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ABSTRACT

In a barotropic atmosphere, new Reynolds mean momentum equations including turbulent viscosity,
dispersion, and instability are used not only to derive the KdV-Burgers-Kuramoto equation but also to
analyze the physical mechanism of the cascades of energy and enstrophy. It shows that it is the effects of
dispersion and instability that result in the inverse cascade. Then based on the conservation laws of the
energy and enstrophy, a cascade model is put forward and the processes of the cascades are described.
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1. Introduction

It is well known that the basic flow gains kinetic
energy from eddies in atmospheric large-scale mo-
tion. This is an inverse energy cascade problem, which
was called the negative viscosity phenomena by Starr
(1966). In order to explain the phenomena, Liu and
Liu (1992, 1995) reconsidered Prandtl’s mixing length
theory and obtained the modified Reynolds’ averaged
momentum equations that contain the turbulent vis-
cosity and dispersion. It is stated that the turbulent
dispersion effect is the main reason for the energy in-
version described above, and the conditions of the in-
verse cascade are also obtained. At the same time,
it has long been recognized (Fjørtoft, 1953) that the
atmosphere on the largest scale behaves roughly like
a two-dimensional incompressible fluid. Leith (1971)
also considered that the barotropic models of the at-
mosphere, which have been moderately successful in
describing the large-scale motions, are essentially two-
dimensional and isotropic. For this two-dimensional
turbulence, Kraichnan (1967) demonstrated that with-
out considering viscosity and forcing, the energy and
enstrophy were conserved and gave rise to two cas-
cades, an inverse energy cascade and a direct enstro-
phy cascade, which were also got by Batchelor (1969)
and Leith (1968). After that, this result was shown
to be generic to two-dimensional turbulence with a
generalized enstrophy (Shivamoggi, 2000). Previously,
meteorologists paid more attention to the energy in-

version, but no or less attention to the direct enstro-
phy cascade and the relations between them. So, in
this paper, we will analyze the physical processes of
the cascades and the relations between them. Then
a model is put forward to give an analytical demon-
stration. At last, we will discuss the relations between
Prandtl’s mixing length theory and the cascade model.

2. KdV-Burgers-Kuramoto equation

Neglecting the atmospheric density change, the av-
eraged equations of motion and the thermodynamic
equation for an inviscid and adiabatic atmosphere can
be written as

du

dt
−fv = −1

ρ

∂p

∂x
−

(
∂u′2

∂x
+
∂u′v′

∂y
+
∂u′w′

∂z

)
, (1a)

dv

dt
+fu = −1

ρ

∂p

∂y
−

(
∂v′u′

∂x
+
∂v′2

∂y
+
∂v′w′

∂z

)
, (1b)

dw

dt
= −g− 1

ρ

∂p

∂z
−

(
∂w′u′

∂x
+
∂w′v′

∂y
+
∂w′2

∂z

)
, (1c)

dθ

dt
= −

(
∂θ′u′

∂x
+
∂θ′v′

∂y
+
∂θ′w′

∂z

)
. (1d)

Here p̄, ρ̄, and θ̄ are average pressure, density, and po-
tential temperature; (ū, v̄, w̄) is the averaged velocity,
(u′, v′, w′) is the fluctuating or disturbed velocity; θ′

is the fluctuating or disturbed potential temperature;
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g is the acceleration due to gravity; f is the Coriolis
parameter; and

d

dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
. (2)

Applying Prandtl’s mixing length theory to treat
the second-order moments which are the average of the
quadratic of fluctuating or disturbed quantities. Tak-
ing −u′w′ as an example, we assume that there exists a
mixing length l′ in which the particle retains its prop-
erties and exchanges them with other particles after
l′. Assuming ū as ū(z0) and ū(z) at z = z0 , z = z,
respectively, then it produces a deviation u′ when the
particle at z = z0 reaches z = z and mixes with the
neighboring air (l′ = z−z1). When only the first three
terms are considered , −u′w′ may be written as

−u′w′ = −α∂u
∂z

− β
∂2u

∂z2
− γ

∂3u

∂z3
, (3)

where

α = −l′w′, β = −1
2
l′2w′, γ = −1

6
l′3w′ ,

α < 0 is called the viscosity coefficient, β is called the
dispersion coefficient, and γ < 0 is called the instabil-
ity coefficient, so that

−∂u
′w′

∂z
= −α∂

2u

∂z2
− β

∂3u

∂z3
− γ

∂4u

∂z4
. (4)

Similarly, we have

−∂θ
′w′

∂z
= −α′ ∂

2θ

∂z2
− β′

∂3θ

∂z3
− γ′

∂4θ

∂z4
, (5)

where α′, β′, and γ′ are named the coefficients of ther-
mal diffusivity, thermal dispersion, and thermal con-
vection, respectively.

If the difference in various directions is disregarded
and the average symbols are neglected entirely,Eq. (1)
then may be written as
du

dt
− fv = −1

ρ

∂p

∂x
− α∇2u− β∇ ·�u− γ∇4u , (6a)

dv

dt
+ fu = −1

ρ

∂p

∂y
− α∇2v − β∇ ·�v − γ∇4v , (6b)

dw

dt
= −g − 1

ρ

∂p

∂z
− α∇2w − β∇ ·�w − γ∇4w , (6c)

dθ

dt
= −α′∇2θ − β′∇ ·�θ − γ′∇4θ , (6d)

where
∇ ≡ i

∂

∂x
+ j

∂

∂y
+ k

∂

∂z
,

� ≡ i
∂2

∂x2
+ j

∂2

∂y2
+ k

∂2

∂z2
.

We neglect the Coriolis force and the pressure gra-
dient force, and only consider the x-direction. Thus

Eq. (6a) can be rewritten as

∂u

∂t
+ u

∂u

∂x
+ α

∂2u

∂x2
+ β

∂3u

∂x3
+ γ

∂4u

∂x4
= 0 . (7)

This is the KdV-Burgers-Kuramoto equation. Its lin-
ear form is as follows:

∂u

∂t
+ c0

∂u

∂x
+ α

∂2u

∂x2
+ β

∂3u

∂x3
+ γ

∂4u

∂x4
= 0 , (8)

c0 is a constant. Setting

u = ûei(kx−ωt) , (9)

where, k is wavenumber and ω is angular frequency.
Substituting it into Eq. (8), thus gives

ω =
(
kc0 − βk3

)
+ i
(
αk2 − γk4

)
. (10)

Therefore

u = ûek2(α−γk2)t · eik[x−(c0−βk2)t] . (11)

So, the phase velocity of the linear wave described by
the KdV-Burgers-Kuramoto equation is c = c0 − βk2,
and the group velocity is cg = c0 − 3βk2 . Thus, β
plays the role of the dispersion. β∂2u/∂x2 is called
the dispersion term.

From Eq. (11) we know that α > 0 makes the am-
plitude of u increase with time, so it plays an unstable
role. α < 0 is the opposite case, which makes the am-
plitude of u decrease with time. Similarly, γ > 0 makes
the amplitude of u decrease with time, so it plays a sta-
ble role. γ < 0 is on the contrary. Lorenz pointed out
that the turbulent irregularity results from the insta-
bility of the fluid. That is to say, it has a sensitivity
to the early conditions. So it is more suitable to pro-
pose the KdV-Burgers-Kuramoto equation including
turbulent viscosity, dispersion, and stability effects for
the modelling of turbulence.

3. Physical mechanism analysis of cascades

3.1 The eddy kinetic energy and the mean
energy

From atmospheric dynamics, we know that in a
barotropic atmosphere the transformation function be-
tween mean kinetic energyKm and eddy kinetic energy
Ke in the finite domain A is defined as

{Km , Ke} =
∫∫
A

(
−u′v′ ∂u

∂y

)
δA , (12)

{Km,Ke} > 0 implies that the mean kinetic energy is
converted into the eddy kinetic energy, corresponding
to the cascading process of turbulence. The case of
{Km,Ke} < 0 is the opposite, which implies that the
eddy kinetic energy is converted into the mean kinetic
energy, corresponding to the inversion energy cascade
process.
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Fig. 1. Energy inversion of Rossby waves.
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Fig. 2. The distribution of the jet.

Figure 1 is often seen in the isobaric surfaces.
The maximum of ū often appears in the middle of
the trough-line. Obviously in the top of the figure,
u′v′ < 0, which represents that west wind momentum
is transformed to the south; in the bottom, u′v′ > 0,
which represents that west wind momentum is trans-
formed to the north. So the momentum is transformed
from a smaller to a larger value of ū, the eddy kinetic
energy is transformed to mean kinetic energy, and en-
ergy is concentrated in this process. This is just the
energy inversion.

In the atmosphere, the distribution of the jet is
like that shown in Fig. 2. On the north of the jet,
∂ū/∂y < 0; on the south of the jet, ∂u/∂y > 0. Thus,
we know that on the south of the jet −u′v′∂ū/∂y < 0,
that is to say {Km,Ke} < 0, so in this area, the mo-
mentum is transformed from a smaller to a larger value
of ū; similarly, we can analyze the north of the jet.

Energy inversion in Fig. 1 will also be analyzed in
terms of Prandtl’s mixing length theory. By using this

theory, we will get

−u′v′ = −α∂u
∂y

− β
∂2u

∂y2
− γ

∂3u

∂y3
, (13)

where

α = −l′v′, β = −1
2
l′2v′, γ = −1

6
l′3v′,

−α∂ū/∂y represents the dissipation effect, −β∂2u/∂y2

represents the dispersion effect, and −γ∂3u/∂y3 rep-
resents the instability effect.

Substituting Eq. (13) into Eq. (12), then we can
get:

{Km,Ke} =
∫∫
A

(
−α∂u

∂y
− β

∂2u

∂y2
− γ

∂3u

∂y3

)
∂u

∂y
δA .

(14)
So, the necessary condition of energy inversion which
represents that the eddy kinetic energy is transformed
into the mean kinetic energy is∫∫

A

[
α

(
∂u

∂y

)2

+ β
∂u

∂y

∂2u

∂y2
+ γ

∂u

∂y

∂3u

∂y3

]
δA > 0 .

(15)
From Eq. (7), the two sides of this equation are

both multiplied by u and integrated; we consider that
when x→ ±∞, u→ 0, and ∂u/∂x, ∂2u/∂x2, ∂3u/∂x3

are limited, thus
∂

∂t

∫ ∞

−∞

1
2
u2dx

=
∫ ∞

−∞

[
α

(
∂u

∂x

)2

+ β
∂u

∂x

∂2u

∂x2
+ γ

∂u

∂x

∂3u

∂x3

]
dx .

(16)∫∞
−∞

1
2
u2dx is the mean kinetic energy. Then the right-

hand side of Eq. (16) is just the transformation of
the eddy kinetic energy to the mean kinetic energy,
namely, {Ke,Km}. Therefore, only when∫ ∞

−∞

[
α

(
∂u

∂x

)2

+ β
∂u

∂x

∂2u

∂x2
+ γ

∂u

∂x

∂3u

∂x3

]
dx > 0,

can the energy inversion take place.
So, if only considering dissipation (α < 0, β = γ =

0), the mean kinetic energy is converted to the eddy
kinetic energy. Then there only exists the direct en-
ergy cascade. Only by adding the dispersion term or
the instability term or both, can the inverse cascade
happen. So the mechanism of the energy inversion is
perhaps the dispersion and instability effects.

3.2 The eddy enstrophy and the mean enstrophy

From atmospheric dynamics, the mean enstrophy
Q∗m and the eddy enstrophy Q∗e in the finite domain A
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can be defined as

Q∗m =
∫∫
A

ρ
1
2
q0

2δA , Q∗e =
∫∫
A

ρ
1
2
q′20 δA , (17)

where

q0 = −∂u
∂y

− λ2
0ψ

is the basic flow potential vorticity, ψ is the mean
stream function, u = −∂ψ/∂y, and

λ0 = f0/c0 (c0 =
√
gH); q′0 = ∇2

hψ
′ − λ2

0ψ
′

is the disturbed potential vorticity, ψ′ is the disturbed
stream function, u′ = −∂ψ′/∂y, and v′ = ∂ψ′/∂x.

Without considering viscosity, adiabatically and
in the quasi-geostrophic model, the enstrophy is con-
served. Then

∂Q∗m
∂t

= −
∫∫
A

ρq0
∂

∂y
q′0v

′δA , (18)

∂Q∗e
∂t

=
∫∫
A

ρq0
∂

∂y
q′0v

′δA . (19)

So

{Qm, Qe} =
∫∫
A

q0
∂

∂y
q′0v

′dA =
∫∫
A

−q′0v′
∂q0
∂y

dA .

(20)
From synoptic meteorology, referring to the sign

analysis of the u′, v′ in Fig. 1, we can get the distribu-
tion of vorticity (see Fig. 3). From Fig. 3, it is obvious
that

∂q0
∂y

> 0, −q′0v′ > 0, so {Qm, Qe} > 0.

This shows that when the energy cascade is inverse,
the enstrophy cascade is direct. And we can also get
that the area of the enstrophy cascade is between the
high and low air pressures.

In fact, since

q0 = −∂u
∂y

− λ2
0ψ,

then

∂q0
∂y

= −∂
2u

∂y2
+ λ2

0ū . (21)

Using scale analysis, we know that whether the sign
of Eq. (21) is positive or not is determined by the term
of −∂2u/∂y2, whose sign is as according to Fig. 4.
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Fig. 3. The distribution of potential vorticity.
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Fig. 4. The distribution of −∂2u/∂y2 .

Therefore, from south to north, on the south of the jet,
the sign of ∂q0/∂y is from positive to negative; on the
north of the jet, the sign is from negative to positive.
From atmospheric dynamics,

−q′0v′ =
∂

∂y
u′v′.

Substituting it and Eq. (21) into Eq. (20), then

{Qm, Qe} =
∫∫
A

∂

∂y
u′v′

(
−∂

2u

∂y2
+ λ2

0u

)
dA . (22)

From Fig. 1, we can know the sign of ∂
(
u′v′

)
/∂y, so

on the two sides of the jet, {Qm, Qe} > 0. This result
is the same as that from Fig. 3.

In the above, we analyze the universal case and
there exist two cascades. In the following, from the
conversations laws, we will give an analytical demon-
stration of the inverse energy cascade and direct en-
strophy cascade.
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4. The conversation laws and the cascade’s
analytical demonstration

Referring to Liu and Liu (1991), in a barotropic
atmosphere, the wave energy density Er and the en-
strophy density Fr of Rossby waves are given by

Er =
(
K2

r + λ2
0

)
a2

r

/
4 (r = 1, 2, ..., N) , (23)

Fr =
(
K2

r + λ2
0

)2
a2

r

/
2 (r = 1, 2, ..., N) , (24)

where
K r = kri + lrj

and
Kr =

√
k2

r + l2r .

kr, lr are wavenumbers of the rth Rossby wave in the
x and y directions, respectively. ar is the amplitude of
the rth wave.

From atmospheric dynamics, in the quasi-
geostrophic model, the energy, which contains the ki-
netic energy and the available potential energy, and
enstrophy are conserved. These can be shown by Eqs.
(23) and (24) in which the energy and enstrophy are
measured by amplitudes. And we can also demon-
strate that the net energy transfer must either be out
of the middle wavenumber into both smaller and larger
wavenumbers, or vice versa. It is so for the enstrophy
also.

Fjørtoft (1953) found that only fractions of the ini-
tial energy can flow into smaller scales and that a
greater fraction simultaneously has to flow to com-
ponents with larger scales. Kraichnan (1967) demon-
strated that it seemed to be more plausible to have net
flow out of the middle wavenumber.

Based on the above discussions and from the work
done by Shivamoggi (2000), we can consider a source
in the spectral space at wavenumber k0, whose total
energy is E0. This source would then decay via tri-
adic interactions into two modes with wavenumbers
k1 < k0 and k2 > k0, whose total energies are E1 and
E2, respectively. Since energy and enstrophy are con-
served during this decay, from Eqs. (23) and (24), we
get {

E0 = E1 + E2

k2
0E0 = k2

1E1 + k2
2E2

(25)

If greater fractions of the initial energy flow into
larger wavenumbers, that is E1 ≈ 0, E2 ≈ E0, then
k2
2E2 > k2

0E0. The enstrophy will increase, which is
not consistent with the enstrophy conservation. So,
under the conditions of the conservations, the energy
will flow into larger scales.

Setting

k2
1 = α1k

2
0, k

2
2 = β1k

2
0 0 < α1 < 1, β1 > 1 , (26)

E1 = pE0, E2 = qE0 0 < p < 1, 0 < q < 1 , (27)

then
E0 = α1E1 + β1E2 = E1 + E2 . (28)

So, from Eqs. (27) and (28)

(α1 − 1) pE0 + (β1 − 1) (1− p)E0 = 0 . (29)

Thus
α1 = p, β1 = 1 + p . (30)

We can use lower and upper labels with brackets to
represent the cascade steps and the modes after cas-
cade, respectively. Then we know that the mode k0

first decays into two modes:

k
(0)
(1) = p

1−0
2 (1 + p)

0
2 k0,

and
k

(1)
(1) = p

1−1
2 (1 + p)

1
2 k0,

with corresponding energies

E
(0)
(1) =

(
1
0

)
p1−0 (1− p)0E0,

E
(1)
(1) =

(
1
1

)
p1−1 (1− p)1E0,

and enstrophies

Q
(0)
(1) =

(
1
0

) (
p2
)1−0 (

1− p2
)0
Q0,

Q
(1)
(1) =

(
1
1

) (
p2
)1−1 (

1− p2
)1
Q0,

respectively.
In the second step of the cascade, the mode k(0)

(1)

decays into a mode

k
(0)
(2) = p

2−0
2 (1 + p)

0
2 k0

and another mode

k
(1)
(2) = p

2−1
2 (1 + p)

1
2 k0,

while the mode k(1)
(1) decays into a mode

k
(1)
(2) = p

2−1
2 (1 + p)

1
2 k0

and another mode

k
(2)
(2) = p

2−2
2 (1 + p)

2
2 k0.

The energies of these three modes k(0)
(2), k

(1)
(2), and k

(2)
(2)

are
E

(0)
(2) =

(
2
0

)
p2−0 (1− p)0E0,

E
(1)
(2) =

(
2
1

)
p2−1 (1− p)1E0,

E
(2)
(2) =

(
2
2

)
p2−2 (1− p)2E0,

and the enstrophies

Q
(0)
(2) =

(
2
0

) (
p2
)2−0 (

1− p2
)0
Q0,

Q
(1)
(2) = 2p2

(
1− p2

)
Q0 =

(
2
1

) (
p2
)2−1 (

1− p2
)1
Q0,
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and
Q

(2)
(2) =

(
2
2

) (
p2
)2−2 (

1− p2
)2
Q0,

respectively.
Thus, at the nth step of the cascade, the wavenum-

ber, energy, and enstrophy of each mode are corre-
spondingly as follows:

k
(r)
(n) = p

n−r
2 (1 + p)

r
2 k0 , (31)

E
(r)
(n) = (n

r ) pn−r (1− p)r
E0 , (32)

Q
(r)
(n) = (n

r )
(
p2
)n−r (

1− p2
)r
Q0 . (33)

Now, by the de Moivre-Laplace approximation, we
have for the binomial distribution

lim
n→∞

(n
r ) pn−r (1− p)r

≈ 1√
2πnp (1− p)

e
− 1

2

(
n−r−np√

np(1−p)

)2

,
(34)

so that the binomial distribution in Eq. (32) peaks at
r/n = 1 − p as n → ∞. This can be easily explained
from the energy conservation. At the (n− 1)th step,

E
(r−1)
(n−1) =

(
n−1
r−1

)
pn−r (1− p)r−1

E0

due to the energy conservation, and the maximum en-
ergy transformed from the (n − 1)th step to the nth
step is E(r−1)

(n−1), that is

E
(r)
(n)

/
E

(r−1)
(n−1) =

1− p

r/n
= 1;

and only when r/n = 1 − p as n → ∞ can this take
place. The corresponding wavenumber is given by

lim
n→∞

k
(r)
(n) = lim

n→∞

[
pp (1 + p)1−p

]n
2
k0 . (35)

The binomial distribution in Eq. (33) peaks at
r/n = 1−p2 as n→∞. The corresponding wavenum-
ber is given by

lim
n→∞

k
(r)
(n) = lim

n→∞

[
pp2

(1 + p)1−p2
]n

2
k0 . (36)

In order to evaluate the limit in Eqs. (35) and (36),
it proves to be convenient to use the following result
(Polya and Szego, 1978):

e
p1/a1 ln a1+p2/a2 ln a2

p1/a1+p2/a2 <
p1 + p2

p1/a1 + p2/a2
, (37)

p1a1 + p2a2

p1 + p2
< e

p1a1 ln a1+p2a2 ln a2
p1a1+p2a2 , (38)

where a1, a2 and p1, p2 are positive numbers so that
p1 + p2 = 1 and a1 6= a2.

Taking p1 = p2, p2 = 1−p2, a1 = p, and a2 = 1+p
we obtain from Eq. (37)

pp (1 + p)1−p
< 1, 0 < p < 1 . (39)

From Eq. (35), we have

lim
n→∞

[
pp (1 + p)1−p

]n
2
k0 ≈ 0 . (40)

Therefore, the peak of the energy distribution moves
to the larger scales and the energy cascades inversely.

Similarly, taking p1 = p, p2 = 1 − p, a1 = p, and
a2 = 1 + p, we obtain from the Eq. (38)

pp2
(1 + p)1−p2

> 1 . (41)

So, from Eq. (36)

lim
n→∞

[
pp2

(1 + p)1−p2
]n

2
k0 ≈ ∞ . (42)

Therefore, the peak of the enstrophy distribution
moves to smaller scales. The enstrophy cascades di-
rectly. And we can also get the result that energy
cascades inversely perhaps because the enstrophy is
conserved or else it could not happen.

5. Discussions and conclusions

In fact, the cascade analytical demonstration does
not account for the mechanism of the cascades of the
energy and enstrophy. But from the expression of the
{Km,Ke}, we know that it is just the shear of ū that
causes the inverse cascade. Actually, when we obtain
the KdV-Burgers-Kuramoto equation, it implies that
the shear of the velocity field is the mechanism of the
direct and inverse cascades. α, β, and γ show the ef-
fects of each term and determine the directions of the
cascades.

Equation (1) also imply the conservations of the
energy and enstrophy. That is, the equation that the
conservations of the energy and enstrophy satisfy is the
same as Eq. (1). The expressions differ just because
one explains the phenomena from the side of dynam-
ics, while the other from that of the conservations.
Therefore, the KdV-Burgers-Kuramoto equation can
successfully describe the turbulent motions as well as
the processes of the cascades, and it can further be
used to analyze the effects of each term in the pro-
cesses. Using the conservation laws, we can show the
directions of these processes. In a barotropic atmo-
sphere, there exist the inverse energy cascade and the
direct enstrophy cascade simultaneously.

Due to the complexities of the atmospheric mo-
tions, some problems need to be further discussed. In
this paper, some phenomena have only been explained
from the aspects of the physical mechanism and the
mathematical model, and some plausible explainations
have only been given. And the discussions are limited
to a barotropic atmosphere; whether these results are
generic or not needs to be further discussed.
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