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ARSTRACT

This paper 15 focused on Lthe problem of nonlinear symmetric insiability in a baroclinic basic flow. The
limited amplitude characteristics of unsteady wave were investigated with the aid ot equations of adwbatic,
inviscd, nonlinear symmelne disturbance and a multi—scale sigular perturbation technique. Evidence sug.
gests that the limited amplitude of unsteady wave exhibits an oscillatory trend of its intensity: the amplilude
of the symmetric disturbance displavs periedical variation both in super— and sub—¢ritical shear case, and
the ducation of the periods is related rot only Lo the stabilily parameters of the basic field and wave propet-
ties bul to the amplitude of initial disturbance and its ume—varying change rate as well,
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1. Introduction

In the past decades many scientists have made ceaseless efforts on the problem of hnear
symmetric instability. Stone (1966) discovered that the growth rates of different types of dis-
turbance were the functions of Richardson number (R/) and symmetric instability is pre-
vailing at 0.25< Ri< 095, Emanuel (1979), Bennetts and Hoskins {1979). and Xu (1986}
made studies of both linear symmetric instability in a viscous fluid and conditienal symmetric
instability. obtaining the criteria of conditional symmetric instability in a boundless atmos-
phere and indicating that such instability is likely to be the genesis mechanism for band-like
precipitation structures in midlatitude extratropical cyclones, and prefrontal squall lines.
Zhang (1988) showed that the condition of symmetric instadility in a baroclinmic basic flow
was derived with the aid of rigid boundary constraints and illustrated that morphologically
symmetric instability is actually inertially convective instability in a barochnic atmosphere
and falls rightly on a meso—f spectral band between convective and mtertial metions,

The above studies of linear theory on symmetric instability show that as a consequence
of the linearization and the formal constancy of the mean state, the growth rate for the wave
is also constant, leading inevitably to exponentiul growth for the perturbation. No matier
how small the initial amplitude of the disturbance 1s. eventually this exponentizl growth witl
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vield a perturbation amplitude so great that nonlinear effects can no longer be ignored.
Walton (1975) first made efforts at weak nonlinear evolution of limited—amplitude symmetric
perturbation inside a viscous fluid under rigid unmovable boundary conditions in the context
of a static equilibrium model by means of the normaliy—used singular perturbation technique,
Le.. a high—order solution is derived step by step from a lower—order lincar analytical solu-
tion, followed by eliminating the resonance terms to get the expression of limited—amplitude
disturbance evolution,

Yet the wave dynamics in most instability models of oceanographic and meteorological
relevance are inviscid, so that wave dissipation plays an unimportant role (Pedlosky 1979). In
such cases. where the lack of dissipation makes the physical processes essentially reversible
with time, how do the wave amplitude and structure evolve after reaching their limiting value.
assuming, of course, that one exists? This is a problem that deserved our efforts, In view of
the fact that inviscid Linear symmetric instability has to yield a rigorous analytical solution, a
condition that helps us greatly deal with the evolution of nonlinear symmetric instability, that
Is our starting poini,

2. Analysis of linear stability

Comparison of the dynamic properties of atmospheric models shows that a model appi-
cable to meso—scale motion is one of /~plane nonstatic equilibrium, sound wave filtering that
takes the assumption of homogeneous uncompressibility in the equation of continuity. In that
case. the complete motion equations in an adiabatic, frictionless atmosphere are

du 1ép

dau _ _LP 4

dt pix . (
dv _ _1p_ g (2
dt ply

i 1ip

r —p(:_g'

di
—=10, {54
dr
We assume w= 2+ u’, v= ', w=w', p=p+ p’. p= p+ p'and 0= 0+ ' which are
put into (1 }-(3), Also, we define the atmospheric stratification stability parameter A~ = %:_(.

. . . 2 .l . 1
the intertial stability parameter F~= flf— %), and the baroclinic stability parameter
o

§7= /l(—lj == %(.— all being constants. If boussinesq approximation is used and the physical

. . oL . .
quantities are symmetric about the x—axis (ﬁ; 0). then (1)~5} have their nonlinear

symmetric perturbation form
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in which 7 and 0 are set to be po and 0, the reference density and potential temperature,

respectively, for static atmospheric state. for convenience, the term — l’—% of (8) 1

fy (F
approximately set to be — (.‘—z (‘f— ). Linearization of (6)~(10) vields
o
;—Iw'): Fro— 7w ()
o =—:‘—(P—)— ' (a2
&1 Yy \pg
’ 13 /
EEL__ él.(ll_)+.ll,g (13)
ct cz\p, 0,
Trloyg, (14)
&y fz
ﬁ—(—/ )= Slyr— Ny (15)
cr\fy ’
Considering (14), we introduce disturbance streamfunction ¥, vielding (v )=
( - tc.—"(: %) and by eliminating v”, p’ and ¢, we find a partial differential equation of y
2 2 ~2 ~2
4 1 20y 107 1Y
— = - N—F - - 16
0 vy PR ez a2 {16}
where ‘{72= — + f 7 is the Laplace operator.,
oy [

By letting = J(r.z)e® . we change (16) into a form cantaining cross—derivalive term
-..‘u-&
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In order to eliminate such term, conversion of independent varables S= 1+ «: and
7= z (where @ is the coefficient to be determined) is made. resulting in (18} of the form

[o™+ N+ (@ + Fa’ +’5a]—+[2urr+F ’S]—IE+U+F' £-9 (18
‘s
Set the coefTicient of C 10 be zero and we get a= — st /(e?+ F*)< 0, Hence, 118) is
simplified into a standard differential equation. viz.,
4 a2 -
@+ N - 25 SE 1)217:0, {19
o+ P .

which i reduced, under the assumption of wave solution ﬂ? = ™ o

(a®+ Fz}a;—u?—m N
418

)J/ 0. (20
o’+ F

Let = Asin%g (which satisfies the rigid boundary condition #!._, ;= 0)and we [ind

the dispersion relation of linear symmetric disturbance in the following form

(1+ 2o’ + N+ Q4 0F b+ N F - 859+ F'=0 Q2N
az=—”T+\/(F’T) —q . (22)

mH 2 4
where 2= (F) = [aN“+ 2+ OF 1/ (14 «). = [a(A* F=8SHh+ 1 0+ )

Note that the roots from a negative radical sign have been dropped because the» are caused
by the coordmdte transformation. Analysis of (22} shows that at 4 > 0. gt <0,

and at q <0, ¢*> 0. For neutral disturbance, ¢* = 0 and §7 is set 1o be ST = (N F

+ F' 7 2)7, in which case the critical value of vertical wind shear 1s { U.), = (XN CF-

| A )
+ F'/2)3 . For the stability parameters of a given basic field N and £, if the baroclinic
stability parameter 5% is changed by a tiny amout on the basis of Sf hatis.§© = § {1
+ | Al with 0< |Al« 1, meaning .= (u.),(1+ [Al) we have ¢~ ~ — %Sf‘m\, which 15
4

) LA 1 . .
then substituted into (22), yielding a~ ~ U-I-’; | Al, with o~ Q[ Al2]. It is the basis where
ap

upon the analysis of nonlinear stability will be undertaken in the following,
3. Transformation of nonlinear disturbance equations

To facilitate the analysis of nonlinear slability it is necessary firsl to decrcase lhe number

of dependent quantities of (6)—(10), we define the opeartor £ = — + ; + [ . which
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used to find derivatives of both sides of {7)—(8), leading 10

S(Lv)= - L[E (pﬂ)}— £l 23
£(Lw)= - f[;—z(;’t)]-% E(%g) ‘ (04

(6Yand (10) are put into (23} and (24) such that

L= - ,{,[ (ﬁi)]— Flvi+ 50y {25)
Pa

C(Lw)= — &[é(i’)}t ST Nl (26)
€2\ Pa

It is of particular note that for any unknown function ¢, £(£)# € ¢. We know
from analysis of linear stability that as the basic—field stability parameter 5° increases by a
tiny quantity ~ (4] A|), the growth rate of linear disturbance is of the order of magnitude

1
of O( Al2), which suggests that it is necessary to introduce the slowly—varying time scale

1
1t in dealing with the analysis of nonlinear stability by virtue of the multi-scale
method, Thus we have

= 'AI; ) (27)

Based on (9), disturbances streamfunction § is introduced, making

= - (—l‘k w'= (:"E . (28}
€z y

Now (27)—(28) are inserted into (25)-(26), leading to a closed system of equations con-
taining only ¢ and p', namely,

S12t- ¥ - g - S+ S PR S 9)
iz { B A

[~
>

o

N

in%]

T

LN}

f— - s”("’ LA (30)

m( Ll - -

By letting §°= S7(1+ A)= S'[1+ sgn(A)| Al] and series expanding ¥ and p*/ p, 1n

1
terms of &= |Al2 and find

1 3 . i
w:lAlidjl-l-iAwlg'l"A‘id’z'{"Al_w4+'". (JH
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1 1 .
= NAlzp + IAlp+ TA Tp + Al g+ e (220

which are substituted into (29)—(30). Compare the coeflicients of terms of the sume arder

| K} \ ) . ) i
iAlZ|Al, 1AlZ and|Al" on both sides of the equations and we get the approximation equu
tions of these ordets.

|
For O{ A|: ) case

¢ o
F 50'+5; AR (33)
(z oy
Y ¢
sf&+ Mﬁ =0. (34)
(z {y
For 04| Al) case
¢ i, :
Pl gt O 1351
I3 Cy T

FRNVIAE R , (36

3
For O( Al2) case

7l L0 &’ p. aps ¢y, o (
L R LY S NP R AL £ ML (37)
(z Sy (Toy Ty oy rdzt 0
(s 2O &p, o, Wy o Oy ¢ ipy
e N = -t RyE o e e ) KLY
S5 v ez R R A P ) 8
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Py SZ%—EZP" + R _im LI RO F)
iz Tt dy  (TQ 20T (z (y (v &y
- .3 -
e &y 0L Y 3 o
AL AN AL I L S (39)
iz dy Oy oz {Téz fy
0 2 Uy fzﬂa (~3p3 7 Gy 0 0
LY R e e e
5 ez ‘ (Te: Ry Tz o) €l (7} iz
- A3 -
fy, ¢t FoC T 5 (i,
LN L - —stgn(A)J:&; _ (40}
fz oy Oy dzh iz Ty iz
o Wy

Note that the condition of =0, = - 0 has been applied before obtaimng

iy
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1
(35)—{40). In fact. the condition is none other than the solution (o the case of O] A2 1,

4. Solution to the approximations for these orders

| Fos .
For the case O(/Al2) the determinant of coefficients of (33)-(4}| ~ |= N7 /°
570N
St ol ARy SRL TR
x 7

For the case Q| A, clir-ninaling variable p, of (35)—(36) yields the only differential
equation of i, :

425 A =0, {411

whose solution is obtained with the aid of linear theory, ie.,

U= AlTe(zk™ + cc. . i42)

where g = sm’;;,z ™ 4 =~ § /F and c.c means the conjugate complex number for
the preceding part.
Now, putting (42) into (35)—(36) vields

i '
'.0 (F' (’D + imS; (p)J AdTe™ + ce . {41
ey Ty

‘.p p ! {241}

e (S' + mN- (p)J AdTe™ + ¢cc | 44

7,

where T, is a constant,

1
We now proceed to give the way to solve the problem O] A2 ), Putting (42)—{44} into the
expressions of R, and R, . eliminaling p, of (37)—(38), we get the differential equation of
n the form

0 C: X 0 "R,
N tl’z" ot pl¥ 0, = okt (45)
oy C oy (=" €z 1
where
0,=0,+0,=limF*?- JB_CE) a’ w _dodp ”Aj AdTe
e ER w dz fy° Y dsdz

+c¢

2 2 _rr
- [th3:—2(5‘2—‘€)— mzsff—zma)mj AdT+ cc (461
z - iz

Lt




No.2 Shen Xinvong, Ni Yungi and  Ding ¥ thui 357

To ohtam the solution to w, of (45). it 1 necessary to find the forms of @

2

nr coonn "
and Q.. and we denole g, = mu . g-= AR mlu: - L gy=2mu, I
n"nz JLEN n“'["
503 2 2 N i

g:=—ma —dmg —~ and g, = — Bm“ajg T . where g, through g, are all reul
numbers, leading to

@, =g sinj%:wL igxsin% :cosnﬁK o+ gucus':% :)AJ AdTe™ " 4w e 47)

Q= [/—— s’ I o4 g sl zcostr 2)A K AdT+ ce ()

R LT & TR JT[‘ L

where g-= sz(glg‘ - g )= Zmzsftgx + gf ) ge= mF:(gv6 g g g8 ZmJ.S_"
(g,— 2gy2,). g9= mF g gt 2;1125‘:g§, 2= n1F3g, +m's’and g, = — mF g-. all

being real constants,
The coordinate conversion ((= 3+ u;z, (= z) preformed of inhomogeneous equation
(45) makes it in the form

) a2 A2
3 a0 b ( 2 & 2t w
(N"+ Fa;+ 25‘(7:1_.,)75{—1 - (2a, F*+ 257 1,{01 + F‘%= ot (49)
e roly (¢ .
Eliminating (.;”; and setting 2a, ° + 257 = 0, we have ay = - §F =4, so that
]
(49) is reduced to its standard form
2SSy LTy
(O e sl Srw- il *ATIAN *YPER (30)
Foocé e
Under the assumption of i, = ¥, (J)e™* . (50) reduces to
wdzlz’l 2 a2 Sj RRLITIN -
F d,:' 7m§(l\'-_F)'p3=(Qu+Qu)€ o {3

in which setting m, = 2m for the former part @, of the inhomogeneous term @, vields the
cooresponding selution

D 2am. [T
b= (b + 1bzsm%g+ bacos‘;_ns)/‘jn AdT+ cc . 152
.+
where b, = lg,rz gg,z e & 2 2nm -
- B (N = ST F) —8miNT = 8T P )= 2R =)

H
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o= g7 &
! 2 21:1')

iV = 5 = 2F
mINT— 8/ F) F(H

and setting #1, = 0. (51) has its solution to @, in the form

b= (b, + jh;sinzL—l’f;wL hyc sﬂh)AJ AdT+ cc | (53
T“

inwhich b, = g, / QF), hs=g,, /QF), by= — g, 7 (2F").
Combination of (52) and (53) gives the population solution

T _pT
wj = (p“(z)AJ- AdTeZlmr + C_C+ (P:.\:(Z)AJ AdT+ c.C

Ty Ty

2 Zima, ! Zimy
+ + ldid E
= (b, + ib,sin" o : by cos H %2k '[!U AdTe™ + cc

2nz

+ (b, + 1bgsin—/- H -2+ b, co SZH AAJ.T'. AdT+ cc . (341

We denote the z—related terms of the expressions of R, and R, as R, (=}, where i= 1.2
and j= 1,2, so that

rT N _ri

R, = R, (:)A| AdTe™™ + cc+ R,Z(:)Af AdT + ¢ . (551
< Ty Ty
1 S T

= Ry, (:)AJ AdTe™™ + cc+t Ru(z)AJ AdT + cc | (361
T 1y

v

Substitution of (54)—(56) into (37)—(38} leads to

]

2 “d 2 ! r Ty
P _ (F‘—wl + 2imS o, — Rll)J (AJ AdTHTe™ + ¢cc

Cy dz ) Ty Ty
d T .
£ (P RI,)j ] admar+ce. i57)
dz 1, 1y
ip, d . T T
Pa_ (- [yl 2imN @+ Ry )J (A[ AdT)dTe™ + cc
[ ‘ dZ - - Ty dry
o AT  _pT )
ey )| (AJ AdTYT + cc . (551
d- Ty Ty

Now we turn o the case O Al°). Eliminating p, of (39)-(40) yields the differential
equationof iy, as
7 (Ry (R,

N S0
N Ve | 25 ”"“ +F = Q= St o {59

e b e 1N s S 5. B g
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We insert (42)-(44), (54) and (57)—58) into the expressions of R; and R, and then
write R, and R, for terms of R, and R, in proportion to e™" . respectively. Analvsis
indicates that &, on the rhs of (59) contains induced terms, thus causing secular terms in-
volved m the solution of the problem. Therefore, to make the set problem have 4 homoge-
neous. effective, asymtotically—evolved solution, it Is necessary to impose condition on ..
Here the secular terms are eliminated by means of the orthogonalization method, which re-
quires

(@5, 4,)= 0. (601

where i, stands for the solution of the adjoint homogeneous equation of (§9),
It can be inferred from (60) that

‘R, (R,
( o+ .4.%)=0. 61}
éz (y
which can be rewritien as
CH L cR, (R, _ .
J .I. ( SEEFRNLL )sinﬂze M frdz= () i62)
0 4o\ Oz oy H

The expressions of @, @,,, ¢, Ry, Ry, Ry and Ry, are put into (62). After large vol-

ume of operations and with the aid of definitions of b, (i= 1.6) and g,(= 1.11). we find the
equation of nonlinearly evolving amplitude of symmetric disturbance, viz.,

3 202 ”27[2 dzA 2 9 —r r
(m +m a; + = F—+ 2m"a, S sgn(A)A+ 7, 4 ( (AJ- AdTdT

H dT v Ty 7y
T T T T o_ T X
+ ;'EAJ (Aj AdT)T + ;'1AJ. (A[ AdT)dT + ;;4,4(j ATV

TU ‘rl] i [" Tl.l
T 2
+-,-5A[ AdT{ -0, 631

which is actually a homogeneous nonlinear integral equation of complex amplitude 4 bul
merely with unity as the integral kernel and the detailed solution will be given in the following
section,

5. Nonlinear evolution symmetric disturbance
The amplitude cquation (63), if its nonlincar terms are ignored, degenerates into the form

1.4 4

I+ a*+ Y2+ 20, $7sen(A)4= 0 i64)
a dr’

whose solution has the form dependent on the sign of A
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' — 2a, S .
A(Mexp T {A> O for super— critical shear) | (653
1+ a; + -
143
[ - 2a S .
A= A4(0)cos —T (A< 0 for sub— critical shear) | (66}
1+ al +~ ~
The equalities ¢, = — $2/ F* and 2(N" F' = §*)+ F* = 0 are put into (65) and (06), lead

ing analytically to the fact that (63) has degenerated to the case shown by linear theory,

;
If nonlinear terms are considered in (63), and the conversion B= [ AdT s performed,
v T“

then the equation is changed to the differential equation ol variable B | viz,

1.4°B 2 4B aB +aB
+a+-r—=+2 e T — +oe = ”
(+a a 47 +2a, 5. sgn(d ar dTJ;“ (dT MT+ s a7 (e
r ,ABJ' . dB 3
+ —_— + —_— ~+ —
LU( BT+ +, T (dT BT dTB v 17 IB\ 0. (6%)

where ;" (i= 1.5) and 3, (i= 1.5) are related by ;" = 5, / m’ (i= 1.3),
Afier a large volume of operations, we arrive at the differential equation of B, vz,

1 d B

U+ o+ DB oy g2 sgn(m— 2y I’dB
2 g1’

B {69}

H
Assume B=p(TH ig(T). d,= 1+ a’ + % dy=2a S sgn(A) and d, = 2(% Ve

thut are then pul inte (69), followed by the separation of the real and imaginary part, and we
have

d3 P 2.dp -
P _ + Ve
W ar’ d‘dT a7t a dr ol
J— -.——LL + LF-*dp [
a tar? T -dT 4 0"+ g dar =

which are, in fact. a system of ordinary differential equations that do not allow 1o gel its pre-
cise analytical solution but 1o perform numerical computation in a particular range ol imilal
vilues,

We now attempt to get the analytical solution in a special case. Assume the initial

conditions to be g, _,= % = ::—T?- = «= 0 and we know from the Taylor ex
T=10

pansion of g(T)that ¢(T)= 0 for a smaller domain of 7. during which case (70)-("1)
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degenerale o

dp selp -
‘J_LJ“ =y 172

== 0T =dp AT
For the variable p. we set 7,= 0and initial conditions pl,_,=0 %’ -

eyt
&
A10)= ¢, and s e ad, ¢,. in which casc (72} is integrated once with respect
dT =0 dT‘T’O
to T so that

(—ﬂ}f b= Lyt 2yt i 7%
Gd, 4,0 TPt :

We shall discuss the problem in two cases m view of the fact that signs of A differ,

(1) At A< 0, w. < {u.), , suggestive of sub—critical shear. Al this tme, d, > 0. d;> 0
and 4, > 0. Further. set the initial conditions of perturbation to satisfy (66). which ¢, = 4(01
> 0 and ¢, = 0 used, and (73) degenerates into the form

dp _d. 4_d_2:+.: (741

Gr' Tea P @ Pt ’4

As the initial amplitude A(0) is not too large, the right—hand side of (74) is {actorized in-

0, = a,p He, — ap”) where ¢, and a, are positive real numbers that meet the needs of
(75)and (76). In this case we might put a, > ..

ds _
al*ra::dl(’l . 5
d,
a,al—-éz {761

¢ s . . L
Letting E= — and k* = = 1, (74} is converted into the following form
ap 1

——ELZZI Ef = pPNE = 7). 77
]:d(\falq T)] E: ( X g

whose solution is

p=Esn(ya,c, T\=Ve, 7a snlya, ¢, T) . 8

so that we have the disturbance amplitude
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A= :—;% =cpenlya o) Tidnty a, ) T= AOkn( ¢, A0 Tidaly a, L0)7T) (79

Analysis of (79) shows that for the sub—critical shear 1A< 0) the symmetric disturbance
amplitude under weak nonlinear effect experiences periodic variation whose characteristics
are related to Jacobi elliptic cosine function and Jacobi ellipic function of the third kind. and

4K _ 4 ! 1
va A)  ya, 40y Loy = g2y — k1)

K represents the Legendre complete elliptic integral of the {irst kind, It is noted that the per
2

od duration is dependent not just on the basic—field parameters (¥°, F~. §7) but, more im-

the period length is given as -fs, where

portantly, on the initial amplitude A(0)as well, a situation that differs from the amplitude
undergoing its periodic variation as trignometric function of (66} under linear effect.

(ID u_.> (u_), for A> 0. indicative of super critical hear. for which d, > 0, d. < 0
and 4, > 0. Besides, assuming the initial disturbance conditions satisfy (65) at ¢, = A(0)> 0
dA
a7

and ¢, = = A(O)\/ —2a ST/ i+ £)> 0 and (73) is in the form

r-0

(gﬂl dy 4 d_l

M e 1y e ,2; ,
a’T) 6d1p d]p 2e,p+ ¢y = Fp) . (80

We can set Fip}= 0 to have four real roots with %, > f§, > x,> f, (other cases will be
treated in a similar way), Fip) is written as

d,
F(p)=a(p* a Mp— B Mp— 2 )p— B,) . gn

Forpz x, arp< f, (e, Flp)z 0), we set

po b .Z_ul_ﬁ'.‘)ujl_il)

— = =7 = —= ] . (82
P B B-8" (5‘1'7‘2)(!3'17!’3):)
Now (80) i converled 1o
CJ-:: LS (83)
AN (= 8N - R E

where C= 2y 6éd, /dy{z,— 5,08, — ;) .

s _ /'ﬂ,&_ﬁ: s BBy
v N =B v v Bap B
A ;:1 dﬁ

Using the designator r = J . we get from (82)

o Y(1- 22N~ &)
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i = sn(g - (%4

0By = By)= fylay = By )snz(g )
- T ' {83
B = Ba)= ey fs )snf(E + )

As u resull, the perturbation amplitude is in the form

2a,— By Wy = B, — )sn{g + rien(E+ r)dn% ‘)
A= = . . (%61}
Clipy = )= (o = i hon’ 4 0F

[ d
It can be proved that (86) takes the form ‘/ é-a%x] 1 8 = ¢, = A at T= 0 which
1

represents the initial amplitude. It is seen from (86) that A> 0 case the weak nonlinear
symmetric disturbance amplitude experiences periodic variation whose characteristics bear a
close relation to Jacobi elliptic function, quite different from the case in which the amplitude
exhibits exponential growth (Eq.(65)) given by linear theory. The amplitude has its peried of
the form

ICK=

4y6d, r iz
Vsl = o N = By} Doy 1— - k%)

where K denotes Legendre complete ciliptic intergral of the first kind, The period length is re
lated not omly to the basic—field stability parameters (N FZ, S" ) and circulation features
{m.n.H} but to the initial amplitude A|,_, and ns change rate %;i_ as well, The period
r=a

ic variation of the nonlinear meso—scale symmetric disturbance amplitude seems different
from that of large—scale nonlinear haroclinic instability dominantly in the oscillatory form by
{86) more intricate than the large—scale counterpart and is quite complicated as compared t0
that of large—scale nonlinear Rossby wave. As for the periodic variation of large—scale
unsteady baroclinic wave amplitude, it is formally associated only with Jacobi elliptic func
tion of the third kind.

Of course, we are allowed to address, if we want Lo, the periodic variation of
perturbation amplitude at o, € p< B, (Le., F(p}= 0)in a similar way.

6. Concluding remarks

We have investigated the evolution of limited amplitude by virtue of a system of
nonlinear symmetric perturbation dynamical equations in an adiabatic, frictionless fluid. Re-
sults suggest that due to the interaction belween disturbances. on one side. and perturbution
and basic flow, on the other, the nonlinear effect will eventually cause the growth ef unsteud,
svmmetric disturbance to cease, and the limited amplitude of unstable wave to display an



Jo4 Advances in Atmospheric Sciences Vol 14

oscillatory trend, a sitvation that utterly differs from the unlimited exponential growth, s
shown in linear hypotheses. Both in super— and sub— critical shear. the symmetric disturbance
amplitude exbilits periodic variation, whose characteristics are relative to Jucobt elhplic fune-
tion, and the period length depends not merely on the basic—field stubility parameters wnd
wave properties but on the imitial amplitude and its change rate, The periodic variation of 4l

meso—scale limited amplitedes is much more intricate than the oscillatory behaviors of

larpe—scale nonlinear baroclinic instability.

The present study excluded the heating through vapor condensation in an attempt 1o
simplify the problem. The introduction of vapor as an important factor proposed in the late
19705 aimed dominantly at reducing the Richardson number of the rcul atmosphere for the
sake of the theory on symmetric instability. For meso—scale motions, diabatic heuting effect is
perhaps of particular importance so that external source forcings should include vapor effect

as far as possible in nonlinear symmetric instability studies. Moreover, it is the problem of

limited amplitude svmmetric disturbance under weak nonlinear effect that we are devoted to
such that our findings apply only Lo the case| A|= |.5'2 /8- l‘: lu. /(. ), = 1«1 Foru
moderate | Al no particularly effective access has been found to the solution in the present
nonlinear dynamic theories, a problem that awaits further study.
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