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A Comparative Analysis of Computational Stability
for Linear and Non—Linear Evolution Equations
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ABSTRACT

For several difference schemes of linear and non-linear evolulion equations, taking the
one—~dimensional linear and non-linear advection equations as examples, a comparative analysis for
compiiationd] stability is carried cul and the relationship between non—linear computationa) stability, the
construction of difference schemes, and the form of initial values is discussed, It is proved through compara-
tive analysis and numerical experiment that the computational stability of the difference schemes of the
non-linear evolution equation are absolutely different from that of the linear gvolution equation,
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1. Introduction

Climate numerical simulations, numerical forecasts, and ocean current numerical
simulations can all be summed up as the numerical computation of evolution equations, So it
is very important to assute the long—time computational stability of difference schemes, For
linear evolution equations, Von Neumann and Richtmyer (1950) first used Fourier analysis 1o
give a stability eriteria. Later, Hirt (1968) also put forward a kind of method to analyze this
problem, namely, the heuristic analysis method, Up until now, the compuiational stability of
linear evolution equations is basically solved. For the computational stability of non—linear
evolution equations, however, so far the general judgement method is still unobtainable, Zeng
(1978), Ji (1981a, b), Zeng and Ji (1981), Wang and Ji (1990, 1994), Ji and Wang (1991),
Wang el al. (1995), and Ji et al. (1998) systemaltically studied the non—linear computational
instability for the difference schemes of non—linear evolution equations and inquired into the
reasons for non—linear computational instability. In this paper, taking the one—dimensional
linear and non—linear advection equations as examples, a comparative analysis of the
computational stability is carried out. Furthermore, discussion is made on the relationship be-
tween non—linear computational stability, the construction of difference schemss, and the
form of initial values.

2. Equations and difference schemes

Let us consider the one—dimensional linear advection equation,
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‘3‘: U-O——O U>0, a<x<b, 0€¢<T, (1)
ulx,0)= o(x) | {2)

and the one—dimensional non—linear advection equation,

.
e ug—fc=0, a< x< b, 0<1< T, 3)

u(x,0)= o(x) . 4

These equations can be analyzed numerically, using the following difference schemes,
Scheme 1 (FTBS scheme)

n+ 1 !r
—_— — =
—_—J—At + Ax (u ui_)=0, (5)

Scheme 2 (Lax—Wendroff scheme)

at i
- A:E£+2ir(”f+' uj- 1)“U—3t(“;+1 2uj oy )= 0 )
for the linear equation, and
Scheme 3 (FTBS scheme)
AR p
A_—! + ij (] —ui )=0, (7)
Scheme 4 (Lax—Wendroff scheme)
1 ” n 2
4 A: U +;gx(u}'+,—u}’_!)-— (—zfiﬂ(um—zu +uj_,)_ (8)

for the non—linear equation,
3. Comparative analysis for the computational stability of the difference schemes
First, we carry out an heuristic analysis for schemes 1 and 2, taking scheme 2 as an ex-

ample. By means of a Taylor expansion for (6), we obtain

at [ [} LE ]

“f_'_”_f,.=_.1_ 18 1674 5 128%
Y 6r+2a ; 653Al+24 AL+ oAt (%)
k}
U g ey 108 "A + 0(Ax) (10)
JAx AT R (?x 6 oy’ ’
UM vy on L UREH pTAXT
A (uj+1 2u; + “;—1)— 7 Ar+ ——— 4 e At+ O(Ax*Y . (1

Substituting (9), (10), and (11} into (6), omitting superscripts and subscripts, we have
fu ou 1 &y 20%u 1 280w 28 u
_— + = - 4 —_— —_— ) = —_— -
T Uax 2At( o U P 5 At o + UAx P

4
- lm(mz‘;f vlacty “)+ O(A*, Ax*) (12)
! dx



No. 4 Lin W amao, Ji Zhongzhen and Wang Bin 701

The terms on the rhs of {12} become

2 1?2 A4
Ll Tu Bl Lot a - AR L oAt A Ax) (13)
2 ar? ax’ 6 ox*
13 A'3 ~3
LAty part i = Lperat— Al 4 o, At A (14)
6 or ex> /) 6 ox?

4 it ] 24

f C¢Xx

1 200y 2. 20ty 1 .2 2,02 20ty 4 .22
— g A AT U A AU A" — Ax™ 3 + A7, At AxT) (15)
ix

Substituting (13), (14), and (15) into {12), we obtain the modified partial differential equation
of scheme 2,

;
L

=3 ~d
=lpwiat- ad s Lt aer at - A
6 ax 8 ox?

+ oAt At Ax?) {16)

) )

-

From (16), we know the second—order dissipative coefficient is 0 and the fourth—order
disspative coefficient is

py= U MU AC = A =2 (17
Similarly, we can obtain the modified partial differential equation of scheme 1,
du cu _ 1 . E‘zu_l R . 2 u
2 T Uz, = U At Ax)? gUiUa Ax)2U At AX}B?
+ O(A, AtAXD) | (18)
The second—order dissipative coefficient is
fy = — %U(Um— Ax),  r=1. (19)

The ample and necessary condition of computational stability of schemes 1 and 2 is (Warm-
ing and Hyett 1974)

(=1 ', > 0. (20)

Hence, we have the following theorem.

Theorem 1. For scheme 1 (FTBS) and scheme 2 {Lax— Wendroff) of the one—
dimensional linear advection equation, the ample and necessary condition of computational
stability is

At
I.—s
LAx | (21)

Second, we carry out an heuristic analysis for schemes 3 and 4, taking scheme 4 as an ex-
ample. By means of a Taylor expansion for (8), we obtain

A L L AV L YT (22)
At _5t+25,2 s : (),

" cul &l
S, — )= {*(_f+é L Axt )+ 0(ax?) (23)
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a‘:')ZAt (un 2 02 7
(I;’T(u;: 2l )= ,2J %—”;AH O(AX?) | (24)

Substituting (22), (23), and (24) into (8), omitting superscripts and subscripts, we obtain

cu Cu 1 oy 2 0%y 1 26 u 2( 3
4y =—= AL + uAx +
7 T gy ZAI(B:Z u o "8 At Py f?x QA , Ax*)Y . (29)

From (25), we can see
fu _

Gu_ _ | 0u 2
T — St o Ax) (26)

Same as in (13), (14), we have
2

q l
°§‘-2(‘)+ LR 4 o ax) @7
£t Cx Cx
3
u_ Ou) 2 CU o* 3c u
= 6u( ) — P4 a0 ). (28)

Substituting (27) and (28) into (25), we obtain the modified partial differential equation of
scheme 4,

v | fu (é'u) ("u)3 302 26uu
hallid e S =)+ + = e S
o1 + ué‘x Aru ix Ar? e ZAI U A P
=3
+ é(m%ﬁ — AW R+ O(A, AAxT) | (29)
X

Similarly, we can obtain the modified partial differential equation of scheme 3,

Gu —~——Au(0“)+a ( ) + oAt~ A + Al
&t Yox {x Ox 2 £x Ox?

-3
(A Ax'up 5 + O, Ar4x) (30)
X

Hence, the second—order dissipative coefficient of scheme 3 is

(3.A:2 2“‘ ~ At + Axu) | G1)

The second—order dissipative coefficient of scheme 4 is

by = %Arzuzg—z . (32)
Schemes 3 and 4 are stable only if the second—order dissipative coefficients are positive (Wu
and Han 1988). Of course, they must be positive when ¢= 0 (Lin et al. 2000), Hence, we have
the following theorems.

Theorem 2. For scheme 3 (FTBS) of the one—dimensional non—linear advection equa-
tion, the necessary condition of computational stability is

A% (. 0}3-5‘-('5—0) At (e, 0+ Axulx, 0> 0 | (33)

Theorem 3. For scheme 4 (Lax—Wendroff) of the one—dimensional non—linear advection
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equation, the necessary condition of computational stability is

UU&X, 0) >0 ) (34}
ex

Through the above analysis, we have the following infetences,

Inference 1. The computational stability of the difference schemes of the one—
dimensional linear advection equations is only concerned with the structure of the difference
schemes. It 1s unconcerned with the form of the initial values.

Inference 2. The computational stability of the difference schemes of the one—
dimensional non—linear advection equations is not only dependent on the structure of the dif-
ference schemes, but also on the form of the initial values and their partial derivatives,

4, Numerical examples

In order to verify the relationship between the computational stability of the difference
schemes of the one—dimensiona!l linear and non~linear advection equations, the structurs of
the schemes, and the form of the initial values, we perform the following numerical experi-
ments. Four initial values are chosen,

(1) ulx,0)=x, (2) u(x. 0= —x, 3) ulx,00=1—¢e " (4) u(x, 0)=1—¢" |
where 0 =1, 0 t< 10 .

Numerically, we take Ax= 0,01, Ar= 0.001, and '’ = 1. The results are shown in the
Table 1,

Table 1. Computational results of numerical experiments

Linear Non—linear
Scheme 1 Scheme 2 Scheme 3 Scheme 4
initial value | stable stable stable stable
initial value 2 stable stable unstable unstable
initial value 3 stable slable stable stable
initial value 4 stable stable unstable unstable

From the results we can see that schemes | and 2 are stable for all initial values because
Theorem 1 is satisfied, Schemes 3 and 4 are stable for initial values 1 and 3, owing to satis-
fying Theéorems 2 and 3, They are unstable for initial values 2 and 4, however, since the stabil-
ity conditions of Theorems 2 and 3 are not satisfied.

5. Conclusion and discussion

It is proved that the computational stabilily of the difference schemes of the non—linear evo-
lution equation are absolutely different from that of the linear evolution equation through a
comparative analysis and numerical experiment. For this reason, the analysis of computationat
stability must combine the construction of the difference scheme with the form of the initial value
and its partial derivative, This is the main characteristic emphasized in this paper.
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