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ABSTRACT

The numerical forecasts of mei-yu front rainstorms in China has been an important issue. The
intensity and pattern of the frontal rainfall are greatly influenced by the initial fields of the numerical
model. The 4-dimensional variational data assimilation technology (4DVAR) can effectively assimilate all
kinds of observed data, including rainfall data at the observed stations, so that the initial fields and the
precipitation forecast can both be greatly improved. The non-hydrostatic meso-scale model (MM5) and
its adjoint model are used to study the development of the mei-yu front rainstorm from 1200 UTC 25
June to 0600 UTC 26 June 1999. By numerical simulation experiments and assimilation experiments, the
T106 data and the observed 6-hour rainfall data are assimilated. The influences of many factors, such as
the choice of the assimilated variables and the weighting coefficient, on the precipitation forecast results
are studied. The numerical results show that 4DVAR is valuable and important to mei-yu front rainfall
prediction.
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1. Introduction

The numerical forecast of mei-yu front rainstorms
in China has been an important issue and difficult to
deal with. A lot of important research work has al-
ready been done, not only studying dynamics theory,
but also performing the numerical simulating experi-
ments (Zhou et al., 1984; Chen et al., 1995; Zhu et
al., 1998). Since the 1980s, many field experiments
and rainstorm research plans were performed in China
to study the meso-scale convective system of the mei-
yu front, especially to study its mechanism of occur-
rence, development, and maintenance. Many basic
concepts have been clarified, such as the importance
of the large-scale background fields to the occurrence
of the mei-yu front rainfall, the 3-dimensional struc-
ture and the evolution mechanism of the meso-scale
rainstorm system, the interaction mechanism between
different scale weather systems, and so on. But the
distribution pattern and the intensity of the mei-yu
front rainfall are still difficult to predict. The forecast

of the mei-yu front rainfall is very difficult because of
the interaction between weather systems with different
spatial and temporal scales. Undoubtedly, the proper
large-scale background fields are very important to the
prediction of the mei-yu front rainfall. However the de-
velopment of the mei-yu front rainstorm system is also
based on the meso-scale structure of the initial fields,
such as temperature, humidity, and wind. Sometimes,
if the initial fields are obtained only based on tradi-
tional large-scale observed data, the forecasts for the
first 6 hours or 12 hours will have large errors. Thus
it is very important for a numerical forecast model
to have accurate physical processes on the one hand,
while to have accurate initial fields on the other hand,
as much as possible.

4DVAR was introduced into meteorological fields
of study in the 1980s (Lewis and Derber, 1985; Le
Dimet and Talagrand, 1986; Talagrand and Courtier,
1987). Afterwards, it was widely used in atmospheric
and oceanic research fields (Derber, 1987; Navon and
Legler, 1987; Chao and Chang, 1992; Gao and Chou,
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1994; Zhu, 1995; Wang et al., 2000a, b; Zou et al.,
1993, 1999, 2000; Wang and Wang, 2003). However,
few people studied the mei-yu front rainstorm in China
with 4DVAR. In this paper, the MM5 model and its
adjoint model are used to study a mei-yu front rain-
storm from 1200 UTC 25 June to 0600 UTC 26 June
1999. Numerical simulation experiments and assim-
ilation experiments are designed to study the effects
of different factors, such as the choice of the assim-
ilating variables, the way to calculate the weighting
coefficient, etc. The T106 data and the observed 6-
hour rainfall data are used in these experiments. The
variational assimilation principle for rainfall data is in-
troduced in section 2, the numerical experiments are
presented in section 3, and the conclusion is given in
section 4.

2. The variational assimilation principle of
rainfall data

Taking advantage of the observed data which vary
with time, and regarding the forecast equations as
the constrained conditions, we use 4DVAR to find the
optimal initial conditions for the numerical forecast
model and to minimize the cost function, which de-
notes the distance between the model forecasted and
the observed data. In other words, 4DVAR can con-
vert temporal information of observed data to spatial
information of the initial conditions.

In this paper, the cost function J is defined as

J = JM + JR . (1)

Here, JM is the distance between the model control
variables and the corresponding observed variables;
JR is the distance between the predicted mei-yu front
rainfall and the observed rainfall. They are defined as

JM=
K∑
k=0

[X(tk)−Xobs(tk)]TWX [X(tk)−Xobs(tk)] ,

(2)

and

JR =
M∑
m=1

[Rm −Rm,obs]TW R[Rm −Rm,obs] . (3)

Here, t is the observed time, k = 1, 2, . . . ,K indexes
the observed times of the model control variables, and
m = 1, 2, . . . ,M indexes the observed times of the sta-
tion rainfall data. X is the model control variable.
R is the rainfall. The subscript “obs” and superscript
“T” denote the observed data and the transpose of the
matrix, respectively. WX is the weighting coefficient
of the model control variable, and W R is the weight-
ing coefficient of the rainfall. Both the model control
variable X(tk) and predicted rainfall Rm depend on

the initial fields X(t0), so that the cost function J can
be defined as J = J [X(t0)], and R can be defined
as R = A[X(t0)], where A is the observed opera-
tor. A can be regarded as a calculation procedure in
the numerical model, which calculates the predicted
rainfall by using the model control variables (temper-
ature, pressure, wind, etc.). A includes the large-scale
precipitation scheme, the cumulus convective param-
eterization scheme, and the calculation procedure of
changing the rainfall values from grids to stations.

The initial fields can be optimized by the following
equation:

Xn+1(t0) = Xn(t0)− (ρ∇J)n , (4)

where n = 1, 2, . . . , N is the iteration index, ρ is the
optimal step size, and ∇J = ∇JM +∇JR is the gradi-
ent. In order to minimize the cost function J and ob-
tain the optimal initial fields X(t0), the gradient ∇J
must be calculated first by using the adjoint model.
The way to calculate ∇JM can be found in some ref-
erences (Lewis and Derber, 1985; Le Dimet and Tala-
grand, 1986; and Navon et al., 1992). In this paper,
the procedure for calculating ∇JR is introduced.

The first-order perturbation X ′(t0) of the initial
fields X(t0) can bring the first-order perturbation R′

m

of the rainfall Rm, where R′
m = Qm[X ′(t0)], and Qm

is the tangent linear operator of A, which can be used
to calculate R′

m from X ′(t0).
The first-order perturbation J ′

R of the cost function
JR can be obtained from equation (5) as follows:

J ′
R[X(t0)] =

M∑
m=1

2W R[Rm −Rm,obs]TR′
m . (5)

Replacing R′
m by Qm[X ′(t0)] into equation (3), we

have

J ′
R[X(t0)] =

M∑
m=1

2W R[Rm −Rm,obs]TQm[X ′(t0)] .

(6)

Moreover, there exists

J ′
R[X(t0)] = {∇JR[X(t0)]}TX ′(t0) . (7)

From equations (6) and (7), there is

∇JR[X(t0)] =
M∑
m=1

Q∗
m2W R[Rm −Rm,obs] , (8)

where Q∗
m is the adjoint operator of Qm. The method

of obtaining Qm and Q∗
m from the observed operator

A can be found in Zou et al. (1993, 1999).
Because the adjoint model is linear, ∇JR can be

obtained by integrating the adjoint model only once
from the final time tK backward to t0 and continu-
ously adding the forcing term 2W R[Rm −Rm,obs] to
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the adjoint variables at the observed time tm, giving
the final result of ∇JR.

The above principle of variational assimilation
about assimilating the observed rainfall can also be
used to assimilate the non-conventional observed data,
such as satellite data and radar data, while the ob-
served operator A denotes the calculating procedure
from model control variables to satellite data or radar
data.

3. Numerical experiments

In this paper, the MM5 model and its adjoint
model are used to study the mei-yu front rainstorm

from 1200 UTC 25 June to 0600 UTC 26 June 1999.
The center point of the calculation region is (32.0◦N,
118.0◦E). The number of horizontal grid points is
61×61, and the grid interval is 45 kilometers. The
number of vertical levels is 11. The T106 data and the
observed rainfall data, with time intervals of 12 hours
and 6 hours respectively, are used in the numerical
experiments.

Some numerical simulation experiments and assim-
ilation experiments are designed to study the effect of
different factors on the forecasted precipitation, such
as the setting of the integration time step size, the
choice of assimilation variables, and how to calculate
the weighting coefficient. The details follow.

Fig. 1. The 6-hour rainfall distribution patterns of the observed data and the control experiment Expt. 0
(units: mm). (a) the first 6-hour rainfall pattern (observational data), (b) the second 6-hour rainfall pattern
(observational data), (c) the first 6-hour rainfall pattern (control experiment), (d) the second 6-hour rainfall
pattern (control experiment).
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Fig. 2. The distribution patterns of the second 6-hour rainfall (unitm: mm). (a) Sensitivity experiment Expt.
1; the forecast time step size is 60 second. (b) Assimilation experiment Expt. 2; the frist 6-hour rainfall is
assimilated.

Fig. 3. The variation of the standardized cost function
with iteration step number in different variational assim-
ilation experiments: Expt. 3, hollow dot; Expt. 4, solid
dot; Expt. 5 hollow square.

3.1 Control experiment, sensitivity experiment,
and variational assimilation experiment

In the control experiment Expt. 0, the initial time
is 1200 UTC 25 June. The initial fields and the bound-
ary conditions are made from T106 data, without as-
similating any data. The step size is 120 seconds. The
forecast model is integrated for 18 hours, and the rain-
fall prediction is given out every 6 hours.

The 6-hour rainfall distribution patterns of the ob-
served data and those in the control experiment Expt.
0 for 1200–1800 UTC 25 June are shown in Figs. 1a
and 1c, respectively. The observed rainfall pattern ex-
hibits an east-west oriented narrow band about the
latitude line of 30◦N with a few centers (Fig. 1a). A
similar narrow band rainfall pattern is also found in
Expt. 0 (Fig. 1c). However, not all the positions and
intensities of the centers within the rainband are close
to those of the observed data. In some cases of Expt.0,

the position of the center is close to the observed one,
but its intensity is much less than the observed one.
For example, a rainfall center in Expt. 0 in Fig. 1c is
located near (30◦N, 118◦E), which is close to that of
the observed data in Fig. 1a. But the precipitation
intensity in Fig. 1a is 16.3 mm, while in Fig. 1c it is
44 mm. However the precipitation intensity in Fig.
1a is almost same as the observed data. In some other
cases, the intensity of a center in Expt. 0 is close to the
observed one, but its position may be far apart from
the observed one. For example, a rainfall center of
Expt. 0, which is located near (27◦N, 109◦E), is to the
south of the observed data by about 2–3 degrees. The
second 6-hour rainfall distribution pattern of the ob-
served data and that in the control experiment Expt.
0 from 1800 UTC 25 June to 0000 UTC 26 June are
shown in Figs. 1b and 1d, respectively. The precipita-
tion intensities of the observed data, with two centers
located at (30◦N, 115◦E) and (30◦N, 118◦E) respec-
tively, both exceed 50 mm, while in Expt. 0 they are
only several mm. Both the above rainfall centers in
Expt. 0 are located to the east of the corresponding
observed rainfall centers. And the rainfall center of
Expt. 0, which is located near 110◦E, is still located to
the south of the observed data.

The comparison, shown in Fig. 1, indicates that
the MM5 model has the ability to simulate the mei-
yu front rainstorm to some degree. If the initial fields
are made only based on the T106 data, even though
proper large-scale background fields are provided, the
numerical simulation results would still not be satis-
factory. For example, the forecasted center is located
to the south of the observed center, and the forecasted
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Fig. 4. The distribution patterns of the third 6-hour rainfall (units: mm). (a) observed data; (b) control
experiment.

precipitation intensity is weaker than the observed one.
In the sensitivity experiment Expt. 1, the time step

size is set as 60 seconds and the forecasted results are
presented in Fig. 2a. It shows that the rainfall dis-
tribution pattern in Expt. 1 is also similar to that of
the observed data. The rainfall center located near
(30◦N, 118◦E), has been predicted and its precipita-
tion intensity increases to 16.1 mm. Both its distri-
bution pattern and intensity are better than those of
the control experiment. But its intensity is still far
smaller than that of the corresponding data. By com-
paring the sensitivity experiment with the control ex-
periment, we find that properly decreasing the time
step size may improve the accuracy of the forecasted
rainfall. But the improvement is still not good enough
for our purposes.

In the variational assimilation experiment Expt. 2,
the first 6-hour observed rainfall data (from 1200 UTC
25 June to 1800 UTC 25 June) are assimilated to ob-
tain the optimal initial fields. The forecasted distribu-
tion pattern of the second 6-hour rainfall is shown in
Fig. 2b. Not only has the long, narrow rain belt been
predicted properly, but both the center position and
precipitation intensity of the rainfall are also improved.
The precipitation intensity of a rainfall center, located
near (30◦N, 120◦E) is increased to 31.9 mm. The cor-
responding value is about 5 mm in Expt. 0, while the
observed value is about 50 mm. This shows that the
variational assimilation experiment Expt. 2 is far bet-
ter than the control experiment Expt. 0 and closer to
the observed data. But the rainfall center in Expt.
2 is still located to the east of the observed one by
about 1–2 degrees. For another rainfall center, near

(30◦N, 110◦E), the intensity is also increased to 24.0
mm. Figure 2b also shows that the forecasted rainfall
in Expt. 2 is larger than that in the control experiment
Expt. 0 (13.1 mm) and almost as large as the observed
rainfall (25 mm). From the above results, it is obvious
that 4DVAR is very effective for rainfall forecasts in
that it can improve both the distribution pattern and
the intensity of the mei-yu rainfall.

During the iterative procedure, the cost function
usually decreasies with each iterative step (figure not
shown). Based on this fact, it is found that the method
of assimilating the observed rainfall data is very effec-
tive to decrease the distance between the forecast rain-
fall and the observed rainfall. In fact, the cost function
decreases very fast and almost reaches its minimum
after only several iterative steps, and finally it can be
decreased by about 65% of its initial value.

3.2 Choosing different assimilated variables

In order to compare the effect of assimilating dif-
ferent variables, three assimilation experiments are de-
signed as in Table 1. In Expt. 3, two 6-hour observed
rainfall records (from 1200 UTC 25 June to 1800 UTC
25 June and from 1800 UTC 25 June to 0000 UTC 26
June) are assimilated. In case 4, the T106 data at 0000
UTC 26 June are assimilated, including wind fields u
and v, humidity fields q, and temperature fields t. Fi-
nally, the numerical forecast model is integrated for 18
hours with the optimal initial fields, and the forecast
results are outputted every 6 hours.

Figure 3 is the variation of the cost function with
the iterative number in different assimilation experi-
ments.
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Fig. 5. The distribution pattern of the third 6-
hour rainfall of three variational assimilation ex-
periments (units: mm): (a) Expt. 3, (b) Expt. 4,
and (c) Expt. 5.

Table 1. The experiments of assimilating different vari-
ables.

Experiments Assimilated variables

Expt. 3 Two 6-hour rainfalls

Expt. 4 The T106 data (u, v, q, t) at 0000 UTC 26 June

Expt. 5 Two 6-hour rainfalls and the T106 data

(u, v, q, t) at 0000 UTC 26 June

Among the three assimilation experiments,the cost
functions all decrease by over 45%. The cost function
decreases the most in Expt. 3 (74%), the least in Expt.
4 (49%), and moderately in Expt. 5 (56%). From the
varation of the cost function, it can be found that the
assimilation of the observed rainfall data and the T106
data is very valuable to the rainfall forecast. And, the
changing value of the cost function is the largest only
if assimilating the observed rainfall data.

The third 6-hour rainfall (from 0000 UTC 26 June

to 0600 UTC 26 June) of the observed data and that
of the control experiment are shown in Fig. 4. In the
control experiment, the rainfall distribution pattern is
very similar to that of the observed data. A rainfall
center is located near (30◦N, 110◦E). Both its inten-
sity and position are almost the same as those of the
observed data. Another rainfall center is located near
(31◦N, 117◦E). Its intensity (15.1 mm) is far smaller
than that of the observed data (50 mm), and its posi-
tion is to the south of the observed rainfall center by
about 1 degree.

Figure 5 shows the distribution patterns of the
third 6-hour rainfall for the three variational assim-
ilation experiments, Expt. 3, Expt. 4, and Expt. 5.

From Fig. 5, it is found that the rainfall forecast
can be improved as long as the observed data are as-
similated. The rainfall distribution pattern and the
rainfall intensity are closer to those of the observed
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Table 2. The effect of the weighting coefficient of rainfall (the standard weighting coefficient is W0 = 20).

Cost function
Experiment

1 2 3 4

WR 15 25 35 50

The cost function JM,0 of the 0.10804×105 0.10804×105 0.10804×105 0.10804×105

model control variables

The cost function JR, 0 of the rainfall 0.29513×104 0.49189×104 0.68865×104 0.98378×105

The total cost function JM, 0 + JR, 0 0.13755×105 0.15723×105 0.17691×105 0.20642×105

The cost function JM, N of the 0.54513×104 0.57881×104 0.60882×104 0.65988×104

model control variables

The cost function JR, N of the rainfall 0.10261×104 0.16129×104 0.15616×104 0.22319×104

The total cost function JM, N + JR, N 0.64774×104 0.74010×104 0.76498×104 0.88317×104

The cost function IR, N of the 0.13681×104 0.12903×104 0.08923×104 0.08928×104

standardizing weighting coefficient

The total cost function JM, N + IR, N of the 0.68194×104 0.70784×104 0.69805×104 0.74916×104

standardizing weighting coefficient

rainfall data than those of the control experiment.
When the assimilated variables are different, the fi-
nal effects on the simulated results are also different.
In Fig. 5a, a rainfall center is located near (30◦N,
116◦E), which is to the west of the corresponding ob-
served rainfall center. Its intensity is 52.6 mm, which
is basically the same as the corresponding observed
value (50 mm). Another rainfall center is near (30◦N,
111◦E), which is very close to the observed rainfall cen-
ter. Its intensity is 47.6 mm, which is far larger than
the observed rainfall intensity. In Fig. 5b, the trans-
meridional narrow distribution pattern of the rainfall
is similar to the observed data, but the intensity of the
rainfall is obviously weaker than that of the observed
data. The intensity of the rainfall center located at
(30◦N, 119◦E) is 16.5 mm, which is far smaller than
that of the observed data. It is the same for the rain-
fall center located at (30◦N, 111◦E). In Fig. 5c, the
rainfall distribution pattern is also similar to that of
the observed data. The intensity of the rainfall center
located at (30◦N, 111◦E) is 25.4 mm, which is almost
the same as that of the observed data. The intensity
of another rainfall center located at (30◦N, 118◦E) is
29.8 mm, which is weaker than the observed rainfall
intensity, but far better than the control experiment.
By comparison, case 5 is the best among the three
assimilation experiments.

3.3 The effect of the rainfall weighting coeffi-
cient

Navon et al. (1992) pointed out that the weighting
coefficient had two effects: (1) scaling the cost function
and making it a non-dimensional variable; (2) denot-
ing the quality reliability of the observed data. Dur-
ing the variational assimilation procedure, two types

of data are provided: T106 data and the observed sta-
tion rainfall data. The assimilated data include the
model variables (u, v, q, t) and two 6-hour observed sta-
tion rainfall datasets. A good weighting coefficient can
correctly define the effect of different terms in the cost
function and make the cost function decrease very fast.
Thus how to choose the proper weighting coefficient of
the rainfall is a very important problem. In Table 2,
four experiments are designed with different weighting
coefficients of rainfall. By comparing the variation of
the cost function, the effect of the weighting coefficient
is examined.

In these experiments, the weighting coefficients of
rainfall are given as 15, 25, 35, and 50, respectively.
Furthermore, the weighting coefficients of the model
variables are given as

Wψ(i, j, k) =
1

|ψi,j,k,obs(t0)− ψi,j,k,obs(tK)|2
,

where ψ is the model variable, (i, j, k) is the model grid
index set, subscript “obs” denotes the observed data,
and t0 ∼ tK is the assimilating window. In order to
conveniently compare the effect of the cost function,
a standardizing weighting coefficient W0 of rainfall is
introduced. The standardized equation is

IR,N = JR,N ×W 0/W R ,

where JR,N is the cost function of rainfall before stan-
dardization, IR,N is the cost function of the rainfall
after standardization, subscript “N” is the final as-
similation iterative step, and W R is the weighting co-
efficient of the rainfall. The total standardized cost
function is JM,N + IR,N , where JM,N is the cost func-
tion of the model variables. It can be found from Table
2 that after standardization, the cost function of the
third experiment is the smallest, and the smallest total
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Fig. 6. The distribution pattern of the initial water vapor divergence fields at the 900-hPa isobaric surface (units:
1.0×10−6 s−1: (a) before assimilation, and (b) after assimilation.

Fig. 7. The vertical section of the humidity potential temperature field (units: K): (a) before assimilation, and
(b) after assimilation.

cost function is in the first experiment. Certainly
in the assimilation experiments, the smaller the cost
function is, the better the results are. In this paper,
one of the research objectives is to study the effect of
the choice of assimilation variables on the decrease of
the cost function, because the cost function is relative
to both the model variables and the observed rainfall
data. Thus the principle of properly giving a weighting
coefficient is to find which method can make the stan-
dardized total cost function very small and the stan-
dardized cost function of rainfall the smallest. Based
on the above principle, the final weighting coefficient

of the rainfall is given as 35.

3.4 Improving the initial fields by variational
assimilation

During the objective analysis procedure of the nu-
merical weather forecast, it is very easy to overly
smooth the physical fields and lose much of the im-
portant meso-scale information, which may cause an
inconsistency between the vapor fields and other phys-
ical fields, and then make the forecast results worse.
The essence of 4DVAR is to optimize the initial fields–
and therefore to improve the forecast results by taking
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advantage of the valuable information of the observed
data.

The distribution patterns of the initial water va-
por divergence fields at the 900-hPa isobaric surface
before and after assimilation are shown in Figs. 6a and
6b, respectively. From Fig. 6, we can find that before
assimilation there are hardly any divergence centers
in the initial fields. This is because the wind fields
and the vapor fields have been overly smoothed dur-
ing the objective analysis procedure. Thus there will
be large deflection in the rainfall forecast results if the
initial fields are made with T106 analysis data. We can
also find that after assimilation many smaller-scale di-
vergence centers appear in the optimal initial fields,
whose distribution pattern is similar to that of the
observed rainfall. This denotes that much of the im-
portant meso-scale information of the vapor fields has
been retrieved from the optimal initial fields, so the
initial water vapor fields can be properly described.
Therefore, the resulting rainfall forecast can be effec-
tively improved.

Figure 7 is the vertical section of the potential
pseudo-equivalent temperature fields crossing the mei-
yu front, whose center point is located at (30◦N,
118◦E). Figures 7a and 7b are the distribution pat-
terns before and after assimilation, respectively. After
assimilation, a meso-β-scale high-value center appears
between 600 hPa and 900 hPa. The area of the poten-
tial instability region becomes large and the intensity
increases. Because the potential instability region is
related to the instability energy, and since the increas-
ing of the instability energy is available to the forma-
tion and development of the rainfall system, the rain-
fall forecast will be improved after assimilation. The
advantage of 4DVAR is that it converts the temporal
information of the observed data into the spatial infor-
mation of the initial fields and retrieves the meso-scale
structure of the initial fields. Thus the initial fields and
the rainfall forecast will be greatly improved.

4. Conclusions

In this paper, many numerical experiments and
variational assimilation experiments of the mei-yu
front rainstorm from 1200 UTC 25 June to 0600 UTC
26 June 1999 are designed. The influences of many fac-
tors on the forecasted rainfall precipitation are stud-
ied, such as the selection of the assimilation variables
and the weighting coefficient. The following conclu-
sions can be drawn:

(1) If the initial fields of the numerical model are
given only by T106 data, it is not good enough for fore-
casting the mei-yu front rainfall forecast. Decreasing

the time step size properly may improve the forecast
of the rainfall, but the improvement is too small.

(2) When 4DVAR is introduced into the numerical
experiments, no matter whether the model variable
data or the observed rainfall data are assimilated, the
forecasted results will be greatly improved.

(3) Assimilating the 6-hour rainfall data is able to
improve the intensity forecasting. The forecasted rain-
fall is very close to the observed one, while the fore-
casted position of the rainfall center is displaced west-
ward from the observed center. Assimilation of the
model variables, such as u, v, q, t, w, and p′, is very ef-
fective to improve the forecast of the rainfall pattern
and the rainfall center position, but has little effect on
the improvement of the rainfall intensity. For forecast-
ing the intensity, only assimilating the observed data is
more effective than assimilating the other model vari-
ables. It will be effective to both the rainfall distri-
bution pattern and the rainfall intensity if both the
model variables and the 6-hour observed rainfall data
are assimilated simultaneously.

(4) The forecasted rainfall is also greatly influenced
by the weighting coefficient. The proper weighting co-
efficient can make the cost function decrease very fast,
and therefore improve the rainfall forecast.
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