
ADVANCES IN ATMOSPHERIC SCIENCES, VOL. 20, NO. 5, 2003, PP. 794–798 794

The Influence of Convergence Movement on Turbulent

Transportation in the Atmospheric Boundary Layer

HU Yinqiao∗1,2 (�ÛÃ) and ZUO Hongchao1 (�ö�)
1Cold and Arid Regions Environmental and Engineering Research Institute,

Chinese Academy of Sciences, Lanzhou 730000
2Institute of Arid Meteorology, China Meteorological Administration, Lanzhou 730020

(Received 22 July 2002; revised 13 May 2003)

ABSTRACT

Classical turbulent K closure theory of the atmospheric boundary layer assumes that the vertical
turbulent transport flux of any macroscopic quantity is equivalent to that quantity’s vertical gradient
transport flux. But a cross coupling between the thermodynamic processes and the dynamic processes
in the atmospheric system is demonstrated based on the Curier-Prigogine principle of cross coupling of
linear thermodynamics. The vertical turbulent transportation of energy and substance in the atmospheric
boundary layer is related not only to their macroscopic gradient but also to the convergence and the di-
vergence movement. The transportation of the convergence or divergence movement is important for the
atmospheric boundary layer of the heterogeneous underlying surface and the convection boundary layer.
Based on this, the turbulent transportation in the atmospheric boundary layer, the energy budget of the
heterogeneous underlying surface and the convection boundary layer, and the boundary layer parameteri-
zation of land surface processes over the heterogeneous underlying surface are studied. This research offers
clues not only for establishing the atmospheric boundary layer theory about the heterogeneous underlying
surface, but also for overcoming the difficulties encountered recently in the application of the atmospheric
boundary layer theory.
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1. Introduction

Hu (2002a) analyzed the difficulties of applying lin-
ear thermodynamics to the atmosphere to indicate the
necessity of introducing the dynamic processes and
the turbulent transportation into the entropy equilib-
rium equation of nonequilibrium thermodynamics in
the environment fluid. Wherefore the classical entropy
equilibrium equation of nonequilibrium thermodynam-
ics was modified. The theorem of minimum entropy
production was proved and the Lyapounov thermo-
dynamic stability function of the ideal fluid has been
obtained based on the modified entropy equilibrium
equation (Hu, 2002b). Further, the entropy equilib-
rium equation that can apply to the atmospheric sys-
tem has been established (Hu, 1999; Hu, 2002c). Se-
quentially based on these, the linear thermodynamics
of the atmospheric system has been established (Hu,

2002d). The application of linear nonequilibrium ther-
modynamics to the atmospheric system is studied to
gain a series of important theoretic results that are
rare. It has been demonstrated that there exist in-
deed the linear phenomenological relations based on a
great number of observational facts of the atmospheric
boundary layer to obtain the relationships between the
linear phenomenological coefficient and the turbulent
transport coefficient using those observational facts,
(Hu, 2002e).

The cross coupling is an important phenomenon
of the linear thermodynamics (De Groot and Mazur,
1962). Hu (2002d) has proved the cross coupling be-
tween the heat turbulent transportation and the vapor
turbulent transportation in the atmospheric system in
the theorization. And it has been proved also that the
relation between the geostrophic wind and the thermal
wind in the atmospheric system is a special cross cou-
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pling phenomenon between the dynamic processes and
the thermodynamic processes (Hu, 2002e). This arti-
cle seeks to prove another cross coupling phenomenon
between the dynamic processes and the thermody-
namic processes in the atmospheric system, namely
how the movement of divergence or convergence af-
fects the turbulent transportation in the atmosphere.
This theoretical result of linear thermodynamics may
offer a key to deal with the subject of turbulent trans-
portation under the condition of the heterogeneous un-
derlying surface.

2. Principle of cross coupling between the dy-
namic processes and thermodynamic proc-
esses along with its influence on the turbu-
lent transportation

Based on the Curier-Prigogine principle of linear
thermodynamics, there exists a cross coupling between
the airflow and the heat flux, because they are entirely
vector quantities. Considering the Onsager reciprocal
relation, the cross coupling relations between the air-
flow and the heat flux are as follows (Hu, 2002e):
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)
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Here, all symbols are as in Hu (2002e). Relation (1)
shows that the heat turbulent transport flux is related
not only to the potential temperature gradient but also
to the departure from the dynamic balance, owing to
the cross coupling between the dynamic processes and
the thermodynamic processes. In the same reasoning,
relation (2) shows that the airflow is related not only
to the departure from the dynamic balance but also to
the potential temperature gradient.

The left side in relation (2) is the airflow. Its ver-
tical component can be written in the following form

ρW = Lg
1
T

(
1
ρ

∂p

∂z
+ g

)
− Lθp

1
θ2

∂θ

∂z
. (3)

Here, W is the average vertical velocity; Lg and Lθp
are the relevant phenomenological coefficient and the
cross coupling coefficient, respectively. Relation (3)
shows that any atmospheric departure from the static
balance or from neutral stratification causes vertical
velocity. On the other hand the atmosphere is sup-
posed as an incompressible fluid, so the continuity

equation is
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= 0 . (4)

The vertical component of relation (1) can be writ-
ten

Jθz = H |z= ρcpw′θ′ = −ρcpK
′
θ
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in which the turbulent transport coefficient K ′
θ is a

linear function of the phenomenological coefficient Lθ

(Hu§2002e). Using relation (3), we can eliminate the
second term on the right side of relation (5)

Jθz = H |z= ρcpw′θ′ = −ρcpKθ
∂θ

∂z
+ ρ

Lθa

Lg
W . (6)

Then using relation (4), we can eliminate the vertical
velocity on the right side of relation (6) to obtain the
vertical component of heat turbulent flux

Jθz = H |z= ρcpw′θ′ = −ρcpKθ
∂θ

∂z

− ρcpKθw

∫ z

0

(∇ |h ·V)dz ,
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∂U

∂x
+

∂V
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. (7)

In relations (6) and (7), the turbulent transport coeffi-
cient Kθ of vertical heat transportation caused by the
potential temperature gradient and the relevant cross
coupling coefficient Kθw are defined, respectively, as

Kθ =
(

Lθ −
LθaLθp

Lg

)
1

ρcpθ2
,

Kθw =
Lθa

cpLg
. (8)

The turbulent transport coefficient and the cross cou-
pling coefficient must be determined by an observa-
tion experiment. In formulae (6) and (7), the vertical
component of heat turbulent flux at height z is H |z.
Relation (6) shows that the vertical component of heat
turbulent flux is relative to the vertical potential tem-
perature gradient and the vertical velocity. And, rela-
tion (7) predicates that the vertical component of heat
turbulent flux is composed of both the transportation
of the vertical potential temperature gradient and the
horizontal convergence or divergence movement.

Analogously, the airflow and the vapor transport
flux are moreover entirely vector quantities; so based
on the Curier-Prigogine principle there exists also the
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cross coupling relation
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where Lv and Lva are the phenomenological coefficient
of vapor transportation and the relevant cross coupling
coefficient, respectively. Moreover the chemical poten-
tial difference between the dry air and the vapor is
4µ = µd − µv, and the relationship between 4µ and
the specific humidity q is (Hu, 1999)

4µ =4cp

[
T ln

T
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− (T − T0)

]
−RVT lnq − T4Rln

p

p0
. (10)

Here, Rv,4cp, and 4R are the vapor gas constant,
the difference of the specific heat at constant pressure,
and the gas constant difference between the dry air
and the vapor, respectively.

Similar to the deduction of formula (7), and consid-
ering relation (10), the vertical component of relation
(9) is written as

Jvz = −ρKv
∂q

∂xj
+ Lva

1
T

(
1
ρ

∂p

∂z
+ g

)
,

Kv =
LvRv

ρq
, (11)

in which the turbulent transport coefficient Kv is yet
a linear function of the phenomenological coefficient
Lv. Using relation (3) eliminates the second term on
the right side of the above relation to give the vertical
component of vapor turbulent flux
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Then using relation (4), the vertical velocity on the
right side of relation (12) is eliminated to obtain the
vertical component of vapor turbulent flux
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In the above formula, E |z is the vertical component
of vapor turbulent transportation flux at height z. Kv

is the turbulent transportation coefficient caused by
the vertical vapor gradient. Moreover Kvθ and Kvw

are the cross coupling coefficients that the potential
temperature gradient influences on the vapor turbu-
lent transportation and that the velocity divergence

influences on it, respectively. Therefore the vertical
component of vapor turbulent transport flux is con-
stituted by three parts of the vapor vertical gradi-
ent transportation, the cross coupling effect between
the potential temperature gradient transportation and
the vapor transportation, and the cross coupling ef-
fect caused by the velocity horizontal convergence or
divergence. For briefness, the cross coupling effect be-
tween the potential temperature gradient and the va-
por transportation is neglected, so

Jvz = E |z=ρw′q′ ≈ −ρKv
∂q

∂xj

− ρKvw

∫ z

0

(∇ |h ·V)dz . (14)

Formulae (7) and (14) show that the vertical
heat turbulent flux and the vertical vapor turbulent
flux both must include the vertical transportation
caused by the convergence or the divergence move-
ment, namely the vertical velocity of flow fields, except
the gradient transport flux that is conversant. The
convergence and the divergence of flow fields are a dy-
namic reversible process, but the turbulent transporta-
tion is a thermodynamic irreversible process. There-
fore it is a cross coupling effect between the dynamic
processes and the thermodynamic processes, and it
is called the cross coupling principle between the dy-
namic processes and the thermodynamic processes.

It must be pointed out that the momentum flux is
a tensor, but the heat flux and the vapor flux are en-
tirely vector quantities. Based on the Curier-Prigogine
principle, there exists no cross coupling between the
momentum flux and the heat flux or the vapor flux.
Namely, the momentum transportation is still of the
classical form

τ ij = −ρKij
∂U i

∂xj
. (15)

3. The turbulent transportation in the atmo-
spheric boundary layer

If the convection of the atmospheric boundary layer
develops sufficiently to the mixture layer, we have
(Stull, 1988),

∂θ

∂z
= 0 ;

∂U

∂z
= 0 ;

∂V

∂z
= 0 . (16)

So from formulae (7), (14), and (15), we obtain trans-
portation flux of the heat, the vapor, and the momen-
tum in the mixture layer, respectively,

Jθz = ρcpw′θ′ = −ρcpKθw

∫ z

0

(∇ |h ·V)dz , (17)
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Jvz = ρw′q′ =− ρKv
∂q

∂z

− ρKvw

∫ z

0

(∇ |h ·V)dz , (18)

τ 13 = ρw′u′ = 0 ; τ 23 = ρw′v′ = 0 . (19)

Obviously, the heat transportation in the mixture layer
is in direct ratio to the integral of the velocity diver-
gence in the air column. The vapor transportation
should include the contribution of the convergence or
the divergence, except the vapor gradient transporta-
tion. But the momentum transportation equals zero
in the mixture layer.

Formulae (7) and (16) assert that the heat turbu-
lent flux, Jθj , should equal zero in the mixture layer,
if the movement of convergence and divergence is not
considered as being the same as in the classical theory
of the atmospheric boundary layer. But the observed
facts in the atmospheric boundary layer indicate that
the heat turbulent flux, Jθj , is a limited value being
degressive with height (Stull, 1998), and the poten-
tial temperature gradient equals zero, ∂θ/∂z = 0, to
cause the turbulent transport coefficients to go to in-
finity and thus lose their physical significance. But
formula (17) shows that the movement of convergence
and divergence leads to the vertical heat transporta-
tion, because large eddy convection causes the con-
vergence and divergence movement without fail under
the condition of the powerful convection development.
Sequentially it follows logically from the physical rea-
son that the potential temperature gradient is equal
to zero, but the heat turbulent transportation flux is
also a non-zero-limited value.

The energy budget on the ground surface is a conti-
nuity condition of energy exchange at the ground sur-
face. We use the formulae (7) and (14) to get

Rn −G = H + λvE + ρcpKw

∫ z

0

(∇ |h ·V)dz ,

Kw = Kθw +
λv

cp
Kvw . (20)

Kw in the above formula is the energy transport coef-
ficient of movement of convergence or divergence. The
energy budget equation (20) indicates that the avail-
able energy (Rn − G) equals the sum of the sensitive
heat, the latent heat measured at height z, and the en-
ergy transportation effect of convergence movement at
the height measuring the turbulent fluxes H and λE.
Alone, as the energy transportation effect of conver-
gence movement can be neglected, the available energy
on the ground surface is equal just to the sum of the
sensitive heat and the latent heat measured at height
z which is the same as the conclusion of the classical
theory of the atmospheric boundary layer.

The boundary layer parameterization of the land
surface processes can start out from formulae (7), (14),
and (15). If considering the energy transportation ef-
fect of the convergence movement, the boundary layer
parameterization of the land surface processes should
be rewritten as

H =− ρcpCH(U − U0)(T − T0)

− ρcpCHw

∫ zi

0

(∇ |h ·V)dz , (21)

E =− ρCv(U − U0)(q − q0)

− ρCvw

∫ zi

0

(∇ |h ·V)dz , (22)

τ = −ρCD(U − U0)2 . (23)

In the above formulae, CD, CH, and Cv are the drag co-
efficients used customarily. CHw and Cvw are the cross
coupling coefficients that the movement of convergence
or divergence causes transportation of the heat and
the vapor. Their values must be determined by an
observation experiment, the same as for the drag co-
efficients.

The above formulae show that the parameteriza-
tions of heat flux and vapor flux in the atmospheric
boundary layer must also add a term that is in direct
ratio to the integral of velocity divergence in the air
column that is from the ground surface to the top of
the boundary layer. It is important that the influence
of convergence and divergence movement on vertical
transportation of the heat and the vapor is under the
condition of the thermal heterogeneous underlying sur-
face and in the convection boundary layer. In general,
the air velocity field at the lower boundary of the free
atmosphere is known for the parameterization of land
surface processes in the meso-scale numerical models
or general circulation numerical models. Thus we can
estimate the velocity divergence values at the lower
boundary of the free atmosphere. Consequently, so
long as the cross coupling coefficients of the conver-
gence and divergence movement are determined, we
can estimate the influence of the convergence or diver-
gence movement on vertical transportation of the heat
and the vapor. The boundary layer parameterization
scheme with formulae (21) and (22) may offer a more
brief and reasonable scheme, which is a physical dis-
posal scheme, of the boundary layer parameterization
of land surface processes under the condition of the
heterogeneous underlying surface.

4. Conclusion

The classical turbulent K closure theory of the at-
mospheric boundary layer assumes that the vertical



798 ADVANCES IN ATMOSPHERIC SCIENCES VOL. 20

turbulent transport flux of any macroscopic quantity
is equivalent to that quantity’s vertical gradient trans-
port flux. But linear thermodynamics demonstrates
that the atmospheric movement of convergence or di-
vergence should influence the turbulent transporta-
tion. This is a special phenomenon of the cross cou-
pling between the dynamic processes and the ther-
modynamic processes in the atmospheric system. It
results in that the turbulent transportation of en-
ergy and substance in the atmospheric boundary layer
should include the energy and substance transporta-
tion caused by the movement of convergence or diver-
gence, except the transportation caused by the macro-
scopic quantity gradient.
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