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ABSTRACT

The generalized method of variational analysis (GMVA) suggested for 2-D wind observations by Huang
et al. is extended to 3-D cases. Just as in 2-D cases, the regularization idea is applied. But due to the
complexity of the 3-D cases, the vertical vorticity is taken as a stable functional. The results indicate
that wind observations can be both variationally optimized and filtered. The efficiency of GMVA is also
checked in a numerical test. Finally, 3-D wind observations with random disturbances are manipulated by
GMVA after being filtered.
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1. Introduction

A forecasting system is concerned with data objec-
tive analysis which is usually classified into two types.
The first kind is to interpolate the data onto grid
points, i.e. establish the statistical structure of the
physical fields by using abundant observational data,
obtain the weight of every physical field, and inter-
polate the observational data onto grid points. This
provides the initial fields (Zeng, 1997). But initial
fields often contain high frequency noise, which will
been enlarged in a numerical integration. Hence, the
initial field needs to be adjusted to filter the noise,
which is the so-called initialization. The second kind
of data objective analysis is variational analysis (VA),
which was first presented for 2-D flow by Sasaki in the
1950s, and in essence it is an application of conditional
variation to numerical weather forecasting, with a con-
centration on the analysis of the wind field, flow field,
and so on (Sasaki, 1969, 1970). It is on the basis of
the above work that Le Dimet and Talagrand (1986)
and Talagrand and Curtier (1987) proposed the idea
of data variational assimilation in the 1980s, which
markedly enhanced the forecasting precision by ob-
taining the optimal initial field.

It is known that VA is a powerful tool in most cases.
However, Huang et al. pointed out that, for 2-D wind
observations with high frequency oscillations, though
an optimal analyzed field can be extracted from the
wind observations through VA, the discrepancies be-
tween the observations and the analyzed field is “not
small” and the latter still contains high frequency com-
ponents. In view of this fact, they developed a general-

ized method of variational analysis (GMVA) incorpo-
rating the regularization technique. An ideal numeri-
cal test shows that 2-D wind observations containing
high frequency noise can be both variationally opti-
mized and filtered.

In this paper, the GMVA will be extended to the
case of 3-D wind observations. First, the method of
variational analysis (MVA) for 2-D wind observations
by Sasaki is applied to ideal 3-D wind observations
with high frequency oscillations, and its deficiencies
will also be pointed out. And then, the GMVA for 3-
D wind observations with the aid of the regularization
idea is introduced. Because of the intrinsic difference
between the 2-D and 3-D wind field, the GMVA for 3-
D wind observations is not a simple extension of MVA
for 2-D wind observations.

This paper is organized as follows. Section 2 is a
review and comment of Sasaki’s MVA. In section 3,
the GMVA with the regularization technique is intro-
duced. Section 4 gives an example of numerical results
through the GMVA and the comparison with Sasaki’s
results. The paper ends with a concluding remark in
section 5.

2. Review of Sasaki’s method of variational
analysis

The flow field is assumed to be three dimensional
with the domain Ω ⊂ R3 and the boundary ∂Ω. Be-
cause of observational error, real wind does not satisfy
the incompressible theorem, i.e.,

∂ũ

∂x
+

∂ṽ

∂y
+

∂w̃

∂z
6= 0 . (2.1)
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So an analysed wind field V = (u, v, w) is designed to
satisfy the incompressible theorem, i.e.,

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0 , (2.1*)

and to make the following cost functional minimal.

J [u, v, w] =
∫

Ω

[(u− ũ)2 + (v − ṽ)2

+ (w − w̃)2]dxdydz = min . (2.2)

This is a conditional variation problem. Introducing a
Lagrange multiplier λ(x, y, z), the new cost functional
is

J [u, v, w, λ] =
∫
Ω

[
(u− ũ)2 + (v − ṽ)2 + (w − w̃)2

− 2λ

(
∂u

∂x
+

∂v

∂y
+

∂w

∂z

)
dxdydz = min

(2.2*)

Setting δJ = 0 leads to three equations

u = ũ− ∂λ

∂x
, v = ṽ − ∂λ

∂y
, w = w̃ − ∂λ

∂z
. (2.3)

Here the boundary condition is taken as λ|∂Ω = 0. It

follows from (2.1*) and (2.3) that

∆λ =
∂ũ

∂x
+

∂ṽ

∂y
+

∂w̃

∂z
, λ|∂Ω = 0 . (2.4)

Eq. (2.4) is the Dirichlet problem of the Poission equa-
tion, which can be solved by the Successive Over-
Relaxation (SOR) method. The optimal analysed
value (u, v, w) can then be obtained from Eq. (2.3).

Now an example is specified to show the deficiency
of Sasaki’s MVA for 3-D wind observations. Suppose
(ut, vt, wt) is a wind true field which has the form

ut = cos(x)sh(y) sin(z), vt = sin(x)ch(y) sin(z),

wt = 0.5 . (2.5)

It satisfies (2.1*) by all appearances. The domain is
Ω = (0, π)× (0, π)× (0, π), and an observational data
point (ũ, ṽ, w̃) is assumed to be

ũ = ut + ε cos(nx) sin(my) sin(z) ,

ṽ = vt + ε sin(nx) cos(my) sin(z) ,

w̃ = wt , (2.6)
where ε is very small positive number, and n, m are
positive integers, the second term in ũ and ṽ are small
magnitude disturbances superimposed on the true flow
field (ut, vt, wt). The larger n(m) is, the smaller the
space scale of disturbances in the x(y) direction is. So

‖ũ− ut‖H1 =
{∫

Ω

[
(ũ− ut)2 + |∇ũ−∇(ut)|2

]
dxdydz

}1/2 = ε
√

m2 + n2 + 2
(π

2

)3/2

,

‖ṽ − vt‖H1 =
{∫

Ω

[
(ṽ − vt)2 + |∇ṽ −∇(vt)|2

]
dxdydz

}1/2 = ε
√

m2 + n2 + 2
(π

2

)3/2

,

‖w̃ − wt‖H1 =
{∫

Ω

[
(w̃ − wt)2 + |∇w̃ −∇(wt)|2

]
dxdydz

}1/2 = 0 ,

(2.7)

where ‖ • ‖H1 is a norm in Soblev space H1

‖φ‖H1 =
{∫

Ω

[
|φ|2 + |∇φ|

]2
dxdydz

}1/2

,

and this can reflect the deviation of the observa-
tions from the true wind field. As shown in (2.7),
‖ũ− ut‖H1 , ‖ṽ− vt‖H1 , and ‖ũ− ut‖H1 will also be
small enough as long as ε is small.

For the observational data, Eqs. (2.6) and (2.4) be-
come

∆λ =
∂ũ

∂x
+

∂ṽ

∂y
+

∂w̃

∂z

= −ε(n + m) sin(nx) sin(my) sin(z) , λ|∂Ω = 0 (2.8)

The Dirichlet problem of Poission equation (2.8)
has a unique solution, which can be sought by the
method of undetermined coefficients. Let

λ = A sin(nx) sin(my) sin(z) .

Here, A is a constant to be determined. Then

λ =
ε(n + m)

n2 + m2 + 1
sin(nx) sin(my) sin z . (2.9)

The difference between the analysis value (u, v, w) and
the true wind field is (ut, vt, wt) is


‖ũ− ut‖H1 = ε

√
m2 + n2 + 2

(π

2

)3/2 m2 − nm + 1
n2 + m2 + 1

= εO(n) , m = O(n) , but m 6= n, n,m →∞ ,

‖ũ− ut‖H1 = ε
√

m2 + n2 + 2
(π

2

)3/2 m2 − nm + 1
n2 + m2 + 1

= εO(n) , m = O(n) , but m 6= n, n,m →∞ ,

‖w̃ − wt‖H1 = ε
√

m2 + n2 + 2
(π

2

)3/2 n + m

n2 + m2 + 1
= εO(l) , m = O(n) , but m 6= n, n,m →∞ ,

(2.10)
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It is easily seen from Eq. (2.6) that the observa-
tional wind possesses high frequency components for
sufficiently large n and m. From Eq. (2.10), using
Sasaki’s MVA, the vertical component w of an ana-
lyzed wind field is of minor discrepancy, but the hori-
zontal components (u, v) are of large discrepancy and
therefore are not improved. Thus, Sasaki’s MVA needs
to be studied further.

3. Generalized method of variational analysis

According to the regularization idea (Tikhonov and
Arsenin, 1977; Kirsch, 1996), a stable functional is in-
troduced in the cost functional J [u, v, w] so as to re-
strain high frequency noise (just as filtering) and to
ensure the uniqueness of the solution of the variational
problem (Huang et al., 2002, 2003). Here the stable
cost functional is specified as

∫
Ω

(
∂v

∂x
− ∂u

∂y

)2

dxdydz

where

ζ =
∂v

∂x
− ∂u

∂y

is the vertical vorticity. The reason for choosing the
vertical vorticity ζ as the stable functional is as fol-
lows: the regularization stable functional must con-
tain as much important physical information as pos-
sible. In dynamical meteorology, atmospheric motion
is quasi-horizontal, i.e., the vertical component of the
vorticity is leading. So the vertical vorticity is taken
as the stable functional. Otherwise, taking the whole
vorticity (including the x, y, z components of the vor-
ticity) as the stable functional will cause the following
aftermath. The problem becomes so complicated that
the boundary conditions are difficult to determine, and
the final analysis field is not satisfactory.

The new cost function is then

J̃ [u, v, w] =
∫

Ω

[
(u− ũ)2 + (v − ṽ)2 + (w − w̃)2

− 2λ

(
∂u

∂x
+

∂v

∂y
+

∂w

∂z

)
dxdydz

+ γ

∫
Ω

(
∂v

∂x
− ∂u

∂y

)2

dxdydz = min ,

(3.1)

where γ > 0 is a regularization parameter. Due to

1
2
δJ̃ = 0, the following form can be given

0 =
∫

Ω

[
(u− ũ)δu + (v − ṽ)δv + (w − w̃)δw

+ λ

(
∂δu

∂x
+

∂δv

∂y
+

∂δw

∂z

)
dxdydz

+γ

∫
Ω

ζ

(
∂δv

∂x
− ∂δu

∂y

)]
dxdydz

=
∫

Ω

[(
u− ũ +

∂λ

∂x
+ γ

∂ζ

∂y

)
δu

+
(

v − ṽ +
∂λ

∂y
− γ

∂ζ

∂x

)
δv

+
(

w − w̃ +
∂λ

∂z

)
δv

]
dxdydz

−
∫

Ω

[
∂(λδu)

∂x
+

∂(λδv)
∂y

+
∂(λδw)

∂z

]
dxdydz

+ γ

∫
Ω

[
∂(ζδv)

∂x
− ∂(ζδu)

∂y

]
dxdydz . (3.2)

Using the Green’s formula, (2.2) changes to

0 =
∫

Ω

[(
u− ũ +

∂λ

∂x
+ γ

∂ζ

∂y

)
δu

+
(

v − ṽ +
∂λ

∂y
− γ

∂ζ

∂x

)
δv(

w − w̃ +
∂λ

∂z

)
δv

]
dxdydz

−
∫

Ω

λ(δu, δv, δw) · nds

+ γ

∫
Ω

(ζδv,−ζδu, 0) · nds = 0 . (3.3)

Here n is the outward unit normal on the boundary
∂Ω. The arbitrariness of δu, δv, and δw gives rise to
the following Euler equation

u = ũ− ∂λ

∂x
− γ

∂ξ

∂y
,

v = ṽ − ∂λ

∂y
+ γ

∂ξ

∂x
,

w = w̃ − ∂λ

∂z
.

(3.4)

Equation (3.4) satisfy the condition on ∂Ω

−
∫

Ω

λ(δu, δv, δw) · nds + γ

∫
Ω

ζ(δv,−δu, 0) · nds = 0 .

(3.5)

We consider

λ|∂Ω = 0 and ζ(δv,−δu, 0)|∂Ω = 0 .

Now that (u, v, w) in Eq. (3.4) satisfy Eq. (2.1*), then
λ satisfies Poission Eq. (2.4) and can be calculated.
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On the other hand,

∆ζ − ζ

γ
= − ζ̃

γ
,

∫
Ω

ζ(δv,−δu, 0) · nds = 0 , (3.6)

where ζ̃ is the vertical vorticity of the observational
wind.

Now the boundary condition can be classified into
two cases as δ(v,−u) · n|∂Ω = 0 and ζ|∂Ω = 0. These
will be respectively discussed below.

Case 1 The boundary condition has the form of
ζ|∂Ω = 0, so ζ(x, y, z) can be determined from Eq.
(3.6).Then the analysis value (u, v, w) can be obtained
after substituting (λ, ζ) into Eq .(3.4).

Case 2 The boundary condition (δv,−δu, 0) ·
n|∂Ω = 0 means (v,−u, 0) · n is fixed on ∂Ω. So we
take (v,−u, 0) ·n = (ṽ,−ũ, 0) ·n where (v,−u, 0) ·n|∂Ω

can be gained because of the known observational
field (ũ, ṽ, w̃) · ζ can be obtianed from Eq. (3.6), and
then the analysis value (u, v, w) can be obtained by
substituting (λ, ζ) into Eq. (3.4). Here the condition
(v,−u, 0) · n = (ṽ,−ũ, 0) · n must be verified on ∂Ω,
otherwise the result of ζ will be wrong.

4. The analysis of numerical results

4.1 Case 1 (The first kind of boundary condi-
tion)

The true flow field ut, vt, wt) is given by Eq. (2.5),
and the observations (ũ, ṽ, w̃), by Eq. (2.6). Our in-
tention is to find an analysis value (u, v, w) to sat-
isfy Eq. (2.1*) and make the cost function minimal,
i.e., J̃ [u, v, w] =min. The domain of the search is
Ω = (0, π) × (0, π) × (0, π) with the boundary ∂Ω =
Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4 ∪ Γ5 ∪ Γ6, just as shown in Fig. 1.

At first, we solve the following boundary value
problem

∆ζ − ζ

γ
= − ζ̃

γ
, ζ|∂Ω = 0 . (4.1)

Using Eq. (2.6), Eq. (4.1) has the following form

∆ζ − ζ

γ
= − ζ̃

γ
= −ε(n−m) cos(nx) cos(my) sin(z)

γ
.

(4.1*)

 15
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Fig. 2. The horizontal part in the z = π/2 plane for the
true flow.

Expanding ζ into a series in terms of a infinite sequence
of basis functions {sin(a0x) sin(a1y) sin(a2z)}

ζ =
∞∑

a0,a1,a2=1

Ca0,a1,a2 sin(a0x) sin(a1y) sin(a2z)

(4.2)

and substituting Eq. (4.2) into Eq. (4.1) yields
∞∑

a0,a1,a2=1

−(a2
0 + a2

1 + a2
2 +

1
γ

)

× Ca0,a1,a2 sin(a0x) sin(a1y) sin(a2z)

= −ε(n−m) cos(nx) cos(my) sin(z)
γ

. (4.3)

Multiplying the two sides of (4.3) by
sin(Px) sin(Qy) sin(Rz) and integrating over Ω leads
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Fig.3a The horizontal wind field in z=π/2 plane for the wind observations. 
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          Fig.3b The discrepancy between the observations u and the true value uT in z=π/2 plane. 
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Fig.3c The discrepancy between the observations v  and the true value vT in z=π/2 plane.   
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            Fig.3d The discrepancy between the observations w and the true value wT in z=π/2 plane. 
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Fig. 3. (a) The horizontal wind field in the z = π/2 plane for the wind observations. (b) The discrepancy
between the observations u and the true value ut in the z = π/2 plane ‖u− ut‖2

H1 = 309.14ε2. (c) The difference
between observations v and the true value ut in the z = π/2 plane ‖v − vt‖2

H1 = 321.25ε2. (d) The discrepancy
between observations w and the true value wt in the z = π/2 plane ‖w − w‖2

H1 = 0.

to

CP,Q,R

(π

2

)3
(

P 2 + Q2 + R2 +
1
γ

)
=

ε(n−m)
γ

∫ π

0

sin(Px) cos(nx)dx

×
∫ π

0

sin(Qy) cos(my)dy

∫ π

0

sin(Rz) sin(z)dz .

(4.4)

So

ζ =
64ε(n−m)

γπ2

×
∞∑

k0,k=1

k0k1 sin(2k0x) sin(2k1y) sin(z)

(4k2
0 − n2)(4k2

2 −m2)(4k2
0 + 4k2

1 + 1 +
1
γ

)

(4.5)

Utilizing Eqs. (2.9), (3.4), and (4.5), the analyzed flow

field (u, v, w) can be obtained as follows:
u=ũ− εn(n + m) cos(nx) sin(my) sin(z)

n2 + m2 + 1

− 128ε(n−m)
π2

×
∞∑

k0,k=1

k0k
2
1 sin(2k0x) cos(2k1y) sin(z)

(4k2
0−n2)(4k2

2−m2)(4k2
0+4k2

1+1+
1
γ

)
,

(4.6a)

v =̃v− εm(n + m) sin(nx) cos(my) sin(z)
n2 + m2 + 1

+
128ε(n−m)

π2

×
∞∑

k0,k=1

k2
0k1 cos(2k0x) sin(2k1y) sin(z)

(4k2
0−n2)(4k2

2−m2)(4k2
0+4k2

1+1+
1
γ

)
,

(4.6b)

w = w̃ − ε(n + m) sin(nx) sin(my) cos(z)
n2 + m2 + 1

. (4.6c)
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Fig.4a The analyzed horizontal flow field (u,v) using MVA 
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                 Fig. 4b The discrepancy between the true value uT and the analyzed value u using MVA. 
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Fig.4c The discrepancy between the true value vT and the analyzed value v using MVA. 
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             Fig. 4d The discrepancy between the true value wT and the analyzed value w using MVA. 
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Fig. 4. (a) The analyzed horizontal flow field (u, v) using MVA. (b) The discrepancy between the true value ut

and the analyzed value u using MVA ‖u − ut‖2
H1 = 3.96ε2. (c) The discrepancy between the true value vt and

the analyzed value v using MVA ‖v − vt‖2
H1 = 3.21ε2. (d) The discrepancy between the true value wt and the

analyzed value w using MVA ‖w − wt‖2
H1 = 0.92ε2.

4.2 Case 2 (The second kind of boundary con-
dition)

In this case, the boundary condition is (v,−u, 0) ·
n = (ṽ,−ũ, 0) · n. So

(ṽ,−ũ, 0) · n|Γ1 = ũ|y=0 = 0;
(ṽ,−ũ, 0) · n|Γ2 = ṽ|x=π = 0;
(ṽ,−ũ, 0) · n|Γ3 = −ũ|y=π = − cos(x)sh(π) sin(z);
(ṽ,−ũ, 0) · n|Γ4 = ṽ|x=0 = 0;
(ṽ,−ũ, 0) · n|Γ3 = 0|z=π = 0;
(ṽ,−ũ, 0) · n|Γ6 = 0|z=0 = 0 .

(4.7)

The equation of ζ is Eq. (4.1*). We apply the unde-
termined coefficients method to solve Eqs. (4.1*) and
(4.7). Supposing

ζ = A cos(nx) cos(my) sin(z) ,

where A is a constant and will be determined. Substi-

tuting ζ into Eq. (4.1*) gives

ζ =
ε(n−m)

γ(n2 + m2 + 1) + 1
cos(nx) cos(my) sin(z) .

(4.8)

The analyzed field is (u, v, w) is

u =ũ−
[

n(n + m)
n2 + m2 + 1

− γm(n−m)
γ(n2 + m2 + 1) + 1

]
× ε cos(nx) sin(my) sin(z) , (4.9a)

v =ṽ −
[

n(n + m)
n2 + m2 + 1

− γn(n−m)
γ(n2 + m2 + 1) + 1

]
× ε sin(nx) cos(my) sin(z) , (4.9b)

w = w̃ − ε(n + m) sin(nx) sin(my) cos(z)
n2 + m2 + 1

, (4.9c)

The result of ζ is consistent with (4.7), so the result is
proper.
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Fig. 5a  The analyzed horizontal flow field (u,v) of case 1 using  the GMVA.     
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        Fig. 5b The discrepancy between true value uT and the analyzed value u of case 1 using the GMVA. 
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Fig. 5a  The analyzed horizontal flow field (u,v) of case 1 using  the GMVA.     
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        Fig. 5b The discrepancy between true value uT and the analyzed value u of case 1 using the GMVA. 
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Fig.5c The discrepancy between true value vT and the analyzed value v of case 1 using the GMVA. 
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                Fig.6a The analyzed horizontal flow field (u,v) of case 2 using the GMVA.  
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Fig. 5. (a) The analyzed horizontal flow field (u, v) of
case 1 using the GMVA. (b) The discrepancy between the
true value ut and the analyzed value u of case 1 using the
GMVA. ‖u − ut‖2

H1 = 0.76ε2. (c) The discrepancy be-
tween value vt and the analyzed value v of case 1 using
the GMVA ‖v − vt‖2

H1 = 0.59ε2.
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                Fig.6a The analyzed horizontal flow field (u,v) of case 2 using the GMVA.  
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Fig.6b The discrepancy between true value uT and the analyzed value u of case 2 using the GMVA.  
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         Fig. 6c The discrepancy between true value vT and the analyzed value v of case 2 using the GMVA. 
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Fig.6b The discrepancy between true value uT and the analyzed value u of case 2 using the GMVA.  
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         Fig. 6c The discrepancy between true value vT and the analyzed value v of case 2 using the GMVA. 
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Fig. 6. (a) The analyzed horizontal flow field (u, v) of
case 2 using the GMVA. (b) The discrepancy between
true value ut and the analyzed value u of case 2 using
the GMVA. ‖u − ut‖2

H1 = 0.074ε2. (c) The discrepancy
between true value vt and the analyzed value v of case 2
using the GMVA ‖v − vt‖2

H1 = 0.074ε2.
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Fig. 7a The horizontal flow field with a random disturbance in z=π/2 plane . 
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 Fig.7b The discrepancy between the true value uT and the observation u containing a random disturbance. 
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Fig.7c The discrepancy between the true value vT and the observation v containing a random disturbance. 
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Fig.7d  The discrepancy between the true value wT and the observation w containing a 

random  disturbance.  22
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Fig. 7a The horizontal flow field with a random disturbance in z=π/2 plane . 
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 Fig.7b The discrepancy between the true value uT and the observation u containing a random disturbance. 
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Fig.7c The discrepancy between the true value vT and the observation v containing a random disturbance. 
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Fig.7d  The discrepancy between the true value wT and the observation w containing a 

random  disturbance.  22
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Fig. 7. (a) The horizontal flow field with a random disturbance in the z = π/2 plane. (b) The discrepancy
between the true value ut and the observations u containing a random disturbance ‖u − ut‖2

H1 = 321.58ε2. (c)
The discrepancy between the true value vt and the observations v containing a random disturbance ‖v− vt‖2

H1 =
313.81ε2. (d) The discrepancy between true value wt and the observations w containing a random disturbance
‖w − wt‖2

H1 = 318.83ε2.

4.3 The adjustment of observational wind with
random disturbance

The true flow field in this section is still Eq. (2.5),
and the wind observations are defined as the true flow
field plus a random disturbance, namely

ũ = ut + urandom ,

ṽ = vt + vrandom ,

w̃ = wt + wrandom .

(4.10)

Where urandom, vrandom, and wrandom are random
numbers in the interval (0,1). The stable cost func-
tion is still Eq. (3.1), and the boundary condition is
the same as Eq. (4.1). As discussed above, we still
have Eqs. (4.1) and (3.6).

The random disturbances urandom, vrandom, and
wrandom must be filtered because they contain high
frequency component (Zeng, 1997). The method is as
follows.

Let φ and φ stand for the unfiltered and filtered
data respectively. Then

∑
i,j,k

(φi,j,k−φi,j,k)2 is required

to reach its minimum under the constraint

φi,j,k − φi,j−1,k
∼= 0 ,

φi,j,k − φi−1,j,k
∼= 0 ,

φi,j,k − φi,j,k−1
∼= 0 ,

where i = 1, 2, . . . , n0, j = 1, 2, . . . , n, and k =
1, 2, . . . , n2, and n0, n1, and n2 are the dimensions of
three directions respectively.

The cost function can be written as

J1 =
∑
i,j,k

{(φi,j,k − φi,j,k)2 + µ[(φi,j,k − φi−1,j,k)2

+(φi,j,k−φi,j−1,k)2+(φi,j,k−φi,j,k−1)
2]} = min .

According to the necessary condition for J1 to reach a
minimum, it follows that

φi,j,k =φi,j,k − µ(φi+1,j,k + φi−1,j,k + φi,j+1,k

+ φi,j−1,k + φi,j,k+1 + φi,j,k−1 − 6φi,j,k) .

(4.11)
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Fig.8a The discrepancy of u by low-pass filter adjusting. 22
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    Fig. 9a The analyzed horizontal flow field (u,v) using MVA for the observation containing                   

random disturbance.                                                    
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                  Fig. 8b The discrepancy of v by low-pass filter adjusting. 22
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Fig. 8. (a) The discrepancy of u by low-pass filter ad-
justment ‖u − ut‖2

H1 = 2.47ε2. (b) The discrepancy of
v by low-pass filter adjustment ‖v − vT ‖2

H1 = 2.36ε2.
(c) The discrepancy of w by low-pass filter adjustment
‖w − wT ‖2

H1 = 2.43ε2.
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    Fig. 9a The analyzed horizontal flow field (u,v) using MVA for the observation containing                   
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Fig.9b The discrepancy between the true value uT and the analyzed value u using MVA.  
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           Fig. 9c The discrepancy between the true value vT and the analyzed value v using MVA. 
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Fig.9b The discrepancy between the true value uT and the analyzed value u using MVA.  
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           Fig. 9c The discrepancy between the true value vT and the analyzed value v using MVA. 
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Fig. 9d The discrepancy between the true value wT and the analyzed value w using MVA. 
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       Fig. 10a The analyzed horizontal flow field (u,v) containing a random disturbance using the GMVA.   
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Fig. 9. (a) The analyzed horizontal flow field (u, v) using MVA for the observations containing a random
disturbance. (b) The discrepancy between the true value ut and the analyzed value u using MVA ‖u− ut‖2

H1 =
2.16ε2. (c) The discrepancy between true value vt and the analyzed value v using MVA ‖v− vt‖2

H1 = 2.16ε2. (d)
The discrepancy between the true value wt and the analyzed w using MVA ‖w − wt‖2

H1 = 2.15ε2.
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Fig. 9d The discrepancy between the true value wT and the analyzed value w using MVA. 
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       Fig. 10a The analyzed horizontal flow field (u,v) containing a random disturbance using the GMVA.   

               

 

(d) 

(a) 

 29

                    

                         
 

0
1

2
3

0

1

2

3
0

0.05

0.1

0.15

0.2

0.25

0.3

  
 

Fig. 10 b The discrepancy between the true value Tu  and the analyzed value u using the GMVA. 
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        Fig. 10c The discrepancy between the true value Tv and the analyzed value v using the  GMVA.      
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Fig. 10 b The discrepancy between the true value Tu  and the analyzed value u using the GMVA. 
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        Fig. 10c The discrepancy between the true value Tv and the analyzed value v using the  GMVA.      
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Fig. 10. (a) The analyzed horizontal flow field (u, v) con-
taining a random disturbance using the GMVA. (b) The
discrepancy between the true value ut and the analyzed
value u using the GMVA ‖u − ut‖2

H1 = 1.04ε2. (c) The
discrepancy between the true value vt and the analyzed
value v using the GMVA ‖v − vt‖2

H1 = 1.15ε2.

Here µ is called the filtering coefficient, and the larger
µ is, the more serious the short wave attenuation. In
this section, we take µ = 100, γ = 5.

Using filtered urandom, vrandom, wrandom, we repeat
the above procedures to obtain an analyzed field,
which is shown in Figs. 7–10.

5. Concluding remarks

In this paper, the generalized method of variational
analysis (GMVA) for 2-D wind observations developed

by Huang et al. (2004) is extended to 3-D cases,
which can deal well with wind fields containing high
frequency components.

For the true and observational flow fields given by
Eqs. (2.5) and (2.6) respectively, and the constant ver-
tical component of the true wind field, we first calcu-
late the analyzed value of the observational wind field
using MVA, and then calculate it using the GMVA un-
der two kinds of boundary conditions. The results are
illustrated in Figs. 1–6. The efficiency of the GMVA
used in the present paper is compared to that of the
MVA by Sasaki. In the end, a filtering technique is
introduced to cope with the observational wind con-
taining random disturbances, and the results are just
as indicated in Figs. 7–10. The following conclusions
can be made.

(1) When the observations contain high frequency
noise, the discrepancy of w can be reduced to some
extent while the discrepancy of u, v is not small, even
after filtering.

(2) The analyzed flow field calculated by the
GMVA in case 1 is approximately equal to the true
field when the series are truncated at k0 = 20, k1 = 20.
In particular when x ∈ (0.1, 3.0), the regulated flow
field is almost equal to the true flow field. But at
x = 0, x = π, there are some discrepancies, which can
be improved by increasing the rank of the truncation.

(3) The analyzed flow field using the GMVA in case
2 is almost equal to the true field.

(4) For the case of the observational field contain-
ing random disturbances, filtering is applied first, and
then an accurate analyzed flow field can be obtained
using the GMVA.
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