
ADVANCES IN ATMOSPHERIC SCIENCES, VOL. 21, NO. 2, 2004, 181–192 181

Ocean Data Assimilation with Background Error Covariance

Derived from OGCM Outputs

FU Weiwei (Î��), ZHOU Guangqing∗ (±2�), and WANG Huijun (�¬�)

Nansen-Zhu International Research Centre (NZC), Institute of Atmospheric Physics,

Chinese Academy of Sciences, Beijing 100029

(Received 7 July 2002; revised 26 November 2003)

ABSTRACT

The background error covariance plays an important role in modern data assimilation and analysis
systems by determining the spatial spreading of information in the data. A novel method based on model
output is proposed to estimate background error covariance for use in Optimum Interpolation. At every
model level, anisotropic correlation scales are obtained that give a more detailed description of the spatial
correlation structure. Furthermore, the impact of the background field itself is included in the background
error covariance. The methodology of the estimation is presented and the structure of the covariance is
examined. The results of 20-year assimilation experiments are compared with observations from TOGA–
TAO (The Tropical Ocean-Global Atmosphere–Tropical Atmosphere Ocean) array and other analysis data.
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1. Introduction

Background error covariance plays an important
role in a data assimilation or analysis system by de-
termining the distribution of the information from the
data in space and between variables (Rabier et al.,
1998). An optimal design of background error covari-
ances would ideally reflect the structures of the short-
range forecast errors in the assimilation, and modify
the increment to yield an analysis field as close to the
true values as possible. Therefore, estimation of the
background error covariance is very important in data
assimilation at present.

Many methods have been developed and applied
in operational data assimilation systems over the last
few decades. Hollingsworth and Lonnberg (1986) pro-
posed the so-called “observational method”, which re-
lies on the use of background departures in an observ-
ing network that is dense and large enough to provide
information on many scales. Apart from applying the
background departure y −H[xb] relating to observa-
tions, empirical functions are also adopted to calculate
background covariances. Generally, the background
error covariances are often obtained as the product of
variances and correlation functions. Deber and Rosati
(1989) took an empirical formula to calculate the co-

variances. In their paper, the covariance between any
two selected points is given by ae−r2/(b2 cos φ), where
φ is latitude, r is the horizontal distance of the two
selected points, and a and b are empirical parameters
and set to 0.01 and 570 km respectively. This formula
suggests that the correlation scale decreases from the
equator to the poles. Behringer et al. (1998) modified
this formula in which b is written as b2 = b2

lat + b2
lon

denoting the anisotropy in zonal and meridional direc-
tions. They also found that the profile of the variance
of the temperature correction is proportional to the
local profile of (dT/dz )1/2. Therefore they assumed a

as av
(dT/dz)1/2

[(dT/dz)1/2]bmax
, where the constant av, is deter-

mined empirically. A similar spatial correlation func-
tion was also used by others (e.g., Clancy et al., 1990;
Meyers et al., 1991). The empirical function can be
expressed in other ways. DAO (Data Assimilation Of-
fice, 1996) expressed the horizontal correlation by a
power-law function ρ(r) =

[
1 + 1

2 ( r
L )

]−1, where r is
the horizontal distance of any two locations and L is
the scale governing the horizontal extent of the correla-
tion. Carton et al. (2000) assumed that the unbiased
covariance of two forecast error variables has an ex-
ponential form whose weights vary with latitude and
depth as well as with their separation. The depen-
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dence of the horizontal covariance function on depth
was constructed to be linear. There are other methods,
but fundamentally they fall into three categories: the
use of background departure linked with observations,
the taking of empirical functions, or the combination
of the two.

Estimation of background error covariance by a
simple empirical function has its limitations. The “ob-
servational method” may be an advisable choice. But
problems still exist in the quality of observation be-
cause of sparsity in some areas and discontinuity at
some intervals, even though the observations have been
greatly improved or supplemented by modern mea-
surements. Although the geographical distributions of
the typical/dominant spatial and temporal scales are
not clear, we note that model output data is homoge-
nous in space and time. Of course, there are some
problems with the model output. For example, a bad
model will produce output that contains large errors,
thus resulting in a poor estimation of background er-
ror covariance. The length of the data sequence will
affect the estimation of background error covariance.
In the tropical ocean, the correlation scales estimated
from the data that contains an El Niño process would
broaden at the depth of the 20◦C isotherm (Meyers et
al., 1991). But the problems also exist in observational
data. We believe that the grid-point data from a good
model record the propagation of information acquired
from the initialization and the boundary conditions.
Therefore, estimation from the model outputs would
physically represent the covariance structure well to
some degree. Motivated by such an advantage, we pro-
pose a simple method to estimate the covariance. At
each level of the model, a Gaussian function is adopted
to calculate the covariance between two points, which,
in our study, is assumed to vary with longitude, lati-
tude, and the difference in temperature at the previous
time step between the two points. The interactions be-
tween the vertical levels are not considered. Numerical
experiments are designed to verify the new estimation
of background error covariance and a great improve-
ment in the analysis fields is shown.

In section 2, the covariance model is described, and
the structures of the estimated covariances are pre-
sented in section 3. In section 4, results of 20-year
numerical experiments are shown to examine the im-
pact of the estimation. A summary and discussion are
given in section 5.

2. Covariance model

To obtain optimal estimation of an analyzed field,
the following variational problem must be solved

(Lorenc, 1986; Deber and Rosati, 1989):

J =
1
2
TTB−1T

+
1
2
(D(T)−T0)TO−1(D(T )−T 0) , (1)

where T is an N -component vector containing the cor-
rection to the first guess field¶B is an estimate of
the N × N background (first guess) error covariance
matrix¶T 0 is an M -component vector containing the
innovations, the differences between the observations
and the interpolated first guess field; O is an esti-
mate of the M ×M observation error covariance ma-
trix; and D is the observation operator that performs
the necessary interpolation and transformation from
background space (N) to observation space (M). (·)T
denotes the transpose of (·). The first term on the
right-hand side of Eq. (1) measures the fit of differ-
ences between the analysis and the background. The
second term measures the fit of the differences between
the analysis and the observation. The spatial structure
and amplitude of the correction field to the first guess
or background field are determined by matrix B and
O through minimizing J .

The observation errors are assumed to be random
and uncorrelated spatially, and thus the matrix O is
diagonal. This is not emphasized in the paper. Ac-
cording to Riishøgaard (1998), the B-matrix is as-
sumed to be the product of three parts, the standard
deviation term, the spatial correlation function, and
the correlation induced by the background field itself.
The element of B is written as:

Bi,j = Λi,jρi,j(∆x,∆y)ν(θ(Ti)− θ(Tj)) , (2)
where Λi,j is the product of the standard deviations
between any two points i and j which range over the
model space, ρi,j(∆x,∆y) is a correlation function in
which ∆x and ∆y are the scalar distance in zonal and
meridional directions, respectively, between the two
points i and j, and ν(θ(Ti) − θ(Tj)) represents the
difference of the background field itself governing the
anisotropy of the background structure where Ti and
Tj are the elements of T . A Gaussian function is cho-
sen to represent the spatial correlation structure:

ρi,j(∆x,∆y) = exp(− ∆x2

L2
x(x, y, z)

− ∆y2

L2
y(x, y, z)

) . (3)

where Lx and Ly are e-folding scales which reflect the
extent of spatial correlation, and x, y, and z are model
coordinates. It is evident that at each point a pair of
Lx and Ly can be acquired by fitting the analytic for-
mula to the scattered points. The scales are estimated
as the distance at which the correlation decreases to
1/e.

In addition to spatial correlation, we consider the
impact of the evolution of the background field on the



NO. 2 FU ET AL. 183

structure of background error covariance. The under-
lying idea is that the deformation history of the flow
remains embedded in the distribution of the field itself
and this would guide the shape of the error correla-
tion. When this term is included in the computation
of background error covariance, the structure is tuned
to be anisotropic. The basic assumption underlying
the use of the anisotropic correlation model is simple:
“background errors at nearby points that have similar
values of the field are similar” (Riishøgaard, 1998). For
thermal-haline circulation, θ(·) should be a function of
temperature along with salinity and surface pressure,
but in this study it is simply assumed to be the back-
ground field itself, e.g. temperature, θ(T ) = T , and

ν(∆T ) = exp(−∆T 2

L2
T

) , (4)

where ∆T is the difference of temperature at the two
points i and j. It is of the same form as the spa-
tial correlation apart from that it decreases not with
the physical distance between two points, but with the
difference between the field values themselves (∆T 2).
The impact of this term is that the originally con-
centric elliptic isolines of the correlation function are
distorted towards following the isolines of the back-
ground field to some extent. The conjunct correlation
will fall off rapidly in the directions in which the field
is changing rapidly, while the isotropic correlation will
dominate in the direction in which the rate of change of
the field is slow. If the scale LT →∞, the anisotropic
covariance reduces to the isotropic case. The scale of
LT is set to be 5◦C empirically in this study.

Λi,j(x, y, z) is thought to be the product of the
background unbiased forecast error standard deviation
(σε) at two grid points, Λi,j(x, y, z) = (σε)i(σε)j . In
the Kalman filter, background error variance is esti-
mated automatically using the tangent-linear model,
so it does not need to be specified. Suppose zj,k is the
model estimation at spatial point j and time k, and
xj,k is the true value. The relation between zj,k and
xj,k is presumed to be:

zj,k = xj,k + bj + εj,k , (5)
where bj denotes model bias and εj,k is the unbiased
random forecast error. The background error covari-
ance evolves with time in the Kalman Filter. But for a
3DVar problem, only the stationary part of the back-
ground error variance is considered by taking the ex-

pectation over time, 1
n

n∑
k=1

ε2
j,k, where n is the number

of temporal samples.
Taking the average over time, we can obtain the

following formula by assuming that the average of the
unbiased random error is zero:

z̄j = x̄j + bj , (6)

where (·)j = 1
n

n∑
k=1

(·)j,k. We approximate the back-

ground error variance like this:

(σε)2j =
1
n

n∑
k=1

ε2
j,k =

1
n

n∑
k=1

(zj,k − xj,k − bj)2 . (7)

The term bj in Eq. (6) is substituted by that in
Eq. (5) to obtain

(σε)2j =
1
n

n∑
k=1

[(zj,k − z̄j)− (xj,k − x̄j)]
2

, (8)

where zj,k − z̄j represents the model-estimated
anomaly and xj,k − x̄j refers to the anomaly of the
true value.

Reducing the right-hand side of Eq. (8), we can
obtain:

(σε)2j = (σm)2j + (σt)2j − 2
1
n

n∑
k=1

(zj,k − z̄j)(xj,k − x̄j) ,

(9)
where

(σm)2j =
1
n

n∑
k=1

(zj,k − z̄j)2 , (10)

(σt)2j =
1
n

n∑
k=1

(xj,k − x̄j)2 . (11)

The third term on the right-hand side of Eq. (9)
can be written further as rj(σm)j(σT )j , where

rj =

1
n

n∑
k=1

(zj,k − z̄j)(xj,k − x̄j)

(σm)j(σt)j
(12)

is regarded as the correlation between the model esti-
mation and the true value.

Suppose cj = (σt)j/(σm)j , we obtain

(σε)2j = (σm)2j (1 + c2
j − 2rjcj) . (13)

Because the observed data are inserted into the
model continuously during model integration, it is rea-
sonable to suppose rj ≈ 1; then Eq. (13) becomes

(σε)2j ≈ (σm)2j (1− cj)2 . (14)

The parameter cj should vary in space, but in this
study it is assumed to be a constant. Also because of
the continuous insertion of observed data, cj should
be close to 1; then 0.5 6 cj 6 1.5 is a reasonable esti-
mation. So (1− cj)2 is set to 0.25 in this study.

The process indicates that the background error
covariance in our study is estimated as a part of the
covariance of the modeled variations. One advantage
of this is to avoid the estimation of model error di-
rectly since the oceanic model errors depend not only
on the model itself but also on the atmospheric forcing
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errors (Zhu and Kamachi, 2000), which are difficult to
specify.

3. Estimating error covariances

3.1 Dynamic model

The oceanic numerical model used in this study
is a tropical Pacific general circulation model devel-
oped by Zhang and Endoh (1992). This model is a
part of the ENSO prediction system at the Institute
of Atmospheric Physics, the Chinese Academy of Sci-
ences (IAP/CAS) (Zhou et al., 1999; Zhou and Zeng,
2001). The dynamics of the model are governed by the
primitive equations under hydrostatics and the Boussi-
nesq approximation. The model removes the con-
straint of “rigid lid” in that the sea surface is set to be
free. In the horizontal, a staggered 2◦×1◦ longitude-
latitude grid is used in the tropical Pacific Ocean do-
main (30◦N–30◦S, 121◦E–69◦W). The vertical resolu-
tion is 14 levels, with 10 levels between the surface
and 240 m depth. The model includes the convective
adjustment procedure when hydrostatical unstability
occurs. The lateral boundaries are set to be “non-fli”
and “non-flux”, but at the north and south bound-
aries, the relaxation terms γ(T∗–T) and γ(S*–S) are
included in the T − S equations, where T and S rep-
resent temperature and salinity respectively, γ is the
Newton cooling coefficient, which equals (60 d)−1, and
T ∗ and S∗ are the climatologies of Levitus (1982).

In this study, the oceanic model was forced by wind
stress anomaly product from the surface marine report
at Florida State University (FSU) (Bourassa et al.,
2001) blended with the climatologies of Hellerman and
Rosenstein (1983) and sea surface temperature (SST)
(Reynolds and Smith, 1994) as the relaxation of heat
flux. The impact of fresh water was ignored. The
model was integrated from 1978 to 2002 from the ini-
tial condition of the model climatology. Monthly mean
outputs of the model at every space point were saved
as the control run and used to estimate the background
error variances and correlation scales.

3.2 Structures of the estimations

Lx and Ly are calculated at each level of the model
as follows: the data pairs of temperature are formed
by subtracting the average over time from its temper-
ature at each grid point. The set of data pairs is then
used to compute the correlation coefficient between
different grid points. Calculation of the fitting is per-
formed via a nonlinear fit procedure. Considering that
correlations far from the calculated point are found to

Fig. 1. Correlation coefficient as a function of lag dis-
tance in three areas: (a) for zonal scales, and (b) for
meridianal scales. The solid line is for eastern equatorial
Pacific, the dashed line is for western equatorial Pacific,
and the dotted line is for midlatitudes. The distance
where the correlation coefficient decreases to 1/e shows
the desired correlation scale.

be too noisy to produce stable statistics, only data
within a 20◦×20◦ bin are chosen. In some cases, the
function is so flat that the e-folding value is not found.
In these cases, Lx and Ly are set to 2400 km and 700
km respectively. The fits of the zonal and meridional
scales at the surface (10 m in the model) on the equa-
tor and in the subtropics are shown in Fig. 1.

Figures 2 and 3 show the distribution of the spa-
tial correlation scales in the zonal and meridional di-
rections, respectively. The distribution of the zonal
correlation scale from the equator to 30◦N(S) at the
sea surface (10-m depth in the model layer) exhibits an
asymmetric character (Fig. 2a). In the region between
5◦N and 5◦S, the large values are located in the east-
ern equatorial Pacific with the maximum value above
2000 km,while the western equatorial Pacific is a lower-
value area where the minimum is below 800 km. This
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Fig 2 

Fig. 2. Distribution of the zonal correlation scales at (a) surface (10 m in the
model), (b) 165 m. The contour interval is 200 km.

is probably associated with the equatorial wave guide
in the band of 5◦N and 5◦S where the zonal current in
the central and eastern Pacific is much larger than in
the western Pacific. From 5◦N to 10◦N, the zonal cor-
relation scale decreases rapidly in the eastern Pacific
where the westward South Equatorial Current (SEC)
reverses gradually to the eastward North Equatorial
Countercurrent (NECC). The relatively smaller zonal
scale band between 10◦N and 20◦N corresponds to the
North Equatorial Current (NEC) which was rather
weak in the simulation compared to the observation
(Zhang and Endoh, 1992). The correlation scales in-
crease to values above 2000 km in the whole basin of
the ocean from 20◦N to the middle latitudes associated
with the North Pacific Current.

In the South Pacific, the structure of the zonal
correlation scale is relatively simple, where a small-
value band extends from the western Pacific to the
central tropical Pacific in a south-eastward direction.
In the western tropical Pacific, the small scale may
be due to the weak and complicated current structure

in this area. Our results are comparable to those of
McPhaden and Taft (1988), who also showed the zonal
correlation scales with the values of 15–20◦ longitudi-
nal degrees along the equator in the eastern Pacific.
Their results were acquired from moored time series
data.

The zonal correlation scales at a depth of 75 m
are similar to or smaller than that of the surface in
most areas (figure not given). However, at a depth
of 165 m, the distribution of correlation scales differs
greatly from that of the surface. In the western Pacific
between 20◦N–10◦S, the zonal correlation scales dra-
matically increase, showing a maximum over 2400 km
near the equator and 18◦N. Other than the increas-
ing trend from the equator to 30◦N(S) in the surface,
the scales basically display a decreasing trend in this
region. In the eastern equatorial Pacific, the large-
value band along the equator becomes narrow with the
maximum value decreasing, and the lower-value region
moves somewhat to the equator which is around 10◦N
at the surface. The scales in the band of 10◦N to 20◦N
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Fig 3 

Fig. 3. Same as Fig. 2 but for the meridional correlation scales. The contour interval
is 30 km.

Table 1. Comparison of meridional correlation scales (ϕ) and standard deviations (σ) in the tropical Pacific between
Meyers et al.’s results (1991) and our estimation.

New Caledonia–Japan New Caledonia–Hawaii Tahiti–Panama

Meyers et al. the model Meyers et al. the model Meyers et al. the model

ϕ σ ϕ σ ϕ σ ϕ σ ϕ σ ϕ σ

(◦lat) (◦C) (◦lat) (◦C) (◦lat) (◦C) (◦lat) (◦C) (◦lat) (◦C) (◦lat) (◦C)

18◦N 6.0 1.1 6.1 1.1 6.0 1.0 5.4 1.0

15◦N 6.0 0.9 5.9 0.6 6.0 0.9 5.2 0.9

12◦N 6.0 0.8 5.5 0.6 6.0 0.8 5.0 0.7

9◦N 5.7 0.6 5.1 0.5 5.2 0.7 4.9 0.7

6◦N 3.7 0.4 5.0 0.5 5.6 0.6 5.0 1.0 6.0 1.1 5.0 1.4

3◦N 4.9 0.4 4.9 0.4 5.7 0.8 5.1 1.2 5.7 1.7 5.2 0.8

0 4.6 0.4 4.6 0.4 5.9 0.8 4.9 1.6 6.0 1.9 5.0 1.5

3◦S 3.1 0.5 4.9 0.42 5.6 0.6 5.1 0.75 6.0 1.6 5.0 1.0

6◦S 4.9 0.6 5.0 0.45 5.8 0.6 5.75 1.0 6.0 1.1 5.1 1.3

9◦S 5.4 0.9 5.0 0.8 5.4 0.5 5.4 0.8 6.0 0.9 6.0 1.0

12◦S 6.0 1.1 5.0 1.0 5.5 0.7 5.6 0.7 6.0 1.0 7.0 1.9

15◦S 6.0 1.3 5.5 1.1 6.0 1.0 5.8 0.8 6.0 1.0 7.5 1.9

18◦S 6.0 1.5 6.0 1.2 6.0 1.4 5.9 0.8 6.0 1.0 7.0 1.8
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Fig. 4 

Fig. 4. Distribution of the standard deviations of sea surface temperature computed
from model outputs (σm). The contour interval is 0.2◦C.

become much larger instead. In the region outside
of 20◦N(S), the zonal correlation scales obviously de-
crease by contrast with those in the same region at
surface.

The meridional correlation scales are all much
smaller than those of the zonal direction with values
of several hundred kilometers (Fig. 3). The main fea-
ture at the surface is that the scales decrease from the
equator to both 30◦N and 30◦S except for the south-
east area where the scales are larger along the coast.
At a depth of 165 m, however, the trend of the scales
almost reverses. The values increase from the equator
poleward in the central and west Pacific, but they are
large along the American coast off the equator. In the
region between 150◦W and 120◦W, the distribution is
complex.

The distribution of standard deviations at the sea
surface is shown in Fig. 4, where the large variation ex-
tends to the western Pacific along the equator from the
South American coast. The results of the computed
meridional correlation scales and standard deviations
at the sea surface agree well with those by Meyers et
al. (1991) based on observed sea surface temperature
data in the tropical Pacific. Table 1 gives the aver-
aged meridional scales and standard deviations cal-
culated by Meyers et al. (1991) in the west (New
Caledonia–Japan), central (New Caledonia–Hawaii),
and east (Tahiti–Panama) Pacific, respectively. For
comparison, the corresponding results computed from
the model outputs in these regions are also given. Al-
though the values differ somewhat, the trends resem-
ble each other. The root mean square difference of
the meridional scales between these two results is 0.6◦

in latitude, which is only about 70 km in the tropical
region. Considering that the results of Meyers et al.
(1991) were obtained by averaging the scales in a band
and that we only select the values over three definite

routes, these two results are quite comparable.

4. Date assimilation experiments

4.1 Data

The data type, accuracy, and distribution in space
and time govern the quality of the results produced
by the data assimilation system. Comparatively, the
temperature observations are currently available with
sufficient quality for assimilation. In this work, we
only perform the assimilation of temperature. The
data used in the model and assimilation include
SST (Reynolds and Smith, 1994), XBT (expendable
bathythermaograph measurements) profiles obtained
from a variety of sources, TOGA–TAO array data,
and some mooring profiles. To have a consistent sur-
face wind stress product, we also combined the clima-
tological surface wind stress (Hellerman and Rosen-
tein, 1983) and FSU wind stress anomaly (Bourassa
et al., 2001). The World Ocean Altas 1998 (WOA98:
Conkright et al., 1998 ) is also used for comparison
with the outcome of the experiment.

The temperature profiles were combined at NCEP
and passed a standard quality control to remove the
bad records, except those from 1982–1998 have not yet
received the final stage of the standard quality control.
The available data in the tropical Pacific are selected
and received further checking, especially for the period
from 1982–1989, ensuring that the temperature is not
over the land of the model, that the temperature is
between 0◦C and 32◦C, and that it does not contain
unrealistic inversions with depth.

Time stepping is carried out using the incremental
update method at every day of the model integration.
The correction field is created using data within 15
days on either side of the present timestep in a statis-
tical objective analysis scheme. In the assimilation
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Fig 5 (continue) 
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(d) 

Fig. 5. A latitude-depth cross section along 130◦W of annual mean temperature: (a) from
the control run, (b) from the previous scheme, (c) from the new scheme, and (d) from
WOA98. The contour interval is 1◦C.

 

 
Fig 6 

(b) 

(a) 

 

 
Fig 6 (continue) 

(d) 

(c) 

Fig. 6. A longitude-depth cross section along the equator of annual mean temperature: (a)
from the control run, (b) from the previous scheme, (c) from the new scheme, and (d) from
WOA98. The contour interval is 1◦C.
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Fig 7 

Fig. 7. Distribution of annual mean sea surface temperature: (a) from the control run, (b) from previous
scheme, (c) from the new scheme, and (d) from Reynolds and Smith (1994). The contour interval is 1◦C.

procedure, the increment is obtained by the precon-
ditioned conjugate gradient algorithm (Navon and
Legler, 1987; Deber and Rosati, 1989).

4.2 Results

In section 3, we discussed the method to calculate
the background error covariance and compared the re-
sults with those from observation. But we need to ex-
amine to what degree the new estimation can improve
the performance. In this section we perform three ex-
periments. The first one is the control run, in which
the model is driven only by the wind stress force and
heat content from 1978 to 2002, hereafter also referred
to as the run without data assimilation. The second
experiment starts under the same conditions, but from
1982 the temperature is updated by Optimum Inter-
polation (OI) with the previous background error co-
variance scheme (Zhou and Li, 2000). The third one
is the same as the second, but with the new estimated
background error covariance. The results of the three
experiments are compared with observed data, anal-
ysis data including WOA98, analyzed SST (Reynolds
and Smith, 1994), and TOGA–TAO array data.

In Fig. 5, the latitude-depth profile of annual mean
temperature along 130◦W is shown. Comparisons for
the three experiments and WOA98 show several biases
in the results of the model without data assimilation.
The most prominent biases are the sparse themocline,
the quite warm temperature below the thermocline

from north to south, and the improperly curved ridge-
line around 17◦S. At 10◦N, the temperature trough is
weaker. After assimilation, the warm temperature in
lower levels is corrected greatly and the trough-ridge
structure is closer to the observation especially in the
third experiment. Figure 6 displays the east-west cross
section of annual mean equatorial temperature. The
feature of the tropical Pacific is that there is a sea-
sonal, westward-tilted thermocline. The bias of the
model’s results (experiment one) lies in that that the
gradient of the thermocline is weak and the isotherm
is sparse. Moreover, at the lower layers of the ocean,
the temperature is higher than the analysis data. The
assimilation corrects the two biases notably. After as-
similation, the isotherms are dense and the gradient
of the thermocline better fits that of the observation.
The annual mean field indicates that the forecast re-
sults are significantly improved after the assimilation.
In addition, the new scheme ameliorates the result of
experiment two in some areas.

Figure 7 contains the annual mean sea surface tem-
perature from the three experiments and observation.
The “warm pool” in the control run is much larger
and its position deviates eastward from the observa-
tion. The westward cold tongue is weaker. These
are greatly corrected after the assimilation. The new
scheme modifies the “warm pool” as well as the “warm
tongue” near the North American continent.
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Fig 8 Fig. 8. Difference of monthly mean temperature (March) at 165 m: (a) between model and WOA98, (b) between
previous assimilation and WOA98, and (c) between new assimilation and WOA98. The contour interval is 1◦C
and the dashed line is for negative values.

Figure 8 displays the temperature difference at the
level of 165 m in the three experiments. Without as-
similation, the obvious biases are the warm temper-
atures almost entirely in the eastern Pacific. In the
northern domain of the equator, there are also warm
temperatures with the maximum differences over 4◦C
in the central Pacific (10◦N) for the control run. In
most areas of the west/central Pacific south of the
equator, the simulated temperatures are lower than
those of WOA98. The maximum exceeds 2◦C, located
at 16◦S (Fig. 8a). The previous assimilation scheme
(experiment two) reduces the biases in most areas. For
example, the warm temperature in the central Pacific
near 10◦N is evidently corrected and the bias in the
eastern Pacific near the equator is also rectified. But in
the central Pacific, warm and cold biases of small mag-
nitudes still exist in some areas. With the new scheme,
however, some of these areas in which biases occur re-
markably disappear. The reason why the temperature
without assimilation departs greatly (over 4◦C) from
the observation in the central/west Pacific north of
the equator can possibly be ascribed to: (1) the ver-
tical resolution of the model at the thermocline is too
coarse and the pressure gradient due to the gradients
of the upper layer thickness do not balance with the
pressure gradient due to the wind forcing (Moore and
Anderson, 1989); (2) the observation error in this area
is large. The problem likewise occurs in other models.

To further the comparison, some TOGA–TAO ar-
ray profiles are extracted as independent references

and not used in the assimilation processes. These
TAO profile time series are averaged over a month
and are interpolated vertically into the model levels
for comparison. Figure 9 shows the vertical profile of
temperature in the western Pacific (2◦N, 150◦E). The
unassimilated profiles obviously differ from the obser-
vation in the thermocline, where the maximum differ-
ence reaches 5◦C for the control run. Significant im-
provements are made by the new assimilation scheme
to reduce this bias, and the curve corresponds very
well to that of the observation. Figure 10 is similar to
Fig. 9, but it shows the eastern equatorial Pacific (0◦,
130◦W). An obvious temperature difference exists at
the surface between the models and the observation. It
converges well to the observation with the new scheme,
also.

From the above comparisons, we can see the im-
provement produced by the assimilation on the results
of model forecast field. This indicates that the new es-
timation of background error covariance is an effective
and feasible method.

5. Summary and discussion

In this paper, a new estimation of the background
error covariance for oceanic data assimilation based on
OI is described. In the estimation, the spatial correla-
tion scales and background error variance are acquired
primarily from the model output using a novel method.
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Fig. 10 
Fig. 9. Profile of monthly mean temperature of
March 1987 at (2◦N, 150◦E). Hollow circles are
observation from TOGA–TAO, solid circles are
for the new scheme, hollow squares are for the
previous scheme, and solid squares are for no as-
similation.

Fig. 10. Same as in Fig. 9, but for January 1987
at (0◦, 130◦W).

The detailed horizontal structures of the correlation
scales in the model space and their variation with
depth are obtained; this would be very difficult to do
by using observations because of their sparse distri-
bution and discontinuity in time in some areas. The
variance for the background error is assumed to be a
part of the model simulation, and is estimated from the
model results directly. The main features agree well
with other studies (Meyers et al., 1991; McPhaden and
Taft, 1998) based on observed data. Moreover, we con-
sider the impact of the background field itself in the
structure of the covariance which governs the exten-
sion of the information in different directions – the
anisotropy. Based on the new estimation, three ex-
periments are performed to examine the impact of the
estimation. A remarkable improvement in the qual-
ity of the model forecasts can be seen clearly after the
estimation of background error covariance.

Although positive and effective results are achieved
by the new estimation, there is still much to improve.
The vertical interaction between model levels and the
impact due to time lag on the background error co-
variance are excluded in the current estimation; these
are the focus of our future work. The impact of the
background field, i.e. the difference of temperature, in-
troduced in this study is just an experiment to explore

the underlying physical correlation structure. It is a
simple way to gain the isotropical spatial structure of
the background error covariance. More definite phys-
ical explainations still remain unknown. The method
also has its own limitations. It is easy to envision that
in a high-resolution model, the cost of computation is
multiplied and more CPU time and memory space will
be used. So how to reduce the computation costs is
very important for the implementation of the method.
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