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ABSTRACT
Starting from the linear shallow-water equations and using Arakawa A-E and Z grids, a study is made
of inertia-gravitational and Rossby waves in the six grids from the perspectives of frequency and group
velocity. Results indicate that grids C, Z, and F thereof give smaller distortion compared Lo the others,
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1. Introduction

As we know, atmospheric motion may be divided
ino two stages, adaptive and developing, being de-
scribed by the incrtia-gravitational and Rossby waves,
respectively (McHall, 1993a, b). In employing a nu-
merical model to simulate atmospheric motion, the
problem arises of discretizing the variables of the atmo-
spheric states, i.¢., configuring or arranging the vari-
ables. Horizontal discrete grids in current use are the
Arakawn A-E and Z (David, 1994) grids. It is a prob-
lem awaiting further study to determine which of the
grids is/are able to depict successfully both inertia-
gravitational and Rossby waves. Suppose we find a
grid which applies well to the former case but fails to
deseribe the latter. That means that its description
of the atmospheric evolution is a failure because the
futnre trend of the event is not fully revealed. In the
same way, a grid that can depict well a Rosshy wave
but is unable o simnlate the adjustment or adaptive
process, i.e., change in weather process, docs not serve
our purpose ejither.

Winuinghofl (1968) and Arakawa and Lamb (1977)
studied incrtia-gravitational waves solely in the grids
of Arakawa A-E, and thought, that for resoluble mod-
clg grid C is the best. Following their ideas, Liu et
al. (2001a) further investigated them in Arakawa A-
F and Z. And Liu et al. (2001b; 2002) investigated
only Rossby waves in these grids. Exploration of both
waves in combination has not beer attempted, how-
ever. For this reason, an effort is made in this article to
imitate both waves in these grids, starting from the lin-
ear shallow-waler equations, followed by a comparison
between numerical and analytical solutions from the
perspectives of frequency and group velocity (Collatz,

*E-mail: yd_ liu0509@yahoo.con.en

1996; Fox-Rabinovitz, 1991; Song and Tang, 1993; Wa-
jsowicz, 1986) in order to determine which of these
grids is most suitable for our purpose.

To investigate all aspects of both waves in the six
Arakawa grids, this article prosents analytical disper-
sion and horizontal group velocity component formi-
lations for deseribing inertia-gravitational and Rosshy
wavces, slarting from the shallow-water equations (sec-
tion 2) and their related numerical cxpressions (sec-
tion 3). A comprehensive discussion of the numerical
expressions is given in scction 4 with a conclusion in
section 3.

2. Differential form
2.1 Rosshy wave

Equations for depicting Rossby waves under quasi-
geostrophic S-plane approximaltion are

fug ggg =0 m
Fug +g% =0, (2
% — Jo, — Bugy =0, (3)
% + fua + Su,y =0, {4)
acr i) e 0

where u, and v, (u, and u,) signify geostrophic
(ageostrophic) velocity components in the zonal and
meridional extent, respectively, b the displacement, ¥
the meridional distance, 8 = 8f /3y, and f and 3 are
set as constants,
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Assume the Rossby wave is on a plane with the
wave solution, F = FelH=wl) ghere /' denotes a
physical quantity whose amplitude is given by . In-
serting the wave solution into Fq.(1-5) yields a precise
dispersion relation

BNk
1+ A2(kZ+12)
For the comparison to numerical dispersion relations
from the six grids to follow, (6) is rewritten as
( W ) _ (A d)%kd
Bd/ag 1+ {(Md)2[(kd)? + (Id)?]]
where k(1) is the zonal (meridional) wavenumbcer, A =
v gH /[ the Rossby deformation radius, and d the grid
length.

We see [rom (7) that the analytical frequency is
negative for the wave at any interval.

It is necessary to address, separately, the Group
Velocity Component {GVC) both in the z and y di-
rection since the Rossby wave is anisotropic. Then we
get the GVC in both directions through (7), i.e.,

O e = 2k 304
B {0 (VA)2[(Rd + ()%
_ pX°
1+ (A /d)2(kd)? + (1d)?]’
O 2kIAN
BT (VaPR((Rd)? + (1))
in which the subscript gz(gy) of €' on the left-hand
side denotes the GVC in the x{y) direction and the
superscript diff the differential representation,

The y-axis GVC expression shows that the Group
Velocity {GV) of the wave at any interval diminishes
versus augmented wavenumber. Owing to the fact
that the z-axis GVC formulation is rather corpli-
cated, the wavenumber-dependent variations are hard
10 see clearly in a direct manner. A detailed discussion
is deferred to the next section.

(6)

W =

{7

2.2 Inertia-gravitational wave

The differential shallow-water equations for an f-
planc inertia-gravitational wave have the form

du ah

E—.fU'Fg&-—D, (8)
v ah

§+fu+ga—y:(), {9)
dh du v
a+H(Eﬁ+@)_0, (10)

where u and v are velocity components in the x and
y direction, respectively, and h the displacement from
steady depth If.

Set, h approximately to be e*2+1-%t) and we find
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the analylical dispersion relation
wy? AN? 2 2

(5) =1+ (3) 1 + 2%
in which k£ and [ stand for the horizontal wavenum-
her in zonal and meridional extent, respectively, A =
VgH/f for the Rossby deformation radius, and d for
grid spacing. The frequency increases as a [unction of
wavenumber.

GVC are also derived from (11), and because the
inertia-gravitational wave is isotropic, we take the
GVC only in the z direction for all the grids under
study. The z-axis GVC has the form

2
FEX _ (12)
V14 (A/dP[(kd)? + (1d)?]
from which we notice that the GVC is always positive
over the full range of the horizontal scales.

(11)

Cye.dif =

3. Dispersion properties calculated in horizon-
tal discrete grids

3.1 Rossby wave

Equations (1)--(5) is descretized separately on the
6 grids, with the distribution of the respective vari-
ables shown in Fig. 1. The thinking is much the
same in solving the dispersion equations for Arakawa
A-E grids in such a way as to assume a wave solu-
tion I" = Fet*iaz+lity—wt) with 4 and j denoting
the ith and jth gridpoint in the x and y extent, re-
spectively. The wave solution, when substituted into
the difference equations, leads to a dispersion expres-
sion for each of the grids, as indicated in Table 1. T'or
Arakawa Z, on the other hand, we have to proceed
from Egs. (1)-(5} to derive, with the aid of vorticity
and divergence, the following formulations
Ph  8%h

JG = ﬂ(:d‘;j 0_7,'2)

%oy goi P00

at [ x

oh

5+ HO=10,
and then write the discrete equations based upon the
coufiguration of variables

fC = gz + hiyy) = 0,

0,

6(:3 ﬁg'm_
St k=0,
Ohy .

g + Hi=0,

This results in a dispersion expression of grid Z by
means of a set wave solution (refer again to Table 1).
We notice therefrom thal the {requencies obtained
from these grids are not always negative for the wave
at any interval, as in the analytical case, i.e., positive
frequency is possible in some intervals. In view of the
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fact that these dispersion cquations are too compli-
cated for us to comparc them in a visual fashion, we

e who @ T shall present 31D representations in section 4 for this
purpose.
v 3 On the other hand, the GV components are not
negligible quantities, denoting numerical properties of
uvh uvh b u the grids so that the horizontal components are com-
Grid A Grid B Grid C puted as shown in Tables 2 and 3. Therefrom, how-
. ey ever, we cannot differentiate visually between the ana-
v ! v—h o Cpr b lytical solution and the grid {numerical) formulations,
and so we show graphically the differences in scetion
b 1 h uv H 4.
3.2 Inertia-grevitational wave
b o F—av  Gof Soh . N
Grid D «—g—» The same procedure is undertaken for the inertia-
. _ gravitational wave as in the case of the Rossby wave
Grid B Grid Z {see previous subsection) yielding the corresponding

dispersion equations shown in Table 4.

Because of the isotropicity of this study wave we
take into account only the GVC in the z direction (see
Table 5).

Fig. 1. Definitions of the 6 square Arakawa
grids with u(v) giving the horizantal velocity com-
ponent in the zonal (meridional) direction, h the
goeopotential height, d the grid spacing, d* = +/2d,
and (g and § the geostrophic vorticity and diver-
gence, respectively.

4. Discussion
Here we shall compare graphically the frequencies

Table 1. Dispersion equations versus the analytical solution (AS) for Rossby waves on Arakawa grids

AS/Grid Dispersion equation
w o (Afd)2kd

As (5adun = 1+ (vaPma? 7 0P
" w _ (A )2 sinkd cosId

Cirid A (m)A =TT F (VD si® kd + sin® id]

v w __ (/\/rl)j{sjn ki

Cirid B (—Ei)ﬂ T T T 200/d)?(1 - cos kd cos bd]

Crid C (i) _ o (A2 sin kd cos? (1d/2)
§ Bd/c cos?(kd/2) cos?(Id/2) + A(A/d)[sin%(kd/2} + sin®(id/2)]
. wy (A d)? sin kd cos® (1d/2)

Grid B (_ﬁd)n =TI+ A3 (2 (kd/2) + sin2(1d/2))

Grid E (i) IR 7 1034 ) sin(kd/+v'2) cos(id/v/2}

Bd/E 14 207 /d)2[sin? (kd/v/2) + sin?(ld//2)]
- w o ()\/2)2sinkd N
Grid Z (Bd)z T T T A(Md)R[sin? (kd,2) + sin®(id/2)]

Table 2. The r-axis GVC on Arakawa grids vs analytical solution (AS) for Rossby waves

AS/Grid z-axis Group Velocity Component
k2N A2
AS Cox diff = T G -
{1+ O/dPed)® + (2P 1+ (Od)(d)? + ()2
Gri 2324 cos kd cos {d sin? kd AA% cus kd cosid
arid A Cge, A= - - - -
' d2{1 + (A/d)2[sin kd +sin? d]}2 1+ (A/d)?[sin2 kd + sin® id]
2 .
Crid B Coes = 822 cos kd 28X% cos Id sin? kd

L+ 2(M/d)2]1 — wsld-cosﬁ] " &) +200/d)?[1 — coskdoostd]}?

Ftmin o
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Table 2.  (Continued)
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AS/Grid

z-axis Group Velocity Companent

Grid C

Grid D

Grid E

Grid Z

L id r22%sinkd d g ld
2gi 2 - i g2 =
BA* gin kd cos 3 ( ] 3 sin kd cos 2 )

ConiC = leos?hd] B cos? (1) 2) + A0\ /d)E [sin® (kd/2) + sin? (Ld/2) |12
BA? cos kd cos2(1d/2)
T oSt (kdj2) cust (1d/2) + A(A/d)2[sin® (ked/2) + sin (1d/2))
o 2374 (sin kd)? cos?(1d/2)
w0 T B L A d) Hsin? (kdf2) + sinZ(ld/2)i}2
Ax cos kd cos?(led/2)
"1+ 4(A/d)2[sin? (kd/2) + sin®(1d/2)]
48X cos(kd//2) cos(ld/V2) sin® (kd//2)
d2{1 +200/d)? [sin? (kd/+/2) + sin®(ld/vD)]}?
_ AN? cos{kd/v'7) cos(ld//2) ;
1+ 2(A/d)?sin?(kd/~/2) + sin®(id//2)]
238234 (sin kd)?
{1+ 4(M/d)2[sin?(kd/2) + sin2(1d/2)]}2
X2 cos kd
"1+ 400 /d) sin2 (kd/2) + sin®(id/2)]

Cga:,E =

Cg.r,Z =

Table 3. As Table 2 for the y-axis

A8/Grid

y-axis Group Velacity Component.

AS

Grid A

Grid B

Grid ¢

Grid D

Grid E

Grid Z

I -
{1+ /R l(kd)? + ()12

28A1sinkdsin ldcos? 1d B2% sin kdsinld

Cyy,diff =

o : -
Cava a1 + (\/dy2fsin® kd + sin? 1]} T |+ (A/d)?[sin® kd + sin® 1d]

8% sin 2kd sin td
{1+ 200 /d)?]1 - conkdcos ld]}?
822 sin kd cos? % (2/\ .;ln id- - g gin ld cas® kz—d‘]
d{cost(kd/2) cos?(Id/2) + A(x/d)2[sin2(kd/2) + sin? ((d/2)]}2
%6,\2 sinddainkd
t cos2(kd/2) co2(1d/2) + 4(A/d)2 [sin? (kd/2) + sin?(id/2)]
48X sin kdsin 2 cos” (1d/2)
d2{1 + 4(A/d)?[sin?(kd/2) + sin?(id/2)]}2
%ﬁkz sinkdsinld
TE 4(A/d)2[sin?(kd/2) + sin®(Id/2)]
482 sin(kd//2) sin(id//2) cos?{id/v'2)
d2{1 + 2(7/d)?[sin? (kd/v/2) + sin2(ld/+/2)]}2
BAZ sinlkd//2) sin(ld/ v'2)
1+ 2(/d)2{sin®(kd/ 2} + sin®{ld/V2)}
o -~ 28X gin td sin kd
B2 T G301 ¢ (A /d)? [sin® (kd/2) + sin® (1d/2)]}2

CgyB =

Cgyc =

Cay.0 =

Cop g =

+

.
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Table 4. Dispersion formulations (pumerical vs analytical solution) for inertia-gravitational waves on six grids
AS/Grid Dispersion equation
2
AS (‘}i) =14 ( ) Jed)® + (1e)2]
2 A2, .
Crid A (?)A =1+ (E) 151n2kd+51n2ld]
2
Grid B (?)B =1 +z( ) {1 = copkd cosld]
. Y SOV o WY L
Grid C (}}c—ms -Eces 3 +4(d) win + gin 2
X 2 kd g id |
Grid D (i;,):’ = cos” %—i cos ; + (—3) {0052 ry sin? ld + cos® 5 sin® kd]
, wy2 M2l g kd . 5 ld
Crid E (})E.—1+2(‘—i) {sm \/§+bln 73
. wy2 A 2 kd o Id
Crid 2 (?)z(l+4((_i) [sm —{+sm 5
Table 5. The z-axis GVC (grid vs AS) in the six gridy for inertia-gravitational waves
AS/Grid z-axis Group Velocity Component
kA2
AS ng,diff = !
1+ G) 00 + 0
2 sin 2kd
Grid A Coria = - ;:)‘2 sin
24y /1 + (&) (sin? kd + sin? Id)
Y in kd
Grid B Conp = FA% cosldsink
d\/1+2 ) {1 — cos kdeosid)
f(i—!—,\-i dcos !j) sin kd
Grid © Cee,0 = d 2 2 = 3
24/ cos? A8 cos- — 4( ) (sun2 = +sin® 3)
f[—gsm kdcos” Eg + —(smlkdcos %d - Esm kdsin® ld)]
Grid D C, =
) = 2\/cosﬂ EcnszE+(§)2(c 2 dsm Id + cos? liism lr,d)
2 2 d 2 2
A2 sin 2+/2kd/ 2
Grid E Cgni = fA sin 22 ‘;/Vr z
k o
-z 2 M =
d\/l +2(d) (sm 7 +sin? \/5)
2.
Crid Z Cpoz = JA"sinkd
S kd ol

afi+4(3)'(

3,

sin® — +sin”
2

and horizontal GVCs obtained from analytical and nu-
merical treatment based upon the equations shown in
section 2 to investigate which of the grid results is
closest to the AS. Thus we seek to single out one or
more Arakawa grids that produces minimum error in
simulating Rossby and inertia-gravitational waves.

Figure 2 portrays the dispersion relations {numeri-
cal vs AS) for the Rossby (2a) and inertia-gravitational
waves {2b).

Figure 2a indicates that grid C gives the most ac-
curate simulation of the Rossby wave, but it is only
somewhat superior to the equivalents D, 7, and E, a
conclusion that is in quite good agreement with Yu
{1994). On the other hand, Fig.2b displays the higher
ability of grids C, Z, and E to describe the inertia-
gravitational wave (grid E is a bit inferior to the other
two in this case). As viewed for frequency variation,
grids C, Z, and E cau satisfactorily depict the two
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) difference case

difference case

Fig. 2. (a) Visual digpersions (nuincrical vs AS) for the Rossby wave related to the six grids. Coordinates
arc kd/m in the z-, ld/x in the y-, and w/Bd in the z-direction; b) same as (a) except for the incrtia-
gravitational wave, and with w/f as the z-axis coordinate.

types of atmospheric waves compared to grids A, B,
and D.

Figure 3 shows plots of z-axis GVCs (numerical
vs AB) in the Arakawa grids for the Rosshy (a) and
inertia~gravitational waves (b).

One sees from Fig. 3a that the simulations from

grids C, D, and Z agree in thc main with the AS casc
and grid E expression indicates some deviation from
AS only at short wave bands, suggesting that the four
prids are applicable to the description of Rossby waves.

Now let us have a look at Fig.3b where greater dif-
ferences occur between numnerical and analytical so-
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Fig. 3.
kd in the ¢-, Id in the y-, and Cgxyga in the z-axis: (b) similar to (a) but for the inertia-gravitational wave
and the z-axis denoted by Cyx/f.

futions except for smaller deviations at long wave in-
tervals for grids C, Z, and E, which exhibit a great-
erability to imitate atmospheric motions as far as the
r-axis GVC is considered.

Figure 4 illustrates the y-axis GVC {numerical vs
AS) in the six grids for the Rossby (4a) and inertia-
gravitational waves (4b).

From Fig. 4a, we notice that in the simulation of
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differsnus vese

{(a) The r-axis GVC (numerical va AS) for the Rossby wave in the six grids. Coordinales are

geostrophic evolution, grids Z, D, €, and E are com-
parable, they agree in the main with the AS case. In
Fig.4b, on the other hand, only at long wave inter-
vals are the numerical solutions from C, Z, and E in
good agreement with the AS. As viewed from the y-
axis GV, grids C, Z, and E are more suitable for
the description of both kinds of atmospheric waves as
compared to the equivalents A, B, and D.

I
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Fig. 4. The y-axis GVC (numerical vs AS) for the Rossby wave in the six grids. Coordinates are kd in
the z-, Id iu the y-, and Cyy/3d in the z- axis; (b} same as (a) but for the inertia-gravitational wave, and

with the z-axis denoted by Cg,/f.

Taking the [requency and horizontal GVCs to-
gether, grids C, Z, and E are better means (schemes)
in the study of both atmospheric waves.

Let us now lock into causes of the differences be-
tween AS and these grid expressions.

(a) Grid A is a non-staggering scheme and is easy

to deal with. Because v and v arc defined at the same
gridpoint, the caleulated Coriolis term of the momen-
tum equation has higher precision. However, the space
derivative terms have to be averaged and so must the
terms of mass convergence and divergence defined at
point . As we know, averaging definitely “hides”
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noise at adopted minimum scales. For this reasor,
grid A is almost unusable at present.

(b} Grid B needs no averaging over the Coriolis
term, but the term of pressure gradient force has to be
averaged as in grid A, thereby leading to small-scale
noise contained in it.

{c) Grid C necessitates no averaging of pressure
[orce because the defined gridpoint 2 is hetween u(v)
points in the E-W (N-S) direction. Similarly, conver-
mence /divergence terms of the equation of continuity
requirc no averaging of a wind held for caleulation.
Nevertheless, the Cortolis term has to be averaged
due to the fact that u and v are defined at differ-
ent points. It is noted that for small-scale inertia-
gravitational waves this term is ignorable, suggesting
that grid C is quite applicable if a wodel has sufli-
ciently high horizontal resolution to represent on this
grid the insensitivity of a mininmm scale wave Lo the
Coriolis Jorce. More specifically, the grid scrves the
purpose only when the grid spacing is smaller than
the deformation radius A.

{d} Grid D allows one to perform simple caleula-
tion of geostrophic winds but produces no accurate
dispersion relation becanse averaging applies to the
pressure force, mass convergence/divergence, and even
the Cloriolis term.

(e) Grid F ignore whose grid length is * = v2d,
requires no averaging of the Coriolis force, pressure
force, or mass convergence/divergence. A problem
arises owing to the fact that grid E 1s “degraded” in
one direction into grid A, and grid spaciug d = d*/v2
is reduced.

(f) Grid Z is a grid in which the cowmponent of
wind divergence (rotated part) is close to a stagger-
ing scheme as in Grid C (D). This suggests that grid
Z does not correspond to any of the above five grids
and, besides, it necessitates no averaging of the terms
involved. The Z-related equation has V2 as the excly-
sive operator of the space difference, which emerges
in its divergence equation and acts upon gridpoint
h. According to the usual centered limited difference
scheme, V2h has its limited differencing approxima-
tion defined at gridpoint A such that its averaging is
unnecessary, thus resulting in smaller error.

5. Concluding remarks

From the above analysis we conclude that grids C,
7, and I arc more suitable for the two kinds of waves,
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of which C is optimal, from the perspectives of fre-
quency and group velocity. As a result, C- and E-form
grids shouid be adopted in the horizontal directions
when developing a limited difference numerical model.
The discretized treatment will produce minimum er-
TOTS.
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