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ABSTRACT

Global Positioning System (GPS) meteorology data variational assimilation can be reduced to the
problem of a large-scale unconstrained optimization. Because the dimension of this problem is too large,
most optimal algorithms cannot be performed. In order to make GPS/MET data assimilation able to
satisfy the demand of numerical weather prediction, finding an algorithm with a great convergence rate
of iteration will be the most important thing. A new method is presented that dynamically combines the
limited memory BFGS (L-BFGS) method with the Hessian-free Newton{HFN) method, and it has a good
rate of convergence in iteration. The numerical tests indicate that the computational efficiency of the
method is better than the L-BFGS and HFN methods.
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1. Introduction

With the improvement of numerical weather pre-
diction models, their dynamic frame will not have
more change than now. To improve numerical weather
prediction further, we may do so by way of data vari-
ational assimilation. Now, with the aid of some new
surveying means such as satellite and radar, we are al-
most able to probe the atmosphere and ocean environ-
ment immediately and successively. This greatly corn-
plements ordinary observation systems, and improves
the quality of the numerical inital fields. The vari-
ational data assimilation analysis,therefore, has heen
paid more and more attention to extract useful mete-
orology information from remote sensing data.

Since the first Low Earth Orbit satellite equipped
with a GPS receiver was launched by the USA in
1995, the research and application of the GPS occul-
tation technique have greatly progressed (Zou et al.,
2000), Becaunse the refraction angle of a GPS ray orig-
inates from the refraction effects of the atmosphere,
we can obtain information on atmospheric state vari-
ables from GPS/MET (Meteorology) Data by the as-
similation method. The GPS occultation technique
presents good vertical resolution, while the horizontal
resolution only depends on the number of satellites.
So GPS/MET data assimilation is especially suitable
to the fields of mountain areas or the ocean.
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GPS/MET data assimilation can be reduced to a
minimum problem of a cost functional. In considera-
tion of the applicable situation, the demension of the
solution of the problem is at least 10%. Because of the
huge computation cost of this optimal problem, most
of optimal algorithms are not suitable, and even a two-
dimensional array would not be able to appear in the
algorithm. Therefore finding an algorithm with litile
storage requirements and CPU time becomes the most
important thing.

In this paper, we present & new optimal algo-
rithm which is constructed by combining the L-BFGS
method with the HFN method. The new algorithm
can be performed perfectly on an SGI Origin 2000
for GPS/MET data assimilation. Numerical tests in
which the dimensions reach 10% indicate that the com-
putational efficiency of the given algorithm is better
than that of L-BFGS algorithm.

2. Cost functional

The objective of GPS/MET data variationsa! as-
similation is to find a model solution which will best
fit a series of observation data distributed over some
space and time intervals. One possible measure of the
fit between model and observation, the cost functional
J, congists of a weighted least square fit of the model
forecast to the observations based on optimal unbi-
ased estimate theory and Kalman filtering {Zou et al.,
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1999). The cost functional J can be written as

J(@) = 3y~ H2)™(0+ F)\(y - He)

+ %(m - zb)B_l(z — Zp), (0

where x is the vector of atmospheric siate variables;
@y, is the atmosphere background estimate; B is the
covariance matrix of background error; y is the ob-
servations of GPS/MET; O is the covariance matrix
of observation error and F is the covariance matrix
of the GPS ohservation operator error; and H is the
GPS observation operator which is determined by

(a) the GPS ray trajectory equation in the calcu-
lation technique;

(b) the algebraic relation of ray refractivity and the
atmosphere state variables—the temperature, pressure
and walter vapor of the atmosphere; and

(c) the geometric relation of the GPS ray and re-
fraction angles (Li et al., 2001)

To find the minimum of the cost functional (1),
we need the gradient information of the cost func-
tional with regard to control variables, Of the meth-
ods for generating the gradient, the adjoint method is
a good one. Especially in the high dimensional cases,
it can greatly reduce computational cost. The adjoint
method completes a backward integration of the ad-
joint operator to obtain the gradient. The complexity
of its computation of the gradient is the same as a for-
ward integration of the model. Before introducing our
method, we review two related methods, the limited
memory BFGS (L-BFGS) and the Hessian-free New-
ton (HFN) method.

3. L-BFGS method

The L-BFGS method originates from the stan-
dard BFGS method (Nocedal, 1980; Liu and Nocedal,
1989). For the minimization of a nonlinear function

minf (2}, f:R" — R,
the iteration of L-BFGS method is
Tyt = Bg + o
where d, is the iteration direction, and oy is the it-

eration steplength which satisfies the Wolfe condition
(Gilbert and Lemarechal, 198%; Gill et al., 1981):

F e+ ondy) < f(xx) + crong (20)" di

g (z + opdi)” ko < ez ‘Q (k)" ko (2)

0<ec <e <1, g(meg) = Vf(xg). dp can be
obtained by computing

dy = —H,g(z),
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where
Hyy1 = v Hyvi + pisysy, (3)
1
T
Pk = —F— v =TI — pry.sg,
UESk’ YiSi

Y =9 (Txr1) — g (). (4)
Now the n x n BFGS matrices H . are dense matrices.
When n is very large it will not be possible to retain
and operate on the matrices. In the L-BFGS method,
only m vector pairs {3g, ¥} stored, and the updating
matrices are generated by formula (3).

H is usually chosen as

8k = Thy1 — Dk,

T
8 _1Yk—
ng')’k—LI, Tkz%,
Yi_1¥k-1
where I is identity matrix. We call these matri-

ces Hy limited memory matrices. When a new iter-
ation step starts, the newest vector pair {sg,y} is
used to replace the old pair. That is, the L-BFGS
method always uses the newest m vector pairs {si, y,}
to define the limited memory matrices Hy. Although
the L-BFGS method settles the storage problem in
large-scale computation and performs inexpensive it-
erations, the quality of the curvature information it
gathers can be poor, and as a result it can be very
inefficient on ill-conditioned problems. Unfortunately,
ill-conditioned situations will alinost be sure to emerge
in a large-scale problem. This is a weakness of the L-
BFGS method.

4. HFN method

For Newton-type methods, we need to solve the
equation

V3 f (wp) dx = —g (z), (5)

$0 as to obtain iteration direction. An inner itera-
tion may be performed to solve equation (5). Since
we only need an approximate solution of equation (5),
the inner iteration may be terminated as soon as the
iterated solution satisfles the desired accuracy. This
idea forms the Hessian-free Newton method (Byrd et
al,, 1996, Nocedal and Wright, 1999, Evans, 1967). In
general, as the residual error

W = V[ (i) di + g (zk) (6)
is sufficiently small or a direction of negative curvature
is detected, the inner iteration is terminated. The neg-
ative curvature terminating measure is to guarantee
that the dy is in a descending direction.

In the HFN method, it is assumed that the ele-
ments of the Hessian matrices V2f are not available.
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One must therefore compute the matrix-vector prod-
ucts V2f (2} d. They may be approximated by finite-
differences

V?f(zk)dzg(mk +Ec;)_g(mk)’ (7)

where

_ 2VA(L+ ||zl
E - —
Il ’
and A denotes unit roundoff.

The HFN method normally requires much fewer
iterations to approach the solution, but the effort in-
vested in one iteration can be very high and the curva-
ture information gathered in the process is lost after
the iteration is completed. Therefore, it is not suit-
able to apply the HFN method in the whole iteration
process.

(8)

5. The new method

In the HFN method, the large computation is
spent on generating gradient and function information.
However the information is not involved in the subse-
quent iteration, hence it is not economical to compute
HFN steps at every iteration. If we use the function
and gradient information generated by the inner iter-
ations of the HFN method to improve the quality of
the L-BFGS iterations, then it can be advantageous
to bypass the weakness of only using gradient infor-
mation generated in the L-BFGS method. We note
that the strengths and weaknesses of the HFN and
L-BFGS methods are complementary. In the follow-
ing, we present a new method which combines the best
features of both methods in a dynamic manner.

In the new method, ! steps of the L-BFGS method
are alternated with { steps of the HFN method. We
illustrate this as

H{m)

I* (L - BFGS) =% t* (HFN)

During the cycle of L-BFGS iterations, a limited mem-
ory matrix H(m) is updated, where m denotes the
number of correction pairs stored. The matrix ob-
tained at the end of this cycle is used to precondi-
tion the first of the ¢ HFN iterations. During each of
the remaining -1 HFN iterations, the limited memory
matrix H(m) is updated using information generated
by the inner preconditioned conjugate gradient (PCG}
iteration, and is used to precondition the next HFN it-
eration. Once the t HEN steps have been executed, the
most current matrix H{m) is used as the initial limited
memory matrix in the new cycle of L-BFGS steps. The
process continues in this manner, alternating cycles of

H{m)
— repeat.
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L-BFGS and HFN iterations, and transmitting curva-
ture information from one cycle to the next.

Clearly, the L-BFGS and HFN methods are partic-
ular cases of the new method, since they are obtained
by setting =0 and /=0, respectively. In our implemen-
tation of the new method, the lengths of the cycles, {
and ¢, are chosen dynamically as the optimization pro-
cess takes place,

The following is a broad outline of the new algo-
rithm.

First choose a starting point z which is usually
taken as xp, the memory parameter m, and an ini-
tial choice of the length [ of the L-BFGS cycle; set
method="L-BFGS’; the first ! iterations are L-BFGS
cycles. After | steps of L-BFGS, g =max({, m} pairs
{8k, y} are stored. Then the ¢ HFN steps are ex-
ecuted. The preconditioned matrix which is con-
structed by (3) is used in the inner PCG iterations

d;i% = d§+1 + Ay,
where A; is the steplength and {v;} is a conjugate vec-

tor sequence. The products V?f (wx)d in the inner
iterations are computed by (7). At the same time,

yf+1 =g (x4 +evy) ~ g(Tie1)

i=1,..q (9)
are stored. ln the subsequent t-1 HFN iterations, the
preconditioned matrices are generated by the stored
informaticn of the preceding PCG step. When all the
t HFN steps are completed, L-BFGS cycles start again.
In such a way of alternating, the process continues un-
til the results satisfy the requirements.

A subroutine ADJUST is designed to set the val-
ues of [ and t. We now list the situations in which
ADJUST medifies the lengths of these cycles:

1) If the PCG iteration generates a direction of neg-
ative curvature, we judge that we are in a region where
L-BFGS steps are to be preferred over HFN steps. We
therefore reset =1, I=41, and set method="L-BFGS’.

2) If A <0.8 in a HFN iteration, the iterates do not
appear to have reached the region where a Newton-
type iteration is rapidly convergent. In this case we
set t=max{2, t-1}, and define method="L-BFGS’.

3) If the algorithm has reached the region where
Newton’s method is rapidly convergent, it is advisable
to take as many HFN steps as is economically possible.
Therefore in this case we increase ¢ by one.

4) If at least 2 successful Newton iterations are per-
formed in the eycle, we use the variable force2 to en-
sure that at least two HFN iterations are computed in
succession. This variable is introduced because the full
benefit of limited memory preconditioning is obtained
only if more than one HFN iterations are performed
in succession,

i
41 = €V,
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6. Numerical experiments and conclusions

To test the effectiveness of the new method,
we perform a simulated computation for the model
of GPS/MET data assimilation with dimension
2.58048x10% . All tests are performed on an SGI
Origine 2000. We set the initial values m=5 and {=6.
We use the background field of the atmosphere as the
iterative initial vector and try the L-BFGS method
and the new method respectively. Under the same
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terminating rule, the L-BFGS method performs 40
iterations involving 43 evaluations of function and
gradient, and costs CPU time of 1267 seconds. In
contrast, the new method performs 17 iterations in-
volving 40 evaluations of function and gradient, and
costs CPU time of 987 seconds. The related results are
shown in Table 1 and Table 2. The results indicate
that the new method is significantly more efficient
than the L-BFGS method.

Table 1. The results of L-BFGS method iteration
ITER NFN FUNC GNORM STEPLENGTH
1 3 1.349D4-02 6.524D402 2.252D-04
4 6 6.236D+01 2.142D+402 1.000D+4-00
8 10 2.923D+01 9.437D+01 1.000D+00
12 15 2.691D+01 2.060D+01 1.000D+-00
16 19 2.539D+01 3.050D+01 1.000D+00
20 23 2.491D+01 2.193D+4-01 1.000D+00
24 27 2.417D+01 1.192D4-01 1.000D+00
28 31 2.377D+01 1.386D+4-01 1.000D+00
32 35 2.241D+01 1.673D+01 1.000D+00
36 39 2.164D+01 1.233D+-01 1.000D+00
40 43 2.118D+01 1.278D4-01 1.000D+-00

ITER: the iteration cycle number; NFN: the number of evaluations of gradient and function; FUNC: the values of the
cost function; GNORM: the norm of gradient; STEPLENGTH: steplength of iteration

Table 2. The results of the new method iteration

ITER NFN FUNC GNORM STEPLENGTH
1 3 1.349D+02 6.524D4-02 2.252D-04
4 [ 6.236D+01 2.142D+4-02 1.000>400
8 14 2.655D 101 7.047D+01 1.008D+00
12 22 2.416D+01 1.042D+01 1.000D+00
16 38 2.123D+01 1.500D4-01 1.000D4-00
17 40 2.113D+01 1.607D+01 3.102D-01

The note is the same as in Table 1.

We also perform the HFN iteration (! is constantly
zero). The HFN method costs CPU time of 1392 sec-
onds.

In the whole GPS data assimilation computation,
the cost of a gradient evaluation is too large. If we
can use gradient evaluation method which costs less in
terms of computation, the new method will be more
advantageous.

In conclusion, the numerical results suggest that

the new method should be considered as a serious com-
petitor to the L-BFGS and HFN methods.
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