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ABSTRACT

For the nonconservative schemes of the nonlinear evolution equations, taking the one-dimensional
shallow water wave equation as an example, the necessary conditions of computational stability are given.
Based on numerical tests, the relationship between the nonlinear computational stability and the construc-
tion of difference schemes, as well as the form of initial values, is further discussed. It is proved through
both theoretical analysis and numerical tests that if the construction of difference schemes is definite, the
computational stability of nonconservative schemes is decided by the form of initial values.
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1. Introduction

The movement, development and change of atmo-
sphere and ocean in nature are nonlinear. The move-
ment equations of the atmosphere and ocean belong
to a kind of very complex nonlinear partial differential
equation, which is often called the nonlinear evolution
equation. Because of the complexity, it is often diffi-
cult to get an analytical solution. So to get a numerical
solution from discrete forms of the equation is needed.

Energy conservation is one of the main characteris-
tics for the short-range motion of the atmosphere and
ocean. The finite-difference schemes are mostly em-
ployed to carry out the numerical solutions of this kind
of problem, so it is key to know how to design long-time
computationally stable difference schemes. To solve
this problem, Zeng (1978), Zeng and Ji (1981) sys-
tematically studied the computational stability of the
adiabatic or non-dissipative nonlinear evolution equa-
tions, discussed the reasons causing nonlinear compu-
tational instability, and constructed a computationally
stable implicit complete square conservative difference
scheme. Later, Ji and Wang (1991), Ji et al. (1998),
and Wang and Ji (1990; 1994; 1995) constructed a
computationally stable explicit complete square con-
servative difference scheme. Recently, Chen and Ji
(2001) studied the energy-conserving semi-Lagrangian
scheme. Ji et al. (2002) also discussed the relationship
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between total energy conservation and the symplectic
algorithm. Lin et al. (2003) discussed the relationship
of short-range motion of atmosphere and ocean be-
tween the conservative and non-conservative schemes,
and further proved that it is stable to use the square
conservative scheme for the numerical solution of the
problem, while the non-conservative scheme is unsta-
ble. So the square conservative scheme for the solution
of this kind of problem has more advantages.

Usually, the medium and long-range movements of
atmosphere and ocean are of non-energy-conservation.
Because of the nonlinear characteristics, the initial
conditions are very important to the movements. So
with the change of initial conditions, the medium and
long-range movements of atmosphere and ocean will
also change (Zeng, 1979). Finite-difference schemes
are also employed to carry out the numerical solu-
tions of the nonlinear atmospheric and oceanic equa-
tions. So it is very important to study the relation-
ship between the difference scheme of the nonlinear
evolution equation and the initial values. For the
non-conservative schemes of the nonlinear evolution
equation, Lin et al. (2000) gave a new method for
judging the computational stability. Meanwhile, Lin
et al. (2002) carried out a comparative analysis of
the computational stability for conservative and non-
conservative schemes of the nonlinear evolution equa-
tion, and proved that the computational stability of
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the conservative scheme is totally different from that
of the non-conservative scheme. In this paper, tak-
ing the one-dimensional nonlinear shallow water wave
equation as an example, the computational stability is
analyzed for the different non-conservative schemes of
the nonlinear evolution equation, and the relationship
between the schemes and the initial values is discussed.

2. Equation and difference scheme

The one-dimensional nonlinear shallow water wave
equations are:
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where ¢ = g&, ® = gh, £ is surface elevation, g is
gravitational acceleration, h is water depth, and g and
h are constants.

For equation (1), we take C grids and use the fol-
lowing difference schemes:
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3. Computational stability analysis of the diff-
erence schemes

According to Lin et al. (2000), the computational
stability of Schemes 1-4 can be analyzed. Scheme 1 is
taken as the example. By means of Taylor expansion
for (2) and (3), omitting superscripts and subscripts,
we obtain
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Taking the derivative with respect to ¢ in (12), we have
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Taking the derivative with respect to z in (12), we
have
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Taking the derivative with respect to x in (13), we
have

o
u8x2

92
- a—f L O(A#?, A?) .

o _ o o
otdx  ~Ox Ox Ox?
0%u 5
- (<I>—|—<p)a 5 +O(At?, Az?) . (16)
Substituting (12), (15), and (16) into (14), we have
0%u ou\> Ou Op 5, 0%u
8t2_2u(8x> o T o2
0? 0%u
+ 2u8—f (@t )W +O(AM2, Az?) . (17)
Similarly, we can obtain
o (9 u D ou\? 0%
EEl (m«) g gy TAEHY) (m) ST
+ (P+ )62—@+2(¢>+ ) i+O(At2 Az?), (18)
3 3 2 2.,
Gu_ o (O (00 0 oudt
ot3 ox ox ) Oz Ox Ox?
Op 0%u Ou 0% Op 0%¢
SR D i |- Wil A it il 4
Ox Ox? bu Ox Ox? Ox Ox?
Oou 0%*u 3 0%u Pu
¢ o
I VO i 2
3u 9 (®+¢ )856 +0(At?, Az?) (19)
P _ 1o, 00 () _ou (0p)
s Ox \ Ox Ox \ Ox
ou 2 O 0%u 5 Ou 8%
—6(@+¢) <8x> —u Ox Ox? u Oz 0x?
Op 0%¢ Ou 02y ou 0%u
UG gz BB PG, G ~ 8@ Qg Ts
&p 0%u 303 oy
83u Pu
— 27 * 2Y 2 2
3(P+ p)u 53 (D + ) 9 + O(At?, Az?) .

(20)

LIN 279

Substituting (19) and (20) into (10) and (11), we
obtain the modified partial differential equation of
Scheme 1:
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Similarly, we can obtain the modified partial dif-
ferential equations of Schemes 2—4:
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The Schemes 14 are stable only if the second-order
dissipative coefficients on the right of (21)—(28) are
positive (Wu and Han, 1988). For certain, they must
be positive when ¢ = 0 (Lin et al., 2000). Hence, we
have the following theorems.

Theorem 1. For the Scheme 1 (CTCS scheme)
and Scheme 4 (Lax-Wendroff scheme) of the one-
dimensional nonlinear shallow water wave equation,
the necessary conditions of computational stability are
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Theorem 2. For Scheme 2 (FTBS scheme) of the
one-dimensional nonlinear shallow water wave equa-

tion, the necessary conditions of computational stabil-
ity are
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Table 1. Computational results of numerical experiments.
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Theorem 3. For Scheme 3 (BTCS scheme) of the
one-dimensional nonlinear shallow water wave equa-
tion, the necessary conditions of computational stabil-
ity are

(1)
(2)
(3)
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4. Numerical tests

In order to verify the relationship of the computa-
tional stability between the difference schemes of the
nonlinear evolution equations and the initial values,
for Schemes 1-4, we perform the following numerical
experiments. Two initial values are chosen,

(1) u(z,0)=z; ¢(z,0)=g(l—e"),
(2) u(z,0) =sin2nx ;
where 0 <z <10, 0<t <100, and h = 10.

Numerically, we take Az=0.1 and At=0.01. The
results are shown in Table 1.

p(z,0) = gcos2mx ,

From the results we can see that Schemes 1, 2, and
4 are stable for initial value 1 because Theorems 1 and
2 are satisfied. Schemes 1, 2, and 4 are unstable for
initial value 2, owing to the violation of Theorems 1
and 2. Scheme 3 is unstable for initial values 1 and 2,
however, since the stability conditions of Theorem 3
are not satisfied.

5. Conclusion

From the discussions above, some conclusions can
be drawn.

(1) There is a very close relationship for the compu-
tational stability between the non-conservative scheme
of the nonlinear evolution equation and the initial
values. If the construction of the difference schemes
is definite, the computational stability of the non-
conservative schemes is decided by the form of the
initial values. It is proved that the movement of the
discrete nonlinear evolution equation is still based on
the initial field.

Scheme 1 Scheme 2 Scheme 3 Scheme 4
initial value 1 stable stable unstable stable
initial value 2 unstable unstable unstable unstable
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(2) The stability criteria from the computational
stability analysis are really the necessary conditions
of computational stability of the non-conservative
schemes of the nonlinear evolution equation.
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