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ABSTRACT

The velocity components across tidal fronts are examined using the Blumberg and Mellor 3-D nonlinear
numerical coastal circulation model incorporated with the Mellor and Yamada level 2.5 turbulent closure
model based on the reasonable model output of the M3 tide and density residual currents. In the numerical
experiments, upwelling motion appears around all the fronts with different velocity structures, accounting
for surface cold water around the fronts. The experiments also suggest that the location and formation of
fronts are closely related to topography and tidal mixing, as is the velocity structure around the front.
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1. Introduction

The Yellow Sea is a large, partly closed sea with
average water depth of 44 m (Fig.1), and has large
tidal ranges and strong semidiurnal tidal currents due
to its basin geometry and topography (Zhao et al.,
1994; Wan et al., 1998; Wang et al., 1999; Sun et al.,,
2001). The continental tidal mixing front identified by
satellite images of the sea surface temperature is con-
sidered to control the boundary of the summer Yellow
Sea Cold Water Mass (YSCWM) (Zhao, 1985, 1987a,
b). The formation of the tidal front is mainly associ-
ated with large tidal energy, prominent seasonal tem-
perature variation, and lower residual currents (Zhao,
1987a).

Although previous studies on the tidal fronts in
the Yellow Sea have provided useful information based
on the observed data, satellite image analysis (Zhao,
1985, 1987a, b; Tang and Zheng, 1990), and numerical
studies (Bi and Zhao, 1993; Qi and Su, 1998), the mod-
els used in the numerical studies are two-dimensional
(2-D) or simple three-dimensional (3-D) models treat-
ing salinity as a constant. Therefore, the horizontal
and vertical circulation structures around the tidal
front are not clearly simulated. Further investigation
is necessary in order to understand the impact of cir-
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culation around the tidal fronts on the plankton (Liu
et al., 2002). To gain 3-D information, a 3-D baro-
clinic turbulent closure model is applied to the study
of the tidal front and its circulation structure in this

paper.
2. Numerical model

The model used in this study is the combination of
the Blumberg and Mellor {1987} 3-D nonlinear coastal
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circulation model and the Mellor and Yamada (1974,
1982) level 2.5 turbulent closure model so it can pro-
vide a realistic parameterization for the coastal vertical
mixing and circulation. The equations considered in
the 3-D coastal ocean circulation model are:

1oF @8 v
=“—T+E(Km5) + F, (2)

Po Oy
ar
2 = P9 (3)
du v Ow
. + 5; + o 0, 4
o8 +u@+v@ +w3(9
ot dr  dy Jz
0 o0
=5 (Kha) + F, (5)
Bo, 05, B, o
ot o Sy a2
a Os
=35 (Kh '5;) + F; (6)
p=pld, s), (M

where (z, y, 2) and (u, v,w) are respectively the Carte-
sian coordinates and corresponding velocity compo-
nents with easterly, northerly, and upward as positive
u, v, and w; 0 the potential temperature; s the salinity;
p the density; P the pressure; fthe Coriolis parameter;
g the gravitational acceleration; K, the vertical eddy
viscosity coefficient; and K, the thermal vertical eddy
friction coefficient. Fy, Fy, Fg, and F; represent the
horizontal momentum, thermal, and salinity diffusion
terms respectively. Adopting the level 2.5 (MY-2.5)
turbulent closure scheme (Mellor and Yamada, 1982}
modified by Galperin et al. (1988), K, and K} can
be parameterized.

The surface and bottom boundary conditions are:
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where H is the mean water depth, ¢ the free surface
elevation, (Tpy, Thy) = Cavu? + 0% (u,v) the z and y
components of bottom stresses respectively, and Cy
the drag coefficient with value of 0.001 in the Bohai
Sea, and 0.0018 in the Yellow Sea. The o-coordinate
transformation o = (z — {)/{H + ¢) is used to handie
the irregular topography. With solid boundaries, the
velocity component normal to the boundary must be
zero, that is v, = 0.

The semi-implicit numerical scheme “ECOM-si”
(Blumberg, 1992) is adopted to treat implicitly the
barotropic pressure gradient in the momentum equa-
tions and the barotropic velocity divergence in the con-
tinuity equation. This leads to a linear, symmetrical,
five diagonal system for water surface elevation that
can be solved efficiently by a preconditioned conju-
gate gradient method with no sacrifice in computa-
tion time (Casulli, 1990). The vertical friclion terms
are computed with an implicii numerical scheme while
the horizontal advection terms are treated explicitly in
the semi-implicit scheme. The model time step is 621
seconds (72 time steps over an My tidal cycle). The
accuracy of the numerical scheme is second order in
time and space.

The considered region in our model is (33°-41°N,
117.5°-127°E) with 145x100 grid points and 5" x 5
as horizontal resolution. In the vertical resolution, 20
sigma levels are uniformly distributed in the water col-
umn with Ag = 0.05.

The model was forced initially by the barotropic
mode with M tidal amplitude and phase at the open
boundary (south at 33°N and east at 127°F) accord-
ing to the tidal chart in the Marine Atlas (Chen
et al., 1992). After the barotropic model reaches
steady state, the baroclinic terms (August climatologi-
cal mean temperature and salinity) (Chen et al., 1992)
were put into the model and run for 20 tidal cycles.

3. The model results
3.1 Tidal model verification

The model with homogeneous water reaches steady
state in 5 tidal cycles. The analysis here is carried out
for the 10th tidal period. Four amphidremic points
can be identified in the 10th amplitude and phase field
(Fig. 2) , which agree well with previous works (Fang,
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1986; Zhao et al., 1994; Wan et al., 1998; Wang et al.,
1999). The mean differences between model and ob-
served Ms tidal amplitude and phase are 4.6 cm and
3.9° (Table 1). Those results indicate that the model
reproduces proper tidal currents.

The Eulerian tidal residual current is defined as
the time average of the tidal velocity at each grid
point over one tidal cycle. With only M tidal forcing,
the Eulerian tidal residual currents are well developed
in the northern Yellow Sea, west coast of Korea, and
Subei shallow water region (Fig. 3). The maximum ve-
locity magnitude of 10 cm s~! may be associated with
the sharp changes of the coastline (Fang and Yang,
1985) or the bottom slope (Loder, 1980}. Such tidal
residual currents are similar to those provided by Zhao
et al. (1995) and Lee and Beardsley (1999).

3.2 The density residual currents

In the case with the August climatological mean
temperature and salinity as the initial conditions, the
residual currents (Fig.4) are significantly increased in
magnitude compared to the case with homogeneous
water as initial condition (Fig. 3). Figure 4 shows
a counter-clockwise circulation with northward flow
along the 50 m isobath in the Yellow Sea, an eastward
How at about 36°N, and a southward flow along the
west coastline of Korea. And at the east coast of the
Shandong Peninsula (36°N) the currents are weak and
broad and become narrow and strong at about 34.5°N.
The magnitude of the residual currents is about 10
cm s~! | but it almost reaches 20 cm s™1 at the east
cape of the Shangdong Peninsula. Model and observa-
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tional results agree well with each other (Zhao et al,,
1991; Lin et al., 2002), indicating the density residual
currents are robust and the baroclinity has an impor-
tant impact on the summertime flow in the Yellow Sea.

3.3 Vertical circulation structure around the
tidal fronts

From the temperature distribution at the bottom
layer (Fig. 5), the front location can be identified along
the west shore of the southern Yellow Sea, the south-
west of Korea, the northern Yellow Sea, the cape at, the
east coast of the Shandong Peninsula, etc. A further
investigation is carried out with a vertical cross-section
along 36.9°N and 34.4°N.

3.3.1 The vertical cross section along 36.9°N

The temperature profile {(Fig. 6a) shows that
the tidal fronts are located at the western bound-
ary around 122.9°N and at the eastern bottom slope
around 125.5°N, and the water is well stratified be-
tween the fronts.

At the western boundary front, the vertical velocity
w profile (Fig. 6¢) shows downwelling at the bottom
layer while upwelling at the upper layer, a divergence
zone can be identified around the upper layer of the
front according to the dipole in the 4 component field
{(Fig. 6b), and an axis of maximum v component ex-
tends from the surface to the deep region near the bot-
tom slope and the value becomes smaller as the depth
increases (Fig. 6d).

In the observed geostrophic velocity across the
front at a similar section obtained by Zhao (1987a),
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Fig. 2. Model-predicted co-amplitudes (solid, in cm) and
co-phases (dashed, in degree) of the Mz tide in Yellow

Sea.

Fig. 3. The vertically-averaged tidal residual currents in
the Yellow Sea with only Mz tidal forcing.
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a similar v profile was found, except its maximum v at At 125.5°E the upward motion also takes place
the subsurface may be due to the simplification of the around the bottom front and the downwelling takes
model. place on both sides of the front (Fig. 6¢). The diver-
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Fig. 4. The vertically averaged model predicted density = Fig. 5. The August climatological mean temperature
residual currents in the Yellow Sea with August climato-  (°C) at the bottom layer,
logical mean temperature and salinity as initial conditions.
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Fig. 8. The vertical cross section along 36.9°N for temperature (a, in °C), u component (b, positive
for eastward), w component (¢, positive for upward), v component (d, positive for northward) of residual
currents {cm s~ ).
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Table 1. Model-data comparison of the M» tidal amplitude and phase in the Yellow Sea

Longitude Latitude Amplitude (cm) Phase ()
(°E} (°N) Model Observed Model Observed
123.2 39.1 123.2 126 246.6 249.7
122.7 39.3 134 124.9 260.3 261.3
122.2 40.6 124.5 123.9 133.7 144.3
121 40.7 87.9 95.5 151.9 150.5
119.6 39.9 16.7 10.7 316.9 313.4
121.5 36.8 122.5 112.7 88.5 88.6
124.4 39.7 209.8 206 242 239
124.3 39.8 203.6 212 243.5 246
123.1 39.5 154.6 158 252.2 254
125.6 37.7 196.6 198 127.3 120
126.6 37.5 295.3 293 123.3 113
1261 36.8 219.6 220 86.8 84
The absolute mean differences 4.6 3.8

gence zone is around 125.8°E according to the u com-
ponent (Fig. 6b}, and the v component is high at the
divergence zone and the eastern solid boundary (Fig.
6d). The circulation structure around the front at
125.5°E agrees with the hypothesis provided by Zhao
(1987a). Lough and Manning (2001) also found there
was a two-cell circulation pattern with upwelling flow
on the mixed side of the front and a surface conver-
gence and downwelling on the stratified side across

southern flank of Georges Bank in May 1997.
3.3.2 The vertical cross section along 34.4°N

The temperature profile along 34.4°N shows that
there is a tidal front in the bottom layer from around
121.3°E to 122°E (Fig.7a). The vertical motion w is
complicated (Fig. 7¢), showing upwelling and down-
welling intermittently around the front. The u com-
ponent (Fig. 7b) is positive at the region and the max-
imum « can reach 8 cm s~ at the top of the bottom
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Fig. 7. 'The same as Fig. 6 except for along 34.4°N.
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mixed layer in the frontal region. The magnitude and
distribution of the v component is also similar to that
obtained by Zhao (1987a) at another similar section,
except that the observed maximum v appears in the
middle layer at the bottom slope. These model results
suggest that although the u,v and w components are
quite different in different frontal conditions, upwelling
appears in all cases, accounting for the surface cold
water around the fronts (Zhao, 1987a). And the high
horizontal velocity v component predicted at the front
is agreed with by Chen and Beardsley (1995) and Lee
and Beardsley (1999) who suggested the residual tidal
currents at the fronts and at the top of the bottom
mixed layer over the sloping bottom could be inten-
sified. The simulation results not only agree with the
numerical results of a 2-D model (Su and Huang, 1995;
Bi and Zhao, 1993; Zhao, 1996), but also provide a
better resolution for « across the fronts.

The following numerical experiments are designed
to examine the role of the tidal force and topography
in frontogenesis and the velocity structure around the
fronts.

4. Numerical experiments
4.1 Tidal forcing

With initial conditions of a uniform horizontal tem-
perature at each water depth, a linear decrease in tem-
perature with increase of depth (Fig. 8), and a homo-
geneous salinity in the whole water column, the nu-
merical results (after a steady state is reached) show
that the tidal fronis (Fig. 9a) appear in the same re-
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Fig. 8. The initial temperature profile at section 36.9°N
for numerical experiment.

VOL. 20

gion as those with the field climatological data (Fig.
5).

Figure 9b shows that off the Chinese and Korean
coasts, the initial stratification (Fig. 8) is completely
destroyed in the water shallower than 30 m, resulting
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Fig. 9. (a) The temperature distribution (°C) at the
bottom layer, (b) temperature profile and, (¢} velocity w
(em s7!) profile in the vertical cross section at 36.9°N
with linear stratification after steady state is reached.
The dotted lines stand for negative.
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Fig. 10. The same as Fig. 9 except for a homogeneous
water depth of 40 m.

in a locally homogeneous water column in these ar-
eas. In the central Yellow Sea, the stratification is still
similar to the initial condition with little change in the
tidal front’s location (Fig. 9b and Fig. 6a). The dis-
tinct tidally-mixed bottom boundary layer has been
established in 10 m of the bottom layer. The bot-
tom mixed layer is thicker in the eastern than in the
western part of the Yellow Sea, which may be due to
the stronger tidal mixing in the eastern part. A slight
change appears in the velocity component w {Fig. 9¢).
This experiment indicates the importance of tidal mix-
ing in frontogenesis.

4.2 The effect of topography

‘With the same initial conditions as the linear strat-
ification case, and a fixed water depth of 40 m for the
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whole region of study, the tidal fronts disappear from
the bottom layer of the Yellow Sea (Fig. 10a), so does
the front’s cross section at 36.9°N after a steady state
is reached. Strong upwelling and downwelling occur
near the east boundary (Fig. 10¢) due to the strong
tidal force at the eastside, which is quite different from
the result with real topography (Fig. 6¢). This exper-
iment reveals the important effect of the topography
on the frontogenesis and the structure of velocity.

5. Conclusion

In the present numerical study, the tidal results
and the density circulation magnitude and pattern are
consistent with the observations, indicating a reason-
ably simulated vertical circulation structure around
the [ronts. Although the structures of velocity are
quite different around different fronts, upwelling ap-
pears in all front conditions, accounting for the surface
cold water around the fronts (Zhao, 1987a). The nu-
merical experiments also suggest that the topography
and tidal mixing play key roles in frontogenesis, in the
location of the fronts, and in the velocity structure.
Further study will focus on the dynamics controlling
plankton distributions in the frontal region.
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