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ABSTRACT

For the conservative and non-conservative schemes of nonlinear evolution equations, by taking the
two-dimensional shallow water wave equations as an example, a comparative analysis on computational
stability is carried out. The relationship between the nonlinear computational stability, the structure of
the difference schemes, and the form of initial values is also discussed.
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1. Introduction

In medium and long-range numerical weather pre-
diction and ocean current numerical simulation, the
finite-difference schemes are mostly employed to carry
out the numerical solutions of nonlinear atmospheric
and oceanic equations. So it is a key problem on
how to design long-time computationally stable dif-
ference schemes. Zeng (1978), Zeng and Ji (1981),
and Ji (1981a, b) systematically studied the compu-
tational stability of the adiabatic or non-dissipative
nonlinear evolution equations, discussed the reasons
causing nonlinear computational instability, and con-
structed a computationally stable implicit complete
square conservative difference scheme. Later, Ji and
Wang (1990; 1991; 1994; 1995) and Ji et al. (1998)
constructed a computationally stable explicit complete
square conservative difference scheme. Furthermore,
Wang et al. (1995) also discussed the relationship be-
tween the square conservation systems and Hamilto-
nian systems. For the nonconservative schemes of the
nonlinear evolution equations, Lin et al. (2000) also
gave a new method for judging the computational sta-
bility. Meanwhile, Lin et al. (2002) carried out a com-
parative analysis on the computational stability for lin-
ear and nonlinear evolution equations and proved that
the computational stability of the difference schemes of

nonlinear evolution equations is totally different from
that of the linear evolution equations. In this paper,
taking the two-dimensional shallow water wave equa-
tions as an example, a comparative analysis on com-
putational stability is carried out for conservative and
nonconservative schemes, and the relationships among
the nonlinear computational stability, the construction
of conservative and nonconservative schemes, and the
form of initial values is further discussed.

2. The square conservative scheme and its com-
putational stability

The two-dimensional nonlinear shallow water wave
equations are
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where ϕ = gξ, Φ = gh, ξ is surface elevation, g is grav-
itational acceleration, and h is water depth. g and h
are constants.
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Equation (1) can be rewritten in an operator form,
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For Eq. (2), we take C grids and use the difference scheme as follows:
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ε is a dissipative coefficient, B is a dissipative operator, and their concrete meanings are according to Ji and
Wang (1991). When ε and B are suitably selected, scheme 1 can become a completely square conservation.

According to Ji and Wang (1991) and Wang and Ji (1990; 1994; 1995), the following theorem can be proved
easily.

Theorem 1 If ∆t is fixed, and ∆t satisfies 2∆t
√
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conservative scheme with a constant time-step while
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Theorem 2 If the τ is not fixed, while K1 < 2ε and
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then scheme 1 is an explicit complete square conservative scheme with an adjustable time-step, where K1,K2,
and K3 are determined by Expression (5), ε by Expression (4), and B by Expression (6).

3. The nonconservative scheme and its computational stability

For Eq. (1), we take C grids and use two kinds of nonconservative difference schemes as follows:
Scheme 2 (CTCS scheme)
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Scheme 3 (Lax-Wendroff scheme)
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According to Lin et al. (2000), the following theorem can be easily proved.
Theorem 3 For schemes 2 and 3, the necessary conditions for computational stability are

(i) u (x, y, 0) > 0, v (x, y, 0) > 0 ;

(ii)
∂u (x, y, 0)
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> 0,
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∂y

> 0 ;
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> 0 ;

(iv)
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> 0,

∂ϕ (x, y, 0)
∂y

> 0 .

4. Numerical tests

In order to discuss the relationships among the computational stability of the conservative and nonconserva-
tive schemes of the two-dimensional nonlinear shallow water wave equations, the structure of the schemes, and
form of the initial values, the following numerical experiments are performed. Two initial values are chosen as,

1. u(x, y, 0) = x ; v(x, y, 0) = y ; ϕ(x, y, 0) = g[1− e−(x+y)] ,

2. u (x, y, 0) = sin 2πx ; v (x, y, 0) = sin 2πy ; ϕ (x, y, 0) = g cos 2π (x + y) .

where 0 6 x 6 1000, 0 6 y 6 1000, 0 6 t 6 10000, and h = 20.
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Table 1. Computational results of numerical experiments

scheme 1a scheme 1b scheme 2 scheme 3

initial value 1 stable stable stable stable

initial value 2 stable stable unstable unstable

Numerically, take ∆x = 1, ∆t = 0.1 for scheme
1a, 2, and 3. For Scheme 1a, ε is determined by Ex-
pression (4); for scheme 1b, ε is determined by Ex-
pression (4), and ∆t by Expression (7). Here, scheme
1a is the explicit complete square conservative scheme
whose time-step is constant, and scheme 1b the explicit
complete square conservative scheme whose time-step
is adjustable. The results are shown in Table 1.

From the results we can see that schemes 1a and 1b
are stable. This shows that scheme 1a and 1b have a
good square conservativeness. But scheme 1b with an
adjustable time-step is more time-saving than scheme
1a with a constant time-step. Schemes 2 and 3 are
stable for initial value 1, owing to the satisfying of
Theorem 3. They are unstable for initial value 2, how-
ever, since the stability conditions of Theorem 3 are
not satisfied. But in practical computations of atmo-
sphere and ocean equations, the initial fields similar
to initial value 1 do not exist. So Schemes 2 and 3
are not really suitable for the practical computation
of atmosphere and ocean equations.

5. Conclusion

From the above discussions, some conclusions can
be drawn. The computational stability of the con-
servative scheme is totally different from that of the
nonconservative scheme. The computational stability
of the conservative scheme is only concerned with the
structure of the scheme. The computational stability
of the nonconservative scheme depends not only on the
structure of the scheme, but also on the form of the
initial values and their partial derivatives.
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