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ABSTRACT

The moist potential vorticity (MPV) equation is derived from complete atmospheric equations including
the effect of mass forcing, with which the theory of Up-sliding Slantwise Vorticity Development (USVD)
is proposed based on the theory of Slantwise Vorticity Development (SVD). When an air parcel slides up
along a slantwise isentropic surface, its vertical component of relative vorticity will develop, and the steeper
the isentropic surface is, the more violent the development will be. From the definition of MPV and the
MPV equation produced here in, a complete vorticity equation is then put forward with mass forcing, which
explicitly includes the effects of both internal forcings, such as variations of stability, baroclinicity, and
vertical shear of horizontal wind, and external forcings, such as diabatic heating, friction, and mass forcing.
When isentropic surfaces are flat, the complete vorticity equation matches its traditional counterpart. The
physical interpretations of some of the items which are included in the complete vorticity equation but
not in the traditional one are studied with a simplified model of the Changjiang-Huaihe Meiyu front. A
60-h simulation is then performed to reproduce a torrential rain event in the Changjiang-Huaihe region
and the output of the model is studied qualitatively based on the theory of USVD. The result shows that
the conditions of the theory of USVD are easily satisfied immediately in front of mesoscale rainstorms in
the downwind direction, that is, the theory of USVD is important to the development and movement of
these kinds of systems.

Key words: Up-sliding Slantwise Vorticity Development (USVD), mass forcing, complete vorticity equa-

tion

1. Introduction

The concept of potential vorticity (defined as (ζa ·
5θ)/ρ, hereafter referred to as Ertel PV), first intro-
duced by Ertel (1942), is fundamental to our under-
standing of atmospheric dynamics. In a frictionless
and adiabatic dry atmosphere, Ertel PV is conserved.
Besides its conservation, Ertel PV also has two other
main properties: its invertibility in a balanced system
and the impermeability of PV substance. Ertel PV
is very useful in both diagnostic and prognostic stud-
ies of atmospheric phenomena (Robinson, 1989; Gao
et al., 1990; Hoskins and Berrisford, 1988; Davis and
Emanuel, 1991; Schubert and Alworth, 1987; Thorpe,
1990; Montgomery and Farrell, 1992; Keyser and Ro-
tunno, 1990). Pedlosky (1979) stressed that the PV
notion is so important that the emphasis on it can
never be overdone. The application of Ertel PV in the
diagnosis of atmospheric motion was summarized by

Hoskins et al. (1985), and the concept of isentropic
potential vorticity (IPV) was also introduced. IPV is
indicative of some aspects of the movement and de-
velopment of weather systems in middle and high lat-
itudes. But in the lower troposphere, especially in low
latitudes, IPV has some limitations.

When moisture is too important to be neglected,
such as in the study of torrential rains, the definition
and concept of PV are also available except that now θ
(potential temperature) is replaced by θe (equivalent
potential temperature) in the expression of PV, and
since the effect of moisture is involved, the new PV is
called moist potential vorticity (MPV). Bennetts and
Hoskins (1979) deduced an equation for the variation
of the so-called “wet-bulb potential vorticity” by using
a set of equations with the Boussinesq approximation
and concluded that conditional symmetric instability
is a possible cause of formation of frontal rain belts.
Based on the precise primitive equations, a similar
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variation equation for MPV was also obtained by Wu
et al. (1998, 1995, 1997, 1999), which shows that in a
frictionless and adiabatic saturated atmosphere, MPV
is conserved, and the theory of Slantwise Vorticity De-
velopment (SVD) was proposed to study the develop-
ment of the vertical component of relative vorticity in
a moist baroclinic condition; according to the theory,
vorticities are apt to develop near steep isentropic sur-
faces. In fact, since many kinds of weather systems
in the atmosphere do occur and develop near slant-
wise (moist) isentropic surfaces, it is applicable and
necessary to investigate the evolution of these systems
in the context of slantwise isentropic surfaces. A new
form of vertical vorticity equation was also produced
by Wu et al. (1999) based on the definition of PV
and MPV. Compared to the traditional vertical vor-
ticity equation, the new one has many advantages and
is more applicable for diagnosis (Wu, 2001). To study
torrential rains, an MPV equation was also derived by
Gao et al. (2002) with mass forcing and the imperme-
ability of the MPV substance was proved. They con-
cluded that the MPV substance anomaly induced by
both heating and mass forcing during torrential rains
is a good tracer for tracking the region of torrential
rains, which can be useful in the forecast of torrential
rains.

Some studies (Zhang et al., 1999; Cui, 2001)
showed that up-sliding slantwise movements are al-
ways observed during the development and move-
ment of oceanic frontal cyclones and rainstorms in the
Changjiang-Huaihe valley, which prompts us to im-
prove the theory of SVD to make it suitable for this
situation. In this article, at first an MPV equation
is derived with diabatic heating, friction, and mass
forcing in section 2, and then the theory of up-sliding
slantwise vorticity development (USVD) is proposed
in section 3. Furthermore, a complete vorticity equa-
tion is produced in section 4. By comparing the com-
plete vorticity equation with the traditional one, some
items not included in the latter are obtained, and by
taking the simplified Changjiang-Huaihe Meiyu front
as an example, the physical interpretations of these
items are analyzed in section 5. In section 6, a 60-h
simulation of a torrential rain event in the Changjiang-
Huaihe region is analyzed qualitatively based on the
theory of USVD. Conclusions and discussion are given
in section 7.

2. Moist potential vorticity equation with mass
forcing

By taking the vector product of the momentum
equation, and being aware of the fact that the vector

product of a gradient is zero, we obtain the vorticity
equation

∂ζa

∂t
−∇× (V × ζa) = ∇p×∇α +∇× F , (2.1)

where

ζa = ∇× V + 2Ω

is the absolute vorticity.

α =
1
ρ

,

and ρ is the air density.
Including latent heating and other kinds of heating

Qd, the thermodynamic equation can be written as

cp
T

θ

dθ

dt
= −L

dq

dt
+ Qd . (2.2)

Upon taking the natural logarithm and total
derivative of both sides of the definition of equivalent
potential temperature

θe = θ exp
(

Lq

cpT

)
,

putting it into the above thermodynamic equation,
(2.2), and omitting the high-order term, we obtain

dθe

dt
=

θe

cpT
Qd = Q . (2.3)

By taking the scalar product of (2.1) with ∇θe, we
obtain

α
d(ζa · ∇θe)

dt
= −α(ζa · ∇θe)∇ · V

+ α(∇p×∇α) · ∇θe + αζa · ∇Q + α∇θe · (∇× F ) .

(2.4)

When it is raining, the continuity equation can be ex-
pressed as (referring to Gao et al., 2002)

dρa

dt
+ ρa∇ · V = −∇ · (ρrV t) , (2.5)

where V t is the terminal velocity of a precipitation
particle and

−∇ · (ρrV t)

is the contribution of mass forcing caused by precipi-
tation to the variation of density;

ρa = ρd + ρv + ρc + ρr

with ρa being the general density, and ρd, ρv, ρc, and
ρr the densities of dry air, vapor, cloud water, and rain
water, respectively. There exist the following continu-
ity equations

dρd

dt
+ ρd∇ · V = 0 , (2.6)

dρv

dt
+ ρv∇ · V = −Qv , (2.7)

dρw

dt
+ ρw∇ · V +∇(ρrV t) = Qv , (2.8)
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where

ρw = ρc + ρr ,

and Qv is the transfer function from vapor to cloud wa-
ter and rain water; Then the air continuity equation
is obtained by substituting (2.7) into (2.6), namely

dα

dt
= α∇ · V + α2Qv = α∇ · V + Qn , (2.9)

where

α =
1
ρ
, ρ = ρd + ρv ,

and

Qn = α2Qv

is the contribution of mass forcing caused by precipi-
tation and condensation to the variation of density.

By multiplying

ζa · ∇θe

on both sides of (2.9), and substituting it into (2.4),
defining

F ξ = ∇× F

as the eddy friction diffusion and

Pm = αζa · ∇θe

as MPV, the MPV equation with mass forcing is found
to be

dPm

dt
= α(∇p×∇α) · ∇θe + αζa · ∇Q

+ α∇θe · F ξ + (ζa · ∇θe)Qn , (2.10)

where

(ζa · ∇θe)Qn

is the contribution of mass forcing caused by precipi-
tation and condensation to the variation of MPV.
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Fig.1 Schematic diagram of USVD 

Fig. 1. Schematic diagram of USVD.

3. The theory of USVD

Based on the conservation of Ertel PV and MPV,
Wu et al. (1998) advanced the theory of SVD. Since
there are often apparent slantwise up-sliding motions
immediately in front of severe storms, such as oceanic
cyclones and rainstorms in the downwind direction,
seen from both observations and numerical simulations
(Zhang et al., 1999; Cui, 2001), a deduction, the theory
of USVD, is proposed and described below in detail.
The Z-coordinate is adopted here. USVD is described
in Fig. 1, where we assume that the parallel isentropic
surfaces are horizontal or perpendicular outside the
box OFO1E, but are bent as circles inside the box.
For simplicity, we further assume that the gradient of
the isentropic surfaces,

4θ = θn

is constant. And also a circle ‘b’ is defined, which is
coaxial with the isentropic surfaces and keeps from

θ +4θ

at a constant distance | ξn |. From the definition of
Ertel PV, we get

PE = ξnθn = ξzθz + ξsθs (3.1)

and further,

ξz =
ξnθn − ξsθs

θz
=

PE − ξsθs

θz
, (θz 6= 0) (3.2)

where

ξn = αζn

is the projection of

ξa = αζa

on n (n is the direction of −∇θ), and

ξz = αζz and ξs = αζs ,

are the vertical and horizontal components of ξa, re-
spectively;

θn =| ∇θ | ,
and θs and θz, are the horizontal and vertical compo-
nents of θn, respectively. Here α = ρ−1, and ρ is air
density; ζa is absolute vorticity, and ζs and ζz are the
horizontal and vertical components of ζa, respectively.

For an air parcel A0 moving on the isentropic sur-
face θ + 4θ leftward, when outside the box OFO1E,
ζz does not vary according to the BOX law (Wu et al.,
1998) no matter what

ξs = αζs = α∂Vm/∂z

is. When A0 continues to move leftward on the isen-
tropic surface θ + 4θ into the box by sliding up an
angle B (B is positive when one side deviates from
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−z towards −S) to point A, the head point D1 of ξa

of the parcel A0 should be located in a plane D1D2

which is a tangential plane to circle ‘b’ at point D2 as
shown in Fig. 1 according to the CIRCUMSCRIBED
PLANE law (Wu et al., 1998). Because, according to
the figure,

tanB =
θs

θz
,

(
−π

2
< B <

π

2

)
(3.3)

and n · k > 0, then

cos B =
θz

θn
> 0 . (3.4)

Introducing them into (3.2), we get

ξz =
ξn

cos B
− ξs tanB ,

(
| B |6= π

2

)
(3.5)

In the Northern Hemisphere in the case of cyclogenesis,
we get ξn > 0. If the following condition is satisfied:

CD =
ξsθs

θz
< 0 , (3.6)

then (3.5) could be rewritten as

ξz =
ξn

cos B
+ | ξs tanB | ,

(
| B |6= π

2

)
(3.7)

where ξz increases with increasing | B |. When (3.6)
is satisfied (when point A0 is outside the box, θs = 0,
so originally CD equals 0; then (3.6) is equivalent to
dCD/dt < 0), the vertical component of absolute vor-
ticity of parcel A0 should grow, and when the isen-
tropic surfaces are sharply steep, ξz becomes very
large:

ξz →∞ , |B| → π

2
.

Because the development of vorticity is due to the up-
sliding of the air parcel along a slantwise isentropic
surface, it can be referred to as USVD. Apparently,
USVD will not occur unless three conditions are satis-
fied, namely, the presence of slantwise isentropic sur-
faces (or moist isentropic surfaces for moist air), up-
sliding slantwise motions on isentropic surfaces, and
dCD/dt < 0 (or dCm/dt < 0 for moist air).

4. Complete vorticity equation

Upon applying the total derivative to both sides of
(3.2), the complete vorticity equation for dry air can
be obtained as

Dζz

Dt
+ βv + (f + ζz)∇ · V =

1
a

D

Dt

[
PE

θz
− CD

]
,

θz 6= 0 (4.1)

where PE is the Ertel PV,

CD =
ξsθs

θz

is the dry SVD index, and θz is the vertical component
of the gradient of potential temperature.

If moist air is studied, then the corresponding equa-
tion for moist air can be obtained as

Dζz

Dt
+ βv + (f + ζz)∇ · V =

1
a

D

Dt

[
Pm

θez
− Cm

]
− Qn(ζz + f)

α
, θez 6= 0 (4.2)

where Pm is MPV,

Cm =
ξsθes

θez

is the corresponding moist SVD index, and θez is the
vertical component of the gradient of equivalent po-
tential temperature.

5. Comparison between the complete vorticity
equation and the traditional vorticity equa-
tion

Compared to the traditional vorticity equation, the
complete vorticity equation explicitly covers the effects
of both internal forcings, such as variations of stabil-
ity, baroclinicity, and vertical shear of horizontal wind,
and external forcings, such as diabatic heating, fric-
tion, and mass forcing, thus making it more suitable
for application. Below is the comparison between these
two equations in detail.

The horizontal air dynamic equation set can be
written as

du

dt
= −α

∂p

∂x
+ fv − f̃w + Fx , (5.1)

dv

dt
= −α

∂p

∂y
− fu + Fy . (5.2)

By omitting f̃w and applying the partial derivative
operators of x and y to (5.2) and (5.1), respectively,
and subtracting the derivative of (5.1) from that of
(5.2), we get the traditional vorticity equation

dςz
dt

+ βv + (f + ςz)∇ · V = (f + ςz)
∂w

∂z

+
(

∂u

∂z

∂w

∂y
− ∂v

∂z

∂w

∂x

)
+ Nz + k · F ξ , (5.3)

where the four terms on the right side are the stretch-
ing term, the twisting term, the horizontal solenoid
term

Nz =
∂p

∂x

∂α

∂y
− ∂p

∂y

∂α

∂x
,

and the vertical component of eddy friction diffusion,
respectively.

From the definition of MPV and moist SVD index,
we get

Pm = ξsθes + ξzθez ,
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Cm =
ξsθes

θez
.

Introducing (2.9), (2.10), and the above two expres-
sions into(4.2), we get the complete vorticity equation
with mass forcing as

dζz

dt
+ βv + (f + ζz)∇ · V =

− 1
αθ2

ez

[
(Pm − ξsθes)

dθez

dt
+ θezξs

dθes

dt
+ θesθez

dξs

dt

]
+

1
θez
∇θe · F ξ +

1
θez

ζa · ∇Q +
(∇p×∇α) · ∇θe

θez

+
(ζa · ∇θe)Qn

αθez
− Qn(ζz + f)

α
(θez 6= 0) . (5.4)

For

ξz = α(ζz + f)

and

ξs = αζs

the above equation can be rewritten as
dζz

dt
+ βv + (f + ζz)∇ · V =[

(f + ζz)
θez

(
−dθez

dt
+

∂Q

∂z

)
+

ζs

θez

(
−dθes

dt
+

∂Q

∂s

)
+

1
θez
∇θe · F ξ

]
+

[
− θes

αθez

dαζs

dt
+

(∇p×∇α) · ∇θe

θez

]
+

ζsθesQn

αθez
(θez 6= 0) . (5.5)

And it can be further expressed as
dζz

dt
+ βv + (f + ζz)∇ · V =[

(f + ζz)
θez

(
−dθez

dt
+

∂Q

∂z

)
+

ζx

θez

(
−dθex

dt
+

∂Q

∂x

)
+

ζy

θez

(
−dθey

dt
+

∂Q

∂y

)
+

1
θez
∇θe · F ξ

]
+

[
− θes

αθez

dαζs

dt
+

(∇p×∇α) · ∇θe

θez

]
+

ζsθesQn

αθez
(θez 6= 0) . (5.6)

We have the derivative relation
dθez

dt
=

∂

∂t

(
∂θe

∂z

)
+ V · ∇∂θe

∂z
. (5.7)

Then we get
dθez

dt
=

∂

∂z

(
dθe

dt

)
−∇θe ·

∂V

∂z
. (5.8)

For the same reason, we get
dθex

dt
=

∂

∂x

(
dθe

dt

)
−∇θe ·

∂V

∂x
, (5.9a)

dθey

dt
=

∂

∂y

(
dθe

dt

)
−∇θe ·

∂V

∂y
. (5.9b)

By introducing (5.8), (5.9), and (2.3) into (5.6), we
obtain

dζz

dt
+ βv + (f + ζz)∇ · V =[

(f + ζz)
θez

(
∇θe ·

∂V

∂z

)
+

ζx

θez

(
∇θe ·

∂V

∂x

)
+

ζy

θez

(
∇θe ·

∂V

∂y

)
+

1
θez
∇θe · F ξ

]
+

[
− θes

αθez

dαζs

dt
+

(∇p×∇α)sθes

θez
+ Nz

]
+

ζsθesQn

αθez
(θez 6= 0) , (5.10)

where

(∇p×∇α)s

is the horizontal component of the solenoid term. Fur-
ther we have

dζz

dt
+ βv + (f + ζz)∇ · V ={[

(f + ζz)
∂w

∂z
+ ζs

∂w

∂s

]
+ k · F ξ

}
+

[
(f + ζz)

θez
θes

∂Vs

∂z
+

ζx

θez
θes

∂Vs

∂x
+

ζy

θez
θes

∂Vs

∂y

+
1

θez
(θesFξs)

]
+

[
− θes

αθez

dαζs

dt
+

(∇p×∇α)sθes

θez
+ Nz

]
+

ζsQnθes

αθez
(θez 6= 0) . (5.11)

Comparing the complete vorticity equation (5.11) with
the traditional vorticity equation (5.3), we find that
the former contains some extra terms not included in
the latter:

(1)
(f + ζz)

θez
θes

∂Vs

∂z
+

ζx

θez
θes

∂Vs

∂x
+

ζy

θez
θes

∂Vs

∂y

A B C

+
1

θez
(θesFξs)

D

(2) − θes

αθez

dαζs

dt
+

(∇p×∇α)sθes

θez
+

ζsQnθes

αθez

E F G

where A, B, and C represent the vertical, X- and Y -
components of the vorticity advection of horizontal
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Fig.2 Simplified Jiang-Huai Meiyu front model 
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Fig. 2. Simplified Changjiang-Huaihe Meiyu front model.

velocity respectively, D represents the contribution of
the horizontal component of eddy friction diffusion, E
is the contribution of the variation of the vertical shear
of horizontal velocity, F is the horizontal component
of the solenoid term, and G is the contribution of mass
forcing.

The common feature of the above seven terms is
that they are all closely related to the slope of moist
isentropic surfaces

tan δ = θes/θez .

When the surfaces are flat,

θes ≈ 0 and tan δ = θes/θez = 0 ;

then all of the above seven terms equal zero, and the
complete vorticity equation is identical to the tradi-
tional counterpart. Below, the physical interpretations
of some of the extra terms will be presented by taking a
simplified Changjiang-Huaihe Meiyu front model as an
example. For simplicity, the parallel moist isentropic
surfaces are set to be parallel to the x-coordinate (Fig.
2). Assuming∇θe=constant, we get θex = 0; from Fig.
2 we also get θey < 0 and θez > 0; further we assume
that the gradients of all kinds of variables are zero in
the X-direction, that is, ∂/∂x ≡ 0. From the thermal-
wind equation, we get

∂u

∂z
∝ −∂T

∂y
> 0

and
∂v

∂z
∝ ∂T

∂x
= 0

at last we assume that the horizontal shear of vertical
velocity is far less than the vertical shear of horizontal
velocity.

Then the above seven terms can be rewritten as

A :
(f + ζz)

θez
θes

∂Vs

∂z
=

(f + ζz)
θez

(
θex

∂u

∂z
+θey

∂v

∂z

)
=0 ,

B :
ζx

θez
θes

∂Vs

∂x
=

1
θez

(
∂w

∂y
− ∂v

∂z

)(
θex

∂u

∂x
+θey

∂v

∂x

)
=0 ,

C :
ζy

θez
θes

∂Vs

∂y
=

1
θez

(
∂u

∂z
− ∂w

∂x

)(
θex

∂u

∂y
+θey

∂v

∂y

)
=

θey

θez

(
∂u

∂z

) (
∂v

∂y

)
,

D :
1

θez
(θesFξs) =

θexFξx

θez
+

θeyFξy

θez
=

θeyFξy

θez
,

E : − θes

αθez

dαζs

dt
= − θex

αθez

d[α(∂w/∂y − ∂v/∂z)]
dt

− θey

αθez

d[α(∂u/∂z − ∂w/∂x)]
dt

=

− θey

αθez

d[α(∂u/∂z)]
dt

,

F :
(∇p×∇α)sθes

θez
=

θex

θez

(
∂p

∂y

∂α

∂z
− ∂p

∂z

∂α

∂y

)
+

θey

θez

(
∂p

∂z

∂α

∂x
− ∂p

∂x

∂α

∂z

)
= 0 ,

G :
ζsQnθes

αθez
=

Qnθex

αθez

(
∂w

∂y
− ∂v

∂z

)
+

Qnθey

αθez

(
∂u

∂z
− ∂w

∂x

)
=

Qnθey

αθez

(
∂u

∂z

)
.

In this case, C, D, E, and G are not zero. (The phys-
ical interpretations of the other three terms and the
eddy friction diffusion D will be discussed in another
paper.) In detail, as to C, when there is convergence
in the Y direction

∂v

∂y
< 0

since,
∂u

∂z
> 0, θey < 0 , and θez > 0 ,

then, C > 0, which means that the vertical component
of vorticity will increase. In fact, the convergences and
divergences are just representing the respective proce-
dures of frontogenesis and frontolysis (Fig. 2). In the
term of E, since,

θey < 0, θez > 0

and according to the thermal-wind relation
d[α(∂u/∂z)]

dt
∝ −d[α(∂T/∂y)]

dt
,
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when the temperature gradient in the Y direction in-
creases, that is, the baroclinity increases, E > 0, the
vertical vorticity will increase. As for G, when it is
raining, we have, Qn > 0 and since,

∂u

∂z
> 0, θey < 0 , and θez > 0 ,

then, G < 0, and the vertical vorticity will decrease.
From the above we know that frontogenesis and the in-
crease of baroclinicity are favorable to the development
of vertical vorticity, while mass forcing is disfavorable
to it.

Here only three terms of the seven extra terms are
analyzed, but we can also find out that near slantwise
isentropic surfaces, the variations of some thermody-
namic terms and mass forcing are important to the
development of vorticity as being set forth in the the-
ory of SVD and USVD and should not be ignored.
Certainly, to use the complete vorticity equation and
the theory to investigate synoptic systems, a closer
analysis of the physical interpretations of the seven
extra terms is needed, which will be done in another
paper. Furthermore, since the evolution of vertical
vorticity results from many factors in synthesis, any
analysis results from one or part of the factors are par-
tial. It is notable that the complete vorticity equation
just provides a proper method to do vorticity analyses;
one form of the complete vorticity equation, (4.1) and
(4.2), give us a solution to study the evolution of verti-
cal vorticity in synthesis, while the other form, (5.11),
provides an approach to study the effect of each factor
respectively.

6. Qualitative analyses of the up-sliding slant-
wise vorticity development of “June 1999”
rainstorm in the Changjiag-Huaihe region

Mesoscale systems often occur along the
Changjiang-Huaihe Meiyu front in the summer, which
frequently bring together heavy rains or torrential
rains. The prediction of these kind of systems is
very important to the forecasts of torrential rains in
Changjiag-Huaihe valley. Here a 60-h simulation is
performed to reproduce a torrential rain event near
the Changjiag-Huaihe Meiyu front during 22–44 June
1999, and the model output is analyzed.

The PSU/NCAR three-dimensional, nonhydro-
static, nested-grid, mesoscale model (MM5V2) is used
for the present simulation. The fundamental features
of the model used include: (1) a two-way interactive
nested-grid procedure (Fig. 3); (2) use of the Kain-
Fritsch cumulus parameterization scheme for the fine-
mesh domain and the Anthes-type cumulus scheme for
the coarse-mesh domain; (3) an explicit Reisner2 mois-
ture scheme for both coarse and fine-mesh domains;

and (4) the Blackadar high-resolution boundary-layer
parameterization.

The nested-grid ratio is 1 to 3, with a fine-mesh
length of 25 km and a coarse-mesh length of 75 km.
The (x×y×δ) dimensions of the coarse and fine meshes
are 70× 61× 23 and 130× 106× 23 respectively, and
they are overlaid on a LAMBERT map projection true
at 30◦N and 60◦N. The 24 δ-levels are 0.0, 0.05, 0.1,
0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65,
0.7, 0.75, 0.8, 0.85, 0.89, 0.93, 0.96, 0.98, 0.99, and 1.0.
The use of an interactive two-way nested grid is helpful
for solving the boundary problem of regional models.
And the pressure at the top of the model atmosphere is
70 hPa. The model is initialized at 0000 UTC 22 June
1999 with data from the NCEP 2.5◦ latitude-longitude
global reanalysis and rawinsonde observations. The
model domains, and topography are shown in Fig. 3.

By comparing the output with the observations
(Fig. 4), we find that the model reproduces well the
evolution of the mesoscale systems. Figure 4 shows
the observational and simulated sea-level pressure, in
which both the intensification and the movement of the
mesoscale systems are reproduced well, so the model
output can be used for further diagnosis. Based on
the theory of USVD, the torrential rain is analyzed be-
low qualitatively with the high-resolution model out-
put in the context of slantwise isentropic surfaces to
demonstrate the application of USVD and the com-
plete vorticity equation proposed above. (For economy
of space, only sea-level pressure is verified against ob-
servations. Detailed verifications and qualitative and

domain2

domain1
 

 
Fig.3 Model domains and topography 

 

Fig. 3. Model domains and topography.
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Fig.4 Sea-Level Pressure(SLP, hPa), shading denotes topography>3000 m 

(a),(c)and(e)from simulation; (b),(d)and(f)from observations 

(a),(b) 12Z Jun 22; (c),(d) 12Z Jun 23; (e),(f) 12Z Jun 24 

(a) (b)

(c) (d)

(e) (f)

Fig. 4. Sea-Level Pressure (SLP, hPa); shading denotes topography > 3000 m. (a), (c), and (e) from simulation;
(b), (d), and (f) from observations; (a), (b) 1200 UTC 22 June; (c), (d) 1200 UTC 23 June; (e), (f) 1200 UTC 24
June.
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Fig.5 60-h averaged pressures and tracks of the mesoscale systems during model time on 340K moist isentropic 

surface 

 

Fig. 5. 60-h averaged pressures and tracks of the
mesoscale systems during model time on the 340 K moist
isentropic surface.

quantitative analyses of USVD will be discussed in an-
other paper.)

Figure 5 gives the 60-h average pressures and tracks
of two apparent mesoscale cyclones during model time
on a 340 K moist isentropic surface. The 340 K moist
isentropic surface is shaped like a funnel with higher
pressures in the center and lower ones outside. There
are two evident belts of concentrated isopiestics: the
northern one lies between 30◦–38◦N approximately in
an East-West direction, which denotes the position of
the Changjiang-Huaihe Meiyu front; the southern one
lies between 15◦–28◦N in an approximately northeast-
southwest direction, which is related to the Subtrop-
ical High. The two concentrated belts form the so-

called Changjiang-Huaihe Meiyu Front System first
introduced in the observational analysis of Zhou et
al. (2001). The stronger mesoscale cyclone(denoted
by a solid cyclonic symbol in Fig. 5, hereafter referred
to as D1) reaches the ocean to the south of the Jiao-
Dong Peninsula and moves on to the Japanese Sea in
a slightly northeast-southwest direction. At the end
of the simulation, it arrives at the sea to the west
of Japan near (41◦N, 139◦E) with a span of central
sea level pressure from 1002 hPa to 990 hPa and a
pressure-fall rate of 14 hPa/30 h; The rate obtains
its peak value(3 hPa/3 h) during 1500–1800 UTC 23
June. The weaker mesoscale cyclone (denoted by a
hollow cyclonic symbol in Fig. 5, hereafter referred to
as D2) develops and moves slowly along the valley of
the Yangtze River during the simulation. The common
property of these two cyclones is that both occur and
develop near the northern branch of the Changjiang-
Huaihe Meiyu Front System, that is, the Changjiang-
Huaihe Meiyu front, which is identical to the findings
of Wu et al. (1995). Below, only D1 will be investi-
gated for simplicity.

Figure 6 shows the meridional cross-sections across
the centers of daily precipitation greater than 50 mm
23 June. Solid lines are for equivalent potential tem-
perature, and thin lines for positive vorticity. In the
figure, positive vorticities always lie near the slantwise
moist isentropic surfaces of the Meiyu front; cold and
warm air converge remarkably near the slantwise moist
isentropic surfaces with strong up-sliding motions and
consequent heavy rains, which is identical to the anal-
yses above. According to section 3, USVD will not

 

Fig.6 Meridional cross-sections across the centers of daily precipitation greater than 50mm(Jun 23)  

Solid lines for equivalent potential temperatures, thin lines for positive vorticities in a unit of 10-5/s, Shaded area 

denotes topography 

(a) Jun 23（116oE）；(b) Jun 23（118oE） 

 

(a) (b)
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Fig. 6. Meridional cross-sections across the centers of daily precipitation greater than 50 mm (23 June Solid lines are
for equivalent potential temperature, thin lines for positive vorticity in units of 10−5 s−1. The shaded area denotes
topography. (a) 23 June along 116◦E; (b) 23 June along 118◦E.
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Fig.7 Horizontal vector and vertical velocity(W) on 340K moist isentropic surface 

Solid lines for isopiestics at an interval of 200hPa，thin lines for vertical velocity at an interval of 2cm/s, shaded areas 

denote the region with W greater than 2cm/s；solid and hollow cyclonic symbols denote the position of D1 and D2 

respectively（From 0ZJun 23 to 18ZJun 23 of 1999 at an interval of 6h） 

(a) 0Z Jun 23;(b) 6Z Jun 23;(c) 12Z Jun 23;(d) 18Z Jun 23 

 

(a) (b)

(c) (d)

Fig. 7. Horizontal wind vectors and vertical velocity (W ) on the 340 K moist isentropic surface. Solid lines are for
isopiestics at an interval of 200 hPa, thin lines for vertical velocity at an interval of 2 cm s−1, shaded areas denote the
region with W greater than 2 cm s−1; solid and hollow cyclonic symbols denote the position of D1 and D2 respectively
(from 0000 UTC 23 June to 1800 UTC 23 June 1999 at an interval of 6 h). (a) 0000 UTC 23 June; (b) 0600 UTC 23
June; (c) 1200 UTC 23 June; (d) 1800 UTC 23 June.

occur unless three conditions are satisfied: the pres-
ence of slantwise isentropic surfaces (or moist isen-
tropic surfaces for moist air), up-sliding slantwise mo-
tions on isentropic surfaces, and dCD/dt < 0 (or
dCm/dt < 0 for moist air). The first prerequisite can
be seen to be satisfied near the Meiyu front from the
analyses of Figs. 5–6; now the second prerequisite will
be checked below.

Figure 7 shows the horizontal wind vectors and
vertical velocity on the 340 K moist isentropic sur-
face. The funnel-shaped pressure distribution is evi-
dent and the cyclones always move and develop near

the northern slantwise moist isentropic surfaces. The
cyclonic circulations (horizontal vectors) in front of D1
flow from higher pressures to lower ones and are su-
perposed with positive W, that is, there are slantwise
up-sliding motions immediately in front of D1 in the
downwind direction. So the second prerequisite is sat-
isfied. The mesoscale circulation of D1 interacts with
the large-scale circulation and the isopiestics on the
moist isentropic surface near D1 show some mesoscale
distortions, which is favorable to the further develop-
ment of the cyclone.
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Fig.8 Zonal cross-sections across the center of D1 

Shaded area for topography，solid lines for moist isentropes，thin lines for the x-component of velocity（U），

cyclonic symbol denotes the position of D1（From 0ZJun 23 to 18ZJun 23 of 1999 at an interval of 6h） 

(a) 0Z Jun 23;(b) 6Z Jun 23;(c) 12Z Jun 23;(d) 18Z Jun 23 
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Fig. 8. Zonal cross-sections across the center of D1. Shaded areas are for topography, solid lines for moist isentropes,
and thin lines for the x-component of velocity (U). The cyclonic symbol denotes the position of D1£from 0000 UTC
23 June to 1800 UTC 23 June 1999 at an interval of 6 h). (a) 0000 UTC 23 June; (b) 0600 UTC 23 June; (c) 1200 UTC
23 June; (d) 1800 UTC 23 June.

From the analyses above, both of the first two pre-
requisites of USVD can be seen to be satisfied during
the evolution of D1; but USVD will not occur unless
the other condition, dCm/dt < 0, is also met. Fig-
ure 8 shows the zonal cross-sections across the center
of D1. Apparent vertical shears of horizontal wind
pointing vertically into the paper coexist with the evi-
dent slantwise up-sliding motions immediately in front
of D1 in the downwind direction near the steep moist
isentropic surface. From the studies above, this sit-
uation is equivalent to Cm < 0, and since we have
that when an air parcel starts to up-slide from the
horizontal surfaces, Cm = 0 (from Fig. 1, when isen-
tropic surfaces are flat, θes = 0 and Cm = 0), we get
dCm/dt < 0 here. That is, USVD will occur imme-

diately in front of D1 in the downwind direction and
the cyclone will continue to move and develop in that
direction. As we know, symmetric instability is a kind
of mesoscale instability, which is important to the evo-
lution of mesoscale weather systems. Regardless of the
kind of instability, it is just a kind of status or prop-
erty; there has to be some kind of start-up factors
to arouse it to come into effect, and the slantwise up-
sliding motions in USVD can be such a kind of start-up
factor (detailed analyses will be done in a later paper).

7. Conclusions and discussion

In this paper, mass forcing is invoked to develop
an MPV equation. Based on the theory of SVD, the
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theory of USVD is proposed to study the variation of
vorticity caused by slantwise up-sliding motions along
isentropic surfaces. From the definition of MPV and
the MPV equation proposed above, a complete vortic-
ity equation is put forward with mass forcing, which
explicitly includes the effects of both internal forc-
ings, such as variations of stability, baroclinicity, and
vertical shear of horizontal wind, and external forc-
ings, such as diabatic heat, friction, and mass forcing.
When isentropic surfaces are flat, the complete vor-
ticity equation is identical to the traditional counter-
part. The physical interpretations of some of the items
which are included in the complete vorticity equation
but not in the traditional one are studied with a sim-
plified model of the Changjiang-Huaihe Meiyu front;
the results show that these extra terms represent the
effects of frontogenesis, the variation of baroclinity,
mass forcing, and so on. A torrential rain event in
the Changjiang-Huaihe region is simulated and stud-
ied qualitatively based on the theory of USVD. The
result tells us that the three conditions of the the-
ory of USVD are easily met immediately in front of
the mesoscale rainstorms, that is, USVD will appear
immediately in front of the rainstorm. The theory
of USVD is useful to the studies of the development
and movement of these kinds of systems. As a kind of
mesoscale instability, symmetric instability has a great
impact on the evolution of mesoscale systems and the
slantwise up-sliding motions of USVD may be a start-
up factor of this kind of unstable energy.

In fact, it is common that most synoptic phenom-
ena occur, develop, and move near steep isentropic sur-
faces, so to study these phenomena in the context of
steep isentropic surfaces is helpful to our understand-
ing of the physical mechanism of the phenomena. And
SVD theory and the theory of USVD are just the vig-
orous tools to do that work. In future work, the the-
ory of USVD and the corresponding complete vorticity
equation will be used continuously to study the gene-
sis, development, and movement of rainstorms by ana-
lyzing the output of high-resolution mesoscale models
such as MM5 and ARPS.
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