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ABSTRACT

Described is a new technique of decade-scale climatic forecasting, presented by a combination of
wavelet analysis and stochastic dynamics. The technique is also applied to diagnosing and forecasting the
duration time of dry and wet climates in the decadal hierarchy of different areas in China. Results show
that in the decadal hierarchy, the north, southwest, and southeast of China are areas where various kinds
of frequent climate disasters appear; droughts easily occur in the north and northwest, while floods often
occur in South China. Because this modeling technique is based on time series data, it can also be applied
in the modeling and forecasting of such time series as hydrology, earthquakes and ecology.
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1. Introduction

Climate jumps, such as transformations of dry-wet,
drought-flood, and cold- warm winter, often lead to
climate disasters. Thus diagnosis of climate jumps is
important to the country and its people. However, so
far agreement has not been reached in clearly defin-
ing climate jumps. In statistical climatology, they are
generally regarded as a sudden changes from one mean
value to another mean value in the climate records
(Zhang, 1995; Singh et al., 2002; Zhu and Chen, 2002).
A climate jump is a slight discontinuity in the climate
records. Obviously the mathematics are short of being
precise.

Since Hasselmann (1977) first introduced some
stochastic climate models, stochastic dynamics has
been used to study the climatic states (Fraedrich,
1978; Kominz and Pisias, 1979), climatic change
(Nicolis, 1982; Kim and North, 1991), and so on. How-
ever, it is impossible to determine the jump points
by stochastic dynamics. At present, there are several
common methods used to test climate jumps: low pass
filter, moving t-test, Cramer’s method, Yamamoto’s
method (Yamamoto et al., 1985; Yamamoto et al.,
1986), and more. All traditional statistical diagnostic
methods (Lin, 1999) and statistical forecasting mod-
els do not have any resolution power in the time-space
domain and do not contain dynamic elements, so there
is no way to forecast the nudging time of the climate

transformation in a different hierarchy, such as dry-
wet, drought-flood, cold-warm winter, and so on. Si-
multaneously, the dynamic forecasting of climate not
only needs a lot of calculations, but also fails to fore-
cast the jumps of the system in different hierarchies
(Lin, 1993; Lin, 1999). How can the data be thor-
oughly used so as to establish the stochastic dynamic
climate model that can forecast the jumps of the sys-
tem in different hierarchies?

The authors attempt to combine the techniques of
multi-resolution analysis and stochastic dynamic mod-
eling to study the transformational characteristics and
period of dry and wet climates in different areas of
China and to make dynamic forecasts about future
climates of dry or wet periods. The former is used to
determine the level (time scale) and the jump point of
the system, while the latter, based on the jump points
and periodic property determined by the former, sets
up a dynamic forecasting model that can describe the
nudging time of dry and wet climate on this hierarchy
and in this area.

2. Modeling principle and model

2.1 Modeling principle

It is known that the transformation of MHAT
wavelets (Mayer, 1992) of any time series of fi(x)(i =
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1, 2, . . . , n) is

F [f(x)] = a2 d2

dx2
(f ∗ ga ), (1)

ga = g(x/a)/a1/2 . (2)

Here, g is the MHAT wavelet, a is the flexible scale,
and “ * ” is the convolution operation.

F [f(x)] can be regarded as the second-step deriva-
tive of f(x) for x after the smoothing of ga, so its zero
point (or the flex point in the mathematical sense) is
the jump point of the system. That means that MHAT
wavelets provide us with a diagnostic method of jump
points with mathematical implications.

If we use r1, r2, . . . , rn to stand for the time se-
ries of annual precipitation at one station, and use
Rj(j = 1, 2 . . .) to stand for a new series made up
of the mean value with certain common features in
one part of the original series {ri, i = 1, 2, . . . , n},
then the hierarchy of the system described by the se-
ries {Rj , j = 1, 2, . . .} is higher than that described
by the series of {ri, i = 1, 2, . . . , n}. Suppose the
series {ri, i = 1, 2, . . . , n} corresponds to the yearly
level, while the series {Rj , j = 1, 2, . . .} corresponds
to the decadal-century level. Since the property of
the high hierarchy determines the characteristics of
attractors or the thermodynamic branch of the low
level in the system, the rule and characteristics of the
system {Rj , j = 1, 2, . . .} can be determined qual-
itatively by examining some points in the series of
{ri, i = 1, 2, . . . , n}.

Suppose the beginning and ending year of one (pre-
cipitation) time series is, respectively, a and b, while
k is the time (year) corresponding to the jump point
diagnosed by the MHAT wavelet (it is presumed here
that there is only one jump point and later, the situa-
tion with many jump points will be discussed). Then
it may held that R1 and R3, the anomaly average of
annual precipitation before (from year a to year k) and
after (from year k to year b) the jump point are two
stable states (wet state and dry state) on the high hier-
archy (decadal-century scale), while the annual practi-
cal precipitation ri fluctuates around some stable state
(R1 or R3) ri = R1 + p or ri = R3 + p. Here p is the
“disturbance” decided by all the factors (generalized
force) concerning this hierarchy (yearly scale) and low
hierarchy (monthly or seasonal scale) (For the high
level, all the effects of the low level can be regarded
as disturbance). R1 and R3 are two equilibrium states
of the high hierarchy and can be worked out from the

following formula:

R1 =
1

k − a

c−1∑
i=1

(ri −R) ,

R3 =
1

b− k + 1

n∑
i=c

(ri −R) . (3)

Here R = 1/(b− a + 1)
∑
i

ri is the mean value, and c

is the serial number of the original series as it corre-
sponds to the jump point which will be determined by
the wavelet analysis.

If there are many jump points on a certain level, or
there are many wet periods and many dry periods on
this level, then R1 and R3 should, respectively, be the
mean value of many wet periods and many dry periods
obtained from formula (3).

Since it is a structure of double stable states, and
there must exist an unstable state, R2, between the
two stationary states, when the effect of the low level
is not taken into consideration, the simplest form of
the potential function, u, to describe the climate fea-
ture and rule on this hierarchy (decade-century level)
should be a 4th power function about precipitation,
while the corresponding generalized force f = −u′ =
−du/dR is a 3rd power function. Namely

dR

dτ
= −R3 + λ1R

2 − λ2R + λ3 = f(R) . (4)

Here, τ is no-scale time and R is the precipitation of
the high (decadal) hierarchy. From the steady-state
solution of formula (4), the following parametric func-
tion can be obtained:

λ1 = R1 + R2 + R3 ,

λ2 = R1R2 + R1R3 + R2R3 ,

λ3 = R1R2R3 .

(5)

If we consider the disturbance of such factors (or
the generalized force) as the characteristic hierarchy
(yearly scale) and low hierarchy (monthly, seasonal
scale) on the decadal-century hierarchy, then the dis-
turbance term should be added to formula (4), thus
giving the stochastic dynamical equation describing
the precipitation change (or any climate variable) on
the decadal-century level:

dR

dτ
= −R3 + λ1R

2 − λ2R + λ3 + F (τ) , (6)

〈F (τ)〉 = 0 ,

〈F (τ1)F (τ2)〉 = ε2δ(τ1 − τ2) . (7)

Here, τ is no-scaling time (to ensure the coefficient
of the term with third power is unitless), F (τ) is the
disturbing force, ε2 is a constant describing the dis-
turbing intensity of random r; and angle brackets 〈 〉
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stand for the statistical mean value (here and in the
following cases).

2.2 Determination of parameters

The equation group (6)–(7) has only three equa-
tions, but four unknowns (R2, λ1, λ2, λ3) and more-
over, there exists an unknown parameter ε in Eq.(7).
Therefore, two relevant auxiliary equations should be
obtained.

The Forkker-Planck equation corresponding to for-
mula (6) is

∂P

∂τ
=

∂

∂R
(R3 − λ1R

2 + λ2R− λ3)P +
ε2

2
∂2P

∂R2

=
∂

∂R
(u′P ) +

ε2

2
∂2P

∂R2
.

(8)

Here, u′ = −f(R) = R3 − λ1R
2 + λ2R− λ3 .

Multiplying both sides of formula (8) by R2, and
performing an integration we have

1
2

d〈R2〉
dτ

= −〈u′R〉+
ε2

2
. (9)

Suppose

R = R0j + δR, R0j = R01 , or R03, | δR/R0j |� 1 .

When R0j = R01, we have

1
2

d〈δR2〉R01

dτ
= −u′

R01
〈δR2〉R01

+
ε2

2
. (10–1)

When R0j = R03, we have

1
2

d〈δR2〉R03

dτ
= −u′

R03
〈δR2〉R03

+
ε2

2
. (10–2)

The steady states of (10–1) and (10–2) are

〈δR2〉R01
=

ε2

2u′′
R01

, (11)

〈δR2〉R03
=

ε2

2u′′
R03

. (12)

From the data, the variance of R1 and R3 are obtained
by

〈δR2〉R01
= S1 =

1
k − a

c−1∑
i=1

(ri −R)2 , (13)

〈δR2〉R03
= S3 =

1
b− k + 1

n∑
i=c

(ri −R)2 . (14)

Working out Eqs.(5), (13) and (14), and getting the
five unknowns (R2, λ1, λ2, λ3, ε

2) of the closed equa-
tion group (5 equations, 5 unknowns), we put the re-
sult into equation (5). Then the dynamic equation of

the high level (decadal-century) of this climate vari-
able (precipitation) is obtained.

2.3 No-scaling time period

The mean jump time, with no scale between dry-
wet states of the stochastic dynamical system estab-
lished in the previous part, will be decided by the ac-
companying equation of the Forkker-Planck equation:

f(R, λi)
dτ

dR
+

1
2
ε2 d2τ

dR2
= −1 . (15)

Suppose R3 < R2 < R1, then R1 and R3 are the
respective wet and dry climate states. The mean time
of the system jumping from R1 (wet period) to R2

(flex point) is determined by the following boundary
conditions:

R1 → R2 : R = ∞,
dτ

dR
= 0; R = R2, τ = 0 . (16)

Similarly, the mean time of the system jumping from
R3 (dry period) to R2 (flex point) is decided by the
following boundary conditions:

R3 → R2 : R = −∞,
dτ

dR
= 0; R = R2, τ = 0 .

(17)
Using the Rung-Kutta method to numerically in-

tegrate (15), the no-scaling time τw required in the
transition from the wet period to the jump point and
τd, the no-scaling time required in the transition from
the dry period to the jump point, can be worked out
respectively from condition (15) and (17). Namely,
the no-scaling nudging time of the wet period and dry
period is respectively τw and τd.

2.4 Dry-wet Transition period

According to the dynamical equation (4) with no-
scaling time, the linearized equation of the system
around one stationary state Ri(R1 or R3)(R = Ri +
δR, Ri � 1) is:

d(δR)
dτ

= −u′′(Ri)δR . (18)

Suppose the scale of the time is
t = τ/ρ , (19)

then
d(δR)

dt
= −ρu′′(Ri)δR . (20)

From formula (20) it can be seen that ρu′′(Ri) is
the recurring nudging time. If the mean period of this
hierarchy is T , then it can be approximately regarded
as

T ≈ 1/ρu′′(Ri) .

So

ρ =
1

u′′(Ri)T
=

1
(3R2

i − 2λ1Ri + λ2)T
. (21)
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Fig. 1. The curves of wavelet transformation of pre-
cipitation with the scale of 16 years of the six biggest
cities of China (a), (b), (c), (d), (e), and (f) respectively
corresponds to Beijing, Shanghai, Tianjin, Chongqing,
Guangzhou, and Wuhan.

On the same hierarchy, the value of ρ, obviously,
should be taken as the mean value of R1 and R3 re-
spectively. After determining the mean period T of all
the levels of the wavelet translations, ρ can be worked
out, and from formula (19), the nudging time of the
whole wet period and dry period can be obtained:

tw = 2τw/ρ, and td = 2τd/ρ . (22)

3. Forecasting of the transformational time of
dry-wet climate of the six biggest cities in
China

Wavelet transformation has a so-called boundary
effect (Lin, 1999) that will lead to the distortion of
wavelet coefficients corresponding to the beginning
and end of the data. This boundary effect will be-
come more apparent with the increase of the level.
In order to study the jumps of the decadal hierar-
chy, the boundary effect should first be eliminated.
Here, the method of symmetric extension (Lin, 1999)
is adopted to give boundary treatment to the precip-
itation data of the six biggest cities of China, Bei-
jing, Shanghai, Tianjin, Chongqing, Guangzhou, and
Wuhan stations from 1951 to 1995 to eliminate the
boundary effect caused by wavelet transformation. If
{ri, i = 1, 2, . . . , n; n = 45} is the annual precipi-
tation series of one station, then the two sides of the
series {ri, i = 1, 2, . . . , n; n = 45} will be extended
to construct the following new series and the extended
part will be removed after the wavelet transformation.
Namely,

ri =


r1−i , i = 0,−1,−2, . . . , n− 1
ri , i = 1, 2, 3, . . . , n

r2n+1−i , i = n + 1 , n + 2, . . . , 2n

(23)

where n is the length of the data.
Let the flexible coefficient of the wavelet transfor-

mation be 16 (years), which represents the decadal
scale. After the MHAT wavelet transforms the pre-
cipitation data from 1951–1995 of these stations, the
curves of the wavelet coefficients with the scale of 16
years can be obtained, as shown in Fig. 1.

Figure 1 shows that the jump points in the curves
of the wavelet transformation in the decadal hierarchy
of the different cities and T , the mean periods, are
different. The exact distribution is shown in Table 1.

From Fig. 1 and Table 1, we see that on the level of
16 years, the stations in these cities have a great dis-
crepancy in climate change. There are obvious differ-
ences, either in the phase or in the amplitude. The cli-
mate changes most frequently in Tianjin whose mean
period is 9 years. The climate changes least frequently
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Table 1. The jump points and the mean period T in decadal hierarchy in the six biggest cities in China

1st 2nd 3rd 4th 5th 6th 7th 8th 9th T

Beijing 1954 1960 1974 1979 1985 1995 16

Shanghai 1962 1971 1977 1982 1992 15

Tianjin 1953 1957 1962 1966 1973 1979 1985 1988 1991 9

Chongqing 1957 1963 1976 1982 1988 1995 15

Guangzhou 1955 1959 1965 1971 1976 1980 1985 1992 10

Wuhan 1954 1962 1971 1979 1985 1987 1993 11

Table 2. The two stable states of the six biggest cities
in China in the decadal hierarchy

R1 (wet state) R3 (dry state)

Beijing 0.0845 -0.0231

Shanghai 0.0570 -0.1161

Tianjin 0.0672 -0.0417

Chongqing 0.0340 -0.0609

Guangzhou 0.0840 -0.1343

Wuhan 0.1325 -0.1804

in Shanghai whose dry-wet mean period is as long as
15 years.

From formulas (3)–(5), the two stationary states
(anomalies) of the precipitation on the decadal hierar-
chy in the six biggest cities in China (or the respective
average of the wet and dry state) can be worked out,
as shown in Table 2.

From Table 2 it can be seen that in the six biggest
cities of China, the Chongqing wet period has the
smallest relative anomaly precipitation (relative to an-
nual mean precipitation) while Wuhan has the largest

relative anomaly precipitation. In the dry period, the
smallest relative precipitation lies in Beijing.

From (5)–(14) the parameters R2, λ1, λ2, λ3, ε
2 in

the dynamic equation of precipitation in the decadl hi-
erarchy in the six biggest cities of China can be worked
out, as shown in Table 3.

From formulas (15)–(22), we can get τw and τd, the
no-scaling duration times of the dry and wet periods in
different areas of the west, ρ1 and ρ3, along with the
transformational coefficient, and tw and td, the real
duration times of the dry and wet periods, as shown
in Table 4.

Table 4 shows the following. (1) Except in
Chongqing, the remaining five biggest cities in China
have a dry period that lasts much longer than the
wet period, which demonstrates the universality of
droughts in the cities of China. (2) In the decadal hier-
archy, of all the six biggest cities in China, Wuhan has
the longest dry period (21.5 years) while Tianjin has
the shortest dry period (6.4 years), while Chongqing
has the longest wet period (9 years) and Tianjin has
the shortest wet period (4.6 years).

Table 3. The parameters of the dynamic equations of precipitation forecasting of the six biggest cities in China in
the decadal hierarchy

R2 λ1 λ2 λ3 ε2

Beijing 0.025997 0.02819 -0.00690 -0.00018 0.00100143

Shanghai -0.001270 -0.06020 -0.00656 0.00001 0.0011749

Tianjin -0.020752 0.04631 -0.00227 0.00006 0.00024966

Chongqing -0.017953 -0.04479 -0.00159 -0.00004 0.00017056

Guangzhou -0.002147 -0.07070 -0.01013 0.00024 0.00399924

Wuhan 0.046203 -0.00167 -0.02611 -0.00110 0.00539602

Table 4. The forecasting of the duration times of the dry and wet climates of the six biggest cities in China in the
decadal hierarchy

τw τd ρ1 ρ3 tw (year) td (year)

Beijing 19.126 38.863 6.4018 3.4587 7.759 15.764

Shanghai 16.746 36.842 6.6409 3.3454 6.707 14.757

Tianjin 44.098 61.593 21.959 16.349 4.604 6.431

Chongqing 67.755 54.654 13.514 16.371 9.069 7.311

Guangzhou 12.689 13.553 4.3645 4.1189 5.982 6.390

Wuhan 7.670 24.992 3.3670 1.2824 6.599 21.501
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（）
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Fig. 2. The isotimic distribution of the nudging time of the wet period (a)
and the dry period (b) in China.

From Table 1 it can be known that Beijing, Shang-
hai, Tianjin and Wuhan, respectively, enter the dry
period in 1995, 1992, 1991, and 1993, while Chongqing
and Guangzhou, respectively, enter the wet period in
1995 and 1992. Combining this with Table 4 antici-
pates that the time when Beijing, Shanghai, Tianjin,
and Wuhan would enter the next wet period is, respec-
tively, 2011, 2007, 2011, 1997, and 2014, and the time
that Chongqing and Guangzhou would enter the next
dry period is, respectively, 2004 and 1998.

4. Distribution of duration time of dry and wet
climates in China

According to the precipitation data of 160 stations

in China, modeling and forecasting are carried out.
That is, by taking the above method, a dynamic equa-
tion is set up, based on the data of every station (there
are altogether 160 dynamical equations with different
coefficients), and the dynamic equation is used to fore-
cast the nudging time of the dry and wet climate in
this area. Figure 2 is the isoline distribution obtained
from the forecasting value of the 160 dynamical equa-
tions.

From Fig. 2a, it can be seen that in the decadal
hierarchy, the distribution of the duration time of the
wet period in China displays the following features.
(1) It is long in the south and short in the north, long
in the northeast and short in the northwest, and the
same follows in the southeast and southwest of China.
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(2) The lines of the isotimic distribution of the nudging
time of the wet period in the south are more concen-
trated than those in the north. These lines partially
explain the fact that Northwest and North China (not
including the northeast) are short of water, while flood
often happens in the south. From Fig. 2b, it can be
seen that the distribution of the duration time of the
dry period in China has the following features. (1)
The northeast and northwest have longer dry periods,
and the dry period in the middle area of China is only
shorter than those two areas. (2) The nudging time
of the dry period is longer than the nudging time of
the wet period in the north. Combining (a) and (b) in
Fig. 2, we also find that in the decadal scale, the cli-
mate period in the south of China is obviously longer
than that in the north of China, and the climate pe-
riod in the northeast and northwest of China is ob-
viously longer than that in southwest and southeast
of China. This demonstrates that in China, the cli-
mate changes more frequently in the north than in the
south, and more frequently in the northeast than in
the northwest. The frequent change of climate means
that climate disasters will appear very frequently.

5. Conclusion

The theory of climate hierarchy (Lin, 1993), the
modeling technique of the equilibrium state, and the
technique of wavelet analysis (Lin, 1999) are com-
bined to raise a set of statistical-dynamical modeling
techniques to describe the precipitation change on the
decadal scale in China. The precipitation data of 160
stations in China are used to set up 160 correspond-
ing dynamical models of dry and wet climate on the
decadal scale. After dynamically forecasting the nudg-
ing time of dry and wet climate in different areas (160
stations) of China, it can be found from the decadal-
hierarchy, the north, southwest, and southeast areas
of China are the areas where all kinds of climate dis-
asters appear frequently; drought easily happens in
the northwest and north (not including the northeast);
flood often occurs in the south of China.

It is necessary to point out that the statistical-
dynamic modeling technique raised in this paper can
be taken not only to establish the dynamical climate
model of precipitation and temperature on the decadal
scale, but also to set up all kinds of dynamical climate

models in the scales of longer time. From the per-
spective of pure technique, the most ideal time is ten
years or dozens of years. Theoretically, the less jump
points, the better the forecasting result; whereas with
more jump points, the forecasting result is worse. On
the other hand, this technique is about the modeling
on the basis of time series, so it can also be applied
in the modeling and forecasting of such time series as
hydrology, earthquakes, and ecology.
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