5-year running mean of {a) annual mean lemperature, (b) anaual precipuation, {¢) net pr1
mary production NPP, (d) soil heterotrophic repiration (R, ), {e) soul respiration rate (R, ), (f} net
carbon flux (NEP), and (g) potential evapotranspiration rate (PETr) over global land ¢cosystem.

“ missing sink” values by Houghion (1993) except before the 1930s. Net carbon sinks by terres-
irial ecosystem increased during the 1940s—mid—-1970s, and decreased sharply after the
mid—1970s, These variations resulted from the alternation of climatic situation before and af-
ter the mid—1970s, Since the 1940s, temperature decreased and precipitation increased until
the mid—1970s, while after the mid—1970s, an opposite climate situation occurred with evi-
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dent increasing in temperature and decreasing in precipitation (Figs, %a and b), Usually, war-
mer and dryer climate condition is not favorable for net carbon absorption by hiosphere and
even causes net carbon release from soil, while cooler and wetter condition may induce
gcosystem to absorbe more carbon from air,

The large discrepancy between our model results and estimated * missing sink” values be-
fore the 1930s may stem from the inaccuracy in the climate data owing to the less valid obser-
vation data (especially for precipitation), Errors may alse occur when using the two empirical
models (calculating NPP and soil respiration rate} in time dependent cendition as they are for
equilibrium situation and are invalid for evident changes in climatic conditions as happened
before and after the 1920s,

The total accumulative carbon sink during 1901-1995 is 89 PgC (C,: 1929-1940) and 49
PgC (C,: 1901-1990) respectively, which is very close to the low level of * missing sink”, Fig-
ure § shows the accumulative values of modeled net carbon flux and that of “ missing sink”
during the period of 1931-1995, Tt can be found that our model results are consistent with the
estimated " missing sink” . Over the 65 years, a high accumulative value of 56 PgC (0.9
PgC 7 yr)(C,: 1929—-1940) and a low value of 25 PgC (0.4 PgC / yt) (C: 1901-1990) was ob-
tained, A large part of these sinks happened during the period of 1951-1985 as merntioned be-
fore,

Figures 9 {(a—g) show the S—year running mean values of 6 different parameters (as to the
model cutput. C,: 1929-1940). The relationship between NPP (Fig. 9¢) and temperature
(Fig, 9a) is not significant with a small correlation coefficient of 0.2, while NPP is significantly
related to precipitation (Fig, 9b) with a large coefticient of 0.83, They imply that the produc-
1ivity of most terresirial ecosysiem is limited by wate, which is consistent with Esser’s (1993)
conclusion. Soil heterotrophic respiration R, (Fig. 9d) and soil respiration rate R, (Fig. 9¢)
are closely related to temperature with correlation coeflicients of 0,85 and 0.84 respectively in-
dicating that temperature has large effects on soil carbon decomposition. The opposite sign of
correlation coefficients between net carbon flux NEP (Fig, 9f) and temperature (—0,51) and be-
tween NEP and precipitation (0.69) indicates that the same variation trends of temperature
and precipitation will offset their individual effects on the carbon flux, Increases in precipita-
tion together with decreases in lemperature will enhance more carbon sink. So, the combined
effects of temperature and precipitation on carbon cycles are complicaled and greatly depend
on their relative importance, PETT is a useful index in description of the combined effects of
femperature and precipitation, PETr (Fig. 9g) shows a significant negative correlation with
NEP with a coefficient of —0.71 indicating that warmer and dryer conditions are not more
favorable for carbon sink than cooler and wetter conditions do.

5. Discassion

It is hard to say thar the terrestrial biosphere will continue to release carbon dioxide to
the atmosphere in the next decades. The net flux between the biosphere and the atmosphere s
highly dependent on the combined effects of temperature and precipitation but not individual
one. Precipitation plays an important role in determining the net carbon flux, If the warm and
dry ¢climate condition existing in recent decades continued, more soil carbon would release to
air and greatly enhanced the “ greenhouse effect” . However, if there were sufficient precipita-
tion with temperature increasing, land biosphere would serve a net carbon sink as a result,

Only two basic climatic variables, anntual precipitation and biotemperature were used in
our model. In real situation, NPP and soil respiration are controlled by many factors in addi-
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tion to the above two factors, and the interactions between them are complicated (Cao and
Woodward, 1998). Our one—compartment model calculating soil respiration rate and Miami
model are just empirical models and not suitable for time dependent variation. At least two
parts of soil pool (one for the active soil with rapid respiration rate and another for inactive
part with relatively long turnover time) are needed in order to describe short time soil carbon
variation,

Although our model resuit shawed that the simulated net carbon flux after the 1930s was
well similar to the * missing sink”, it did not mean that we solved the missing sink problem. In
fact, our model results just had qualitative meaning. However, our model results together
with Drai and Fung's (1993) results indicated that climatic changing is a potential factor caus-
ing terrestrial ecosystem serving as net carbon sink, in addition to the possible €O, and
N fertilization effects,

The 0.5° x 0.5° latitude - longitude monthly climate data ware supplied by the Climate Impacts LINK Project
(UK Department of the Environment Contract EPG 1/ 1 7 16) on behalf of the Climatic Research Unit, University
of East Anglia. The authors also thank P. J. Zinke for providing soil carbon density data, and A, Dai for providing
their paper reprints.
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