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ABSTRACT

The structural organization of initially random errors evolving in a barotropic tangent linear model, with
time-dependent basic states taken from analyses, is examined for cases of block development, maturation
and decay in the Southern Hemisphere atmosphere during April, November, and December 1989. The
statistics of 100 evolved errors are studied for six-day periods and compared with the growth and structures
of fast growing normal modes and finite-time normal modes (FTNMs). The amplification factors of most
initially random errors are slightly less than those of the fastest growing FTNM for the same time interval.
During their evolution, the standard deviations of the error fields become concentrated in the regions
of rapid dynamical development, particularly associated with developing and decaying blocks. We have
calculated probability distributions and the mean and standard deviations of pattern correlations between
each of the 100 evolved error fields and the five fastest growing FTNMs for the same time interval. The mean
of the largest pattern correlation, taken over the five fastest growing FTNMs, increases with increasing
time interval to a value close to 0.6 or larger after six days. FTNM 1 generally, but not always, gives
the largest mean pattern correlation with error fields. Corresponding pattern correlations with the fast
growing normal modes of the instantaneous basic state flow are significant but lower than with FTNMs.
Mean pattern correlations with fast growing FTNMs increase further when the time interval is increased
beyond six days.

Key words: normal modes, finite-time normal modes, blocking, tangent linear model, pattern correla-

tions.

1. Introduction

In both the Southern and Northern Hemispheres,
numerical weather forecasts during the onset and de-
cay of blocking, frequently suffer from rapid loss of
predictability (Bengtsson, 1981; Noar, 1983; Tibaldi
and Molteni, 1990; Kimoto, 1992; Anderson, 1993;
Tibaldi, 1995; Molteni, 1996). The inability of nu-
merical forecast models to accurately predict blocking
transitions is also a limiting factor in producing suc-
cessful medium and extended range forecasts (Trib-
bia and Baumhefner, 1993; Colucci and Baumhefner,
1992). Thus, understanding the dynamics and causes
of error growth during blocking transitions is of con-
siderable practical importance for both short term and
extended range forecasts.

Instability processes of the large scale flow are seen
as playing major roles in both the development of
blocking anomalies and in the growth of errors dur-

ing blocking transitions (Frederiksen, 1982, 1984; Sim-
mons, 1983; Frederiksen and Bell, 1990; Borges and
Hartmann, 1992; Anderson, 1996; Buizza and Molteni,
1996; De Pondeca, 1998a, b). However, a controver-
sial issue in atmospheric dynamics has been whether
disturbances and errors primarily develop as exponen-
tially growing normal modes or whether transient de-
velopment, involving the interference of superpositions
of normal modes, is generally important (Lacarra and
Talagrand, 1988; Farrell, 1989; Frederiksen and Bell,
1990; Borges and Hartmann, 1992; Whitaker and Bar-
cilon, 1992; Molteni and Palmer, 1993; Frederiksen,
2000; Frederiksen and Branstator, 2001). This con-
troversy has extended to considerations of the type of
perturbations that are most likely to capture the struc-
tures of the forecast errors, and that are likely to be
useful for constructing initial ensembles for ensemble
weather prediction (Palmer, 1993; Toth and Kalnay,
1993, 1997; Houtekamer and Derome, 1995; Molteni,
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1996; Anderson, 1996; Szunyogh, 1997; Noone and
Simmonds, 1998).

Ensemble prediction schemes have recently been
implemented at a number of operational weather pre-
diction centers. Singular vectors in the energy norm
are used to perturb the control initial conditions at the
European Centre for Medium Range Weather Fore-
casts (ECMWF) (Palmer, 1993; Molteni, 1996). Re-
cently, conditional nonlinear optimal perturbations
have been proposed by Mu (2003) and Mu and Duan
(2003) to study predictability of atmospheric systems.
A “breeding” method is used to construct the ini-
tial ensembles at the National Centers for Environ-
mental Prediction (NCEP) (Toth and Kalnay, 1993,
1997) and at the Commonwealth Scientific & Indus-
trial Research Organization (CSIRO) (Frederiksen,
2004). The “bred” perturbations have been likened
to Lyapunov vectors, presumably because the lead-
ing left Lyapunov vector will emerge from arbitrary
initial conditions in integrations of the tangent linear
model after a sufficiently long time (Legras and Van-
tard, 1996; Szunyogh, 1997; Frederiksen, 2000; Wei,
2000). Wei and Toth (2003) and Buizza (2004) provide
reviews and comparisons of different ensemble fore-
cast methods currently implemented at world major
weather forecasting centers.

Both the singular vector methodology and the
“bred” perturbation scheme provide improvements in
numerical weather forecasts. This is despite the fact
that these two methods use very different perturba-
tions to perturb the control initial conditions. One
might wonder whether using still other perturbations
would provide further gains in the accuracy of nu-
merical weather forecasts. Recently, it has been sug-
gested that the dominant finite-time normal modes
(FTNMs), the eigenmodes of the tangent linear prop-
agator, would characterize the structures and impor-
tant directions for error growth over a finite time pe-
riod (Frederiksen, 1997, 2000). FTNMs are norm in-
dependent structures (Frederiksen, 2000), unlike sin-
gular vectors which depend on the chosen norm, and
may be defined for any finite time interval, unlike Lya-
punov vectors. FTNMs are the natural generalization
of normal modes to time-dependent flows.

Earlier it was proposed that the dominant nor-
mal modes of instantaneous flows would approximately
characterize the directions of instability and error
growth over the next one or two days (Frederiksen and
Bell, 1990). Anderson (1996) recently implemented an
ensemble prediction scheme for a low order dynami-
cal system in which the control initial conditions are
perturbed by superpositions of the dominant normal
modes. He found that the normal mode method for
his system performed quite well.

Our purpose in this paper is to examine the struc-
tural organization of initially random errors evolving
in the barotropic tangent linear model. Our particular
interest is to compare the structures of evolved error
fields with those of the dominant FTNMs and nor-
mal modes. We make these comparisons for cases of
the Southern Hemisphere blocking in April, November
and December 1989.

The plan of the paper is as follows. In section 2, the
barotropic tangent linear equations for error growth
are summarized. We define FTNMs as eigenmodes of
the propagator and compare them with normal modes.
A brief discussion of the synoptic situations during
the blocking events of April, November, and December
1989 is presented in section 3. There we also describe
the construction of the time-dependent basic states
obtained from daily analysed 300-hPa streamfunction
fields through linear interpolation. In section 4, we
study the evolution of initially random errors in April
and relate them to the growth and structures of FT-
NMs and normal modes. The statistics of 100 evolved
errors are examined over six-day periods. We calculate
probability distributions and the mean and standard
deviations of pattern correlations between the evolved
error fields and dominant FTNMs and normal modes.
Similar studies are performed in sections 5 and 6 for
the December and November cases respectively. For
November we also consider longer time periods. Our
conclusions are summarized in section 7 and the Ap-
pendix summarizes details of the iterative eigensolvers
used in this study.

2. Theoretical background

2.1 Models of atmospheric dynamics

The dynamics of atmospheric flows is frequently
studied using models of differing complexity rang-
ing from barotropic models, through quasi-geostrophic
models, to multi-level primitive equation models. For-
mally these models may be written in the form

dX(t)
dt

= N[X(t)] , (1)

where N denotes a nonlinear operator. Here, X (t)
is the state vector specifying the time-dependent flow
in the phase space of either grid point values or spec-
tral components of the dynamical variables. In fact,
in this study, the basic state flow will not be taken
from a model integration but directly from ECMWF
analyses.

Our aim in this work is to examine the evolution of
small perturbations growing on analysed basic states.
For sufficiently small initial perturbations and for suf-
ficiently short times, the error dynamics is described
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by the tangent linear equations (Lorenz, 1965; Lacarra
and Talagrand, 1988). These are the equations of mo-
tion linearized about the time-varying flow. The ob-
served magnitude of typical forecast errors is such that
error growth in weather predictions is linear for sev-
eral days, depending on horizontal resolution (Errico
et al., 1993; Veyre, 1991). At the current rhomboidal
R = 15 resolution, the tangent linear model is valid
for 3 to 4 days for the typical observed errors (Veyre,
1991).

In this paper, we use the tangent linear equations
based on the barotropic vorticity equations to describe
error growth. Our choice is based partly on simplicity,
and on the need to perform large ensembles of simula-
tions. However, it is also the case that a large compo-
nent of large scale error growth can be described using
barotropic dynamics (Veyre, 1991, Frederiksen, 1998).

For flow on a sphere, the nondimensional form of
the tangent linear vorticity equation is given by

∂ζ

∂t
= −J(ψ, ζ̄ + 2µ)− J(ψ̄, ζ)− ηζ − η′∇4ζ , (2)

where
J(ψ, ζ) =

∂ψ

∂λ

∂ζ

∂µ
− ∂ψ

∂µ

∂ζ

∂λ
,

ψ is the streamfunction perturbation, ζ = ∇2ψ is the
vorticity perturbation, while ζ̄ and ψ̄ are the basic
state vorticity and streamfunction respectively. The
other parameters in Eq. (2) are as follows: t is time,
λ is longitude, µ is the sine of latitude, and η and η′

are the coefficients of viscosity representing drag and
diffusion. All the variables are nondimensional with
space coordinates scaled by the earth’s radius and time
scaled by Ω−1, the inverse of the earth’s angular ve-
locity.

The results reported here will depend to some ex-
tent on the choice of the viscosity used. Therefore, we
examine initially both the inviscid case and a case with
a typical magnitude of the viscosity, so that compari-
son of the respective results gives an indication of their
sensitivity to dissipation. In the viscous case, typical
values of the coefficients of viscosity are chosen as

η = 8.4× 10−7s−1 and η′ = 2.5× 1016m4 s−1.

The spectral version of the barotropic tangent linear
equation is obtained by expanding the streamfunction
and vorticity in spherical harmonics. For example,

ζ(λ, µ, t) =
R∑

m=−R

|m|+R∑
l=|m|

ζml(t)Pm,l(µ) exp(imλ) ,

(3)

where R is a rhomboidal truncation wavenumber,
which we take to be 15 as in Frederiksen (1997). Here
Pm,l(µ) are orthonormalised Legendre functions, m is

the zonal wavenumber and l is the total wavenum-
ber. The prognostic spectral equations may then be
expressed in terms of Re(ζml) and Im(ζml). With

x = [. . . ,Re(ζml), . . . , Im(ζml), . . .]T

denoting the column vector of real and imaginary parts
of ζml, the spectral equations can be written in the
form

dx (t)
dt

= M (t)x (t) , (4)

where

M (t) =
dN

dX
|X (t)

is the tangent linear operator evaluated on the anal-
ysis trajectory X (t). The formal solution of Eq. (4)
is

x (t) = G(t, t0)x (t0) . (5)

The propagator G(t, t0) has an integral representation
as given, for example, in equation (2.4) of Frederiksen
(1997).

We solve the tangent linear equations with a half-
hour time step. The basic states are taken from
ECMWF daily analysis and linearly interpolated to
obtain the time-dependent fields needed every half
hour.

2.2 Finite-time normal modes

In the case of time-dependent instability matrices,
M (t), the eigenvectors of the propagator, G(t, t0),
play important roles in instability study (Frederiksen,
1997). The eigenvalue equation for G(t, t0) is

[λνI−G(t, t0)]φν = 0, ν = 1, . . . , n, (6)

where

λν = λν(t, t0) and φν = φν(t, t0)

are the eigenvalues and eigenvectors. We call these
eigenvectors finite-time normal modes (FTNMs) fol-
lowing Frederiksen (1997). In the above equation, I is
the unit matrix. Since the propagator G(t, t0) maps
any initial perturbation from time t0 to time t, it must
carry some important information about the evolution
of the basic state X (t), and its eigenvectors must play
some role in the error growth from t0 to t. From Eq.
(6), we see that

φν(t) = G(t, t0)φν = λνφν . (7)

Thus, it is evident that λν(t, t0) represents the amplifi-
cation of the perturbation during the period t− t0 and
the time-evolving basic state will be unstable if the
modulus of λν(t, t0) is greater than 1.0. The evolved
eigenvectors φν(t) are also the eigenvectors of G(t, t0).
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If we expand the initial vector x (t0) in terms of the
eigenvectors of G(t, t0)

x (t0) =
n∑

ν=1

κνφν , (8)

then the solution to Eq. (5) is (Frederiksen and Bell,
1990; Frederiksen, 1997)

x (t) =
n∑

ν=1

κνλν(t, t0)φν , (9)

where φν = φ(t0) and κν are given by

κν = 〈αν , x (t0)〉/〈αν φν〉 . (10)

Here 〈 , 〉 is the Euclidean inner product, and αν , the
adjoint modes, are the eigenmodes of G†(t, t0) with
eigenvalues λν

?, where † denotes Hermitian conjugate
and ? complex conjugate.

Equation (9) indicates that the FTNMs with eigen-
values of larger modulus will dominate the perturba-
tion x (t) for larger t − t0. In the cases of finite-time
intervals t− t0, we will use a “recycling” process to fil-
ter out the sub-dominant FTNMs as discussed in the
Appendix.

We define the growth rate ων,i and phase frequency
ων,r associated with a FTNM through the relationship

λν = λν,r + iλν,i = exp[−i(ων,r + iων,i)(t− t0)] .
(11)

Thus

ων,i =
1

2(t− t0)
ln(λ2

ν,r + λ2
ν,i) , (12)

ων,r =
−1

(t− t0)
arctan(

λν,i

λν,r
) , (13)

where arctan is a multivalued function; its appropri-
ate branch needs to be chosen to specify the phase fre-
quency uniquely. This branch is most efficiently deter-
mined by analyzing the phase changes in the FTNMs
as they are integrated forward in the tangent linear
model.

In the special case when M (t) is independent of
time, the propagator has the form

G(t, t0) = expM (t− t0) . (14)

This may be a reasonable approximation if, over a
short time interval, X (t) is slowly varying. The prop-
agator then has eigenvalues

λν = expµν(t− t0)

and eigenvectors φν , ν = 1, . . . , n. Here n is the di-
mension of X , µν are the complex eigenvalues of M
and φν are the eigenvectors of M which are also called
normal modes.

For non-zero and non-degenerate eigenvalues, the
eigenmodes form a complete bi-orthogonal system to-
gether with the adjoint eigenmodes. The perturbation
x (t) will be dominated by the leading normal modes
(NMs), which are those associated with the largest real
parts of µν , when t � t0. The non-leading modes
will gradually become irrelevant with increasing time
(Frederiksen and Bell, 1990). This filtering process is
further discussed in the Appendix.

3. Synoptic situations and observed basic
states

Blocking highs derive their name from the fact that
they are quasi-stationary features that tend to occur in
preferred geographical locations and block, or deflect

Fig. 1. Hovmoeller diagrams of blocking indices in
1989 in the Southern Hemisphere for (a) the second half
of April, (b) the first half of November, (c) the first half
of December.
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towards the pole, the normal eastward progression of
weather systems. During their growth, amplification
and decay they tend to be associated with a loss of
predictability.

In this study we examine error growth associated
with developing blocks that formed in the regions of
Australia-New Zealand or in the Central Pacific in
April, November and December 1989. As noted in
a number of observational studies (e.g., van Loon,
1956; Wright, 1974; Coughlan, 1983; Lejenas, 1984),
the Australian-New-Zealand region is the primary pre-
ferred region for blocking action in the Southern Hemi-
sphere. The blocking indices for these three months
are shown in Fig. 1. The daily Hovmoeller diagrams
for the second half of April and the first halves of
November and December are shown in Figs. 1a–c re-
spectively. These indices are based on observations
and taken from the Climate Monitoring Bulletin of
the Australian Bureau of Meteorology (CMB, 1989).
Their definition of the blocking index (BI) for the
Southern Hemisphere is as follows:
IB = 0.5(U25S + U30S + U55S + U60S − U40S − U50S

−2U45S) , (15)
where U denotes the 500 hPa zonal wind at the lati-
tudes indicated by subscripts.

During late April, blocking high-low dipoles formed
at the longitudes of eastern Australia and in the cen-
tral Pacific. These events are associated with positive
blocking indices around 150◦E and 240◦E between 24
April and the end of the month (Fig. la). The east-
ern Australian block was preceded by a large ampli-
tude trough that developed to the southwest of West-
ern Australia around 20 April. This blocking dipole
caused a splitting of the jet stream into two distinct
currents as it amplified. This is seen in Fig. 2a,
which shows the streamfunction for the flow at 300
hPa at 0000 UTC on 24 April. The blocking dipole is
equivalent barotropic and, as usual, is more evident at
lower levels (not shown). By 26 April, the block had
moved downstream to a location near New Zealand
and started to decay. This was also the time when
the central Pacific block began its development near
240◦E. These events are seen in Fig. 2b, which shows
the 300 hPa streamfunction at 0000 UTC on 26 April.

For April (also for November and December), we
shall focus on barotropic processes associated with 300
hPa basic states, which is why we have concentrated
on this level in the above discussion even though the
blocks are more evident at lower levels. The reasons
for choosing the 300 hPa level for analyzing barotropic
processes relate to theoretical arguments that show
that a higher level than the traditional 500 hPa one is
appropriate for barotropic model studies (Held, 1983;
Simmons, 1983).

During November 1989, blocking activity was
above average from east of 0 degrees longitude to the
central Pacific. Our interest is focussed on the block-
ing dipole that formed early in the month near 120◦E,
as shown by the blocking index in Fig. 1b. The block
started developing around 8 November and a block-
ing dipole pattern extending through the troposphere
became established over the Indian Ocean on about
11 November. As a consequence, the jet stream was
split into two quite distinct branches across the Indian
Ocean, as seen at 0000 UTC on 12 November in Fig.
2c, which shows the 300 hPa streamfunction. Towards
the middle of the month, the block moved downstream
and decayed.

In early December, a blocking high pressure sys-
tem began developing over the southernmost extent of
the Tasman Sea between Australia and New Zealand.
The corresponding positive blocking index near 150◦E
is shown in Fig. lc. By 0000 UTC on 9 December, a
large amplitude blocking dipole extended through the
troposphere as shown in the 300 hPa streamfunction
field in Fig. 2d. The block subsequently decayed after
10 December.

Our basic states are constructed from daily 300
hPa streamfunction fields at 0000 UTC during the
three periods discussed above. We linearly interpolate
to obtain the time-dependent fields needed every half
hour in simulations and theoretical studies. Because
our basic states are constructed from analyses based
on observations, they include all effects acting on the
atmosphere including diabatic heating, baroclinic and
topographic effects. In theory, it is desirable to exam-
ine the full instability properties of atmospheric states
based on the complete flow equations. However, the
full non-hydrostatic primitive equations are extremely
difficult to analyze and even they would rapidly di-
verge from the observed atmospheric trajectory.

4. Error growth during April

In this section, we examine the growth of initial
random errors evolving in the barotropic tangent lin-
ear model during April 1989. We examine how quickly
the random errors become organized by the tangent
linear dynamics and we analyze their evolved struc-
tures. We first present a case study of the evolution
of a particular initial random error field and then ex-
amine the statistics of the growth of 100 random error
fields.

4.1 A case study of error growth

Here, we examine the evolution of an initial, ran-
domly generated error field during the period from 20
April to 26 April. Throughout this paper, all dates
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Fig. 2. The basic state streamfunction (in km2 s−1) at 300 hPa on (a) 24 April, (b) 26 April, (c)
12 November, (d) 9 December in 1989.

specified refer to the time of 0000 UTC unless stated
otherwise. The 300 hPa streamfunction for the initial
random error field starting on 20 April is shown in Fig.
3a, and the evolved error fields on 24 and 26 April are
shown in Figs. 4a and 4b respectively. These results
are for the inviscid tangent linear dynamics. The di-
agrams show that, at these times, the error field has
been organized by the tangent linear dynamics to take
up large scale structures. These dipole or multi-pole
structures have similar scales to the blocking distur-
bances. They occur in the respective blocking regions
and extend downstream.

The large scale dipole error structure started devel-

oping near 120◦E on 23 April (not shown) and ampli-
fied as it moved downstream into the blocking region
between Australia and New Zealand on 24 April (Fig.
4a). On 25 April, the large scale error structure moved
eastward to the region between 180◦ and 120◦W and
rapidly amplified as the block in the central Pacific de-
veloped (not shown). The error field further amplified
and took up a wave train structure in the blocking re-
gion between 60◦ and 120◦W on 26 April (Fig. 4b).
In all these cases the evolved error field has a dipole or
multi-pole structure of similar scale to the developing
block.

We next compare these evolved error fields with
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dominant normal modes and FTNMs for the case of
inviscid dynamics. Both the normal modes and FT-
NMs described in this section have been calculated us-
ing the iterative Arnoldi method described in the Ap-
pendix. First, we consider the dominant normal mode
of the instantaneous basic state taken as the 300 hPa
streamfunction at 1200 UTC on 25 April 1989. The
300 hPa streamfunction of this mode is shown in Fig.
3b in arbitrary units; it has a wave train structure in,
and extending downstream of, the blocking region in
the South Pacific near 120◦W. It is a stationary mode
with an e-folding growth time of 2.41 days. Modes
with very similar structure are also found at other
times around this period including mode 2 (the sec-
ond fastest mode) at 0000 UTC on 25 April, mode 3
at 1200 UTC on 24 April and mode 1 at 0000 UTC
on 26 April. This last mentioned mode, however, is
located slightly further downstream.

Normal mode 1 in Fig. 3b has a qualitatively sim-
ilar wave train structure in the sector between 60◦W
and 120◦W to that of the evolved error field on 26 April
(Fig. 4b). This finding is consistent with the idea that
during block development (and other rapid develop-
ments) the dominant normal modes of the instanta-
neous flows would, to a first approximation, character-
ize the structures of instability and error growth over
the next one or two days (Frederiksen and Bell, 1990;
Frederiksen, 1998). Frederiksen (1997, 2000) argues
that dominant FTNMs may provide a more accurate
representation of the structures of evolved errors. We
examine next the structures of the dominant FTNMs.

We have calculated FTNMs for the time-dependent
basic state for different periods all starting on 20 April
and finishing on or before 26 April. Figures 4c and 4d
display the structures of the dominant FTNM for the
periods of 4 and 6 days starting on 20 April and finish-
ing on 24 and 26 April respectively. Table 1 shows the
real (λr) and imaginary (λi) parts of the eigenvalues
of the dominant FTNMs during 20 to 26 April. Also
shown are their amplification factors (|λ|), dimensional
growth rates (ωd, i) and e-folding times (τ).

From a comparison of the adjacent diagrams in

Table 1. Nondimensional real (λr) and imaginary (λi)
parts of eigenvalues, amplification factors (| λ |), the di-
mensional growth rates (ωd, i) and e-folding times (τ) of
FTNM 1 during 20-26 April 1989 (inviscid case).

Basic state λr λi |λ | ωd, i (d−1) τ (d)

20–21 1.323 0.0 1.323 0.284 3.52

20–22 –1.439 0.812 1.653 0.250 4.00

20–23 1.857 –0.967 2.093 0.245 4.08

20–24 3.079 –1.459 3.407 0.305 3.27

20–25 4.843 0.0 4.843 0.314 3.18

20–26 –6.842 4.439 8.156 0.349 2.86

Fig. 4, it is evident that the evolved error field takes
up a structure that is very similar to that of the cor-
responding first FTNM in the respective key blocking
regions. This is due to the fact that the tangent lin-
ear dynamics filters the disturbances in favor of the
dominant FTNMs (Eq. (9)). This filtering tends to
increase with increasing time periods as described by
Frederiksen (1998). For example, for the period 20 to
26 April, |λ1| = 8.2, |λ2| = 5.6, |λ3| = 4.3, |λ4| = 3.9,

Fig. 3. (a) The 300 hPa streamfunction for a ran-
domly generated initial error field on 20 April 1989.
(b) The 300 hPa streamfunction of normal mode 1 at
1200 UTC on 25 April 1989.



76 FINITE-TIME NORMAL MODES DURING S. H. BLOCKING VOL. 22

|λ5| = 3.8 and |λ6| = 3.3. As well, some of the domi-
nant FTNMs have somewhat similar structures in the
key blocking regions.

Our findings in this subsection for Southern Hemi-
sphere blocking, relating error fields to the structures
of dominant normal modes and FTNMs, are consistent
with the results of similar case studies for Northern
Hemisphere blocking (Frederiksen, 1997, 2000). What
is not known, however, is how representative these case
studies are. We consider this question next by consid-
ering the statistics of the growth of 100 random error

fields.

4.2 Statistics of ensemble error growth

In this subsection we analyze the statistics of the
growth of 100 initial, randomly generated error fields.
The initial random perturbations are chosen from a
Gaussian distribution in which the magnitudes of the
streamfunction spectral coefficients are proportional to
(2l + 1)−1; that is, |ψml| ∼ 1/(2l + 1). This means
that

∑
m
|ψml| is exactly constant in the inner rhom-

boid where l 6 R and falls off with total wavenumber
in the oute rhomboid. It also means that the total

Fig. 4. The streamfunctions of evolved random errors and FTNM 1 during the period between 20
to 26 April 1989 in the inviscid case. The evolved errors are shown on (a) 24 and (b) 26 April. Also
shown are FTNM 1 from 20 to (c) 24 and (d) 26 April. The magnitudes and phases of FTNM 1
have been chosen to be closely similar to the evolved errors (c.f. Appendix).
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Fig. 5. The standard deviations of 100 evolved error
fields on (a) 24 April and (b) 26 April.

wavenumber spectrum of kinetic energy,

e(l) =
∑
m

l(l + 1)ψmlψ
∗
ml ,

increases linearly in the inner rhomboid and falls off
with wavenumber in the outer rhomboid. There are
uncertainties in the determination of the analysis er-
ror covariance matrix. However, the linear increase
of the total wavenumber spectrum of kinetic energy
in the inner rhomboid to l = R = 15 and fall off
in the outer rhomboid appears to be consistent with

typical estimates of 2-day forecast errors as seen in
Fig. 4d of Molteni (1996); their spectrum for differ-
ences between ECMWF and Deutsche Wetterdienst
(i.e., German Weather Service) analyses is however
flatter. Each perturbation is evolved in the tangent
linear barotropic model from 20 to 26 April. We first
consider the case of inviscid dynamics, and calculate
the standard deviations of the 100 error fields on each
day. These are shown on 24 and 26 April in Figs. 5a
and 5b respectively. A comparison with the case study
in Fig. 4 shows that the case study is a very represen-
tative example; on each day the amplitude of the error
field in Fig. 4 is located in regions of large standard
deviation. The standard deviation in Fig. 5, however,
also shows some extra regions of development, partic-
ularly near the dateline on 26 April.

Next, we consider the changes in the amplification
factors as the errors grow. We define the inner product
of any two real Southern Hemisphere physical space
streamfunction fields X(θ, ρ, t) and Y (θ, ρ, t) at time t
by

{Y (θ, ρ, t), X(θ, ρ, t)} =

1
2π

∫ 2π

0

dθ

∫ 0

−1

dρY (θ, ρ, t)X(θ, ρ, t), (16)

where θ is longitude and ρ is sin(latitude). Then the
amplification factor for a perturbation field X(θ, ρ, t)
over a time period from t0 to t is

Af(t, t0) =
{X(θ, ρ, t), X(θ, ρ, t)} 1

2

{X(θ, ρ, t0), X(θ, ρ, t0)}
1
2
. (17)

Figure 6 summarizes our results for the increases
in the amplification factors with time as the 100 initial
random perturbations grow. In Fig. 6a, we show Af

for 20 of the perturbations; these 20 were the first of
the 100 that were chosen by our random number gener-
ator. Also shown in Fig. 6a is the amplification factor
for FTNM 1 for different time periods starting on 20
April and finishing on the day indicated. We note that
for all but one of the 20 first perturbations, the am-
plification factors on a given day are smaller than for
FTNM 1. In fact, this exception is the only outlier
among the 100 error fields that exceeds the FTNM 1
amplification factor at any stage. Figure 6a also shows
the mean of the amplification factors for the first 20
perturbations (indicated by �). The variations in the
amplification factors of the error fields are reflections
of the projections of the initial errors onto FTNM 1.

For the inviscid case, we depict, in Fig. 6b, the
mean (thin solid) of the 100 amplification factors of
the error fields and, as well, the mean ± the standard
deviation (thin dashed) of the 100 amplification fac-
tors. Also shown in Fig. 6b are the corresponding
results for the viscous case (respective thick lines).
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Fig. 6. The amplification factors of FTNM 1 and
evolved errors in both inviscid and viscous cases dur-
ing periods from 20 to 21, 22, . . ., 26 April 1989. (a).
The first 20 of the 100 evolved random errors (solid
lines), FTNM 1 in inviscid case (∗) and the mean
of the first 20 evolved random errors (�). (b). In-
viscid case: FTNM 1 (∗), the mean of 100 evolved
errors (thin solid line) and mean ± standard devia-
tion of 100 evolved errors (thin dashed lines). Viscous
case: FTNM 1 (�), the mean of 100 evolved errors
(thick solid line) and mean ± standard deviation of
100 evolved errors (thick dashed lines).

Figure 6b again shows the amplification factor for
FTNM 1 in the inviscid case and, as well, in the vis-
cous case. We note that both the mean and mean +
standard deviation of the amplification factors of the
error fields on a given day are smaller than for FTNM
1 in the respective inviscid and viscous cases. As ex-
pected, viscosity reduces the amplification factors of
both the error fields and FTNMs. For the FTNMs,
this may be seen in more detail by comparing the in-
viscid results for eigenvalues, amplification factors and
growth rates in Table 1 with the corresponding viscous
results in Table 2.

Our particular interest in this subsection is in de-
termining the statistics of pattern correlations (cal-
culated over the Southern Hemisphere) between the

random perturbations and the FTNMs. Here the pat-
tern correlation between any two real physical space
streamfunction fields X(θ, ρ) and Y (θ, ρ) is defined by

Ac =
{Y,X}

{Y, Y } 1
2 {X,X} 1

2
, (18)

We note that the structure of FTNMs may change with
time or phase (for generalized traveling FTNMs; Fred-
eriksen and Branstator, 2001, Appendix). We there-
fore calculate the pattern correlation (Ac) at the phase
of the FTNM that gives the largest Ac . The mean
(solid) and mean ± the standard deviation (dashed)
of the pattern correlations between each of the 100 er-
ror fields and FTNMs are displayed in Fig. 7. Figure
7a shows these quantities for the largest correlations
taken over the five fastest growing FTNMs and for
both the inviscid (thin lines) and viscous (thick lines)
cases. The largest correlation is calculated as follows.
For each error field at time t, we calculate the pat-
tern correlation with each of the five fastest growing
FTNMs for the period t0 to t and take the largest
of these five pattern correlations. Then, we calculate
the mean and mean ± standard deviations over 100
error fields. Figure 7b depicts the corresponding re-
sults for the correlations between the error fields and
FTNM 1 in the inviscid (thin lines) and viscous (thick
lines) cases. For the viscous case, Fig. 7c gives the
corresponding results involving FTNM 2 (thick lines)
and 3 (thin lines), while the results corresponding to
FTNM 4 and FTNM 5 are shown in Fig. 7d in thick
and thin lines respectively.

In Fig. 7a, the mean and the mean ± the stan-
dard deviations increase monotonically with time and
there is little difference between the inviscid and vis-
cous cases. This contrasts with the situation for cor-
relations with individual FTNMs in Figs. 7b–d, which
increase in general with time but also show local vari-
ability. We note in particular that FTNM 1 generally,
but not always, gives the largest average pattern cor-
relations with the error fields. For example, FTNM 1
and FTNM 3 appear to swap roles on 24 April in the
viscous case. Qualitatively similar results for the sub-

Table 2. Nondimensional real (λr) and imaginary (λi)
parts of eigenvalues, amplification factors(| λ |), the di-
mensional growth rates (ωd, i) and e-folding times (τ) of
FTNM 1 during 20–26 April 1989 (viscous case).

Basic state λr λi | λ | ωd, i (d−1) τ (d)

20–21 1.190 0.0 1.190 0.174 5.757

20–22 –1.136 0.628 1.230 0.129 7.704

20–23 1.428 –0.650 1.569 0.149 6.691

20–24 1.884 0.0 1.884 0.158 6.337

20–25 0.232 –2.527 2.538 0.186 5.387

20–26 –3.284 1.951 3.820 0.223 4.492
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dominant modes are obtained in the inviscid case (not
shown). From Figs. 7a and b, we might also expect
that the average correlation taken over the five fastest
growing FTNMs and the mean correlation with FTNM
1 would increase further if the time interval were in-
creased beyond six days. We consider this question in
section 6.

Next, we consider probability distributions of cor-
relations between the 100 evolved error fields on 26
April and FTNMs for the period 20 to 26 April. We
compare these with corresponding probability distri-
butions where the correlations involve normal modes
of the instantaneous basic state at 0000 UTC on 25
April instead of the FTNMs. Our purpose is to ex-

amine whether FTNMs are more likely predictors of
the structure of evolved errors than normal modes.
That this should be the case has been suggested by
the work of Frederiksen (1997, 1998) and the case
study in subsection 4.1. Figure 8a shows the prob-
ability distribution for the largest correlations taken
over the five fastest growing FTNMs, and the prob-
ability distribution for the largest correlations taken
over the five fastest growing normal modes is shown in
Fig. 8c. Figure 8b shows the probability distribution
for the correlations with FTNM 1, the same is shown
for normal mode 1 in Fig. 8d. Both diagrams are for
the viscous case; very similar results are found for the
inviscid case (not shown).
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Fig. 7. Pattern correlations (Ac) between the dominant FTNMs and the 100 evolved random
errors in both inviscid and viscous cases during the periods from 20 to 21, 22, . . ., 26 April 1989.
(a) The mean (solid) and mean ± the standard deviation (dashed) of the largest correlations taken
over the five fastest growing FTNMs (viscous — thick, inviscid — thin). (b) As in (a) but for the
correlations between the 100 evolved random errors and FTNM 1. (c) The mean (solid) and mean
± the standard deviation (dashed) of the correlations between the 100 evolved random errors and
FTNM 2 (thick) or FTNM 3 (thin). (d) As in (c) but for FTNMs 4 and 5 respectively.
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It is clear that there is considerable spread in the
correlations for the 6-day period ending on 26 April.
However, the correlations taken over the five fastest
growing FTNMs and the correlations with FTNM 1
are generally high. The average correlation taken over
the five fastest growing FTNMs is about 0.6, and the
mean correlation with FTNM 1 is slightly over 0.5
(Figs. 7a and b). The correlations taken over the
five fastest growing normal modes and the correlations
with normal mode 1 tend to be lower than with the
respective FTNMs. They are nevertheless significant
and indicate that it may be possible to obtain a rea-
sonable representation of evolved error fields through
expansions in terms of a subset of the faster growing
normal modes (Frederiksen and Bell, 1990; Anderson,
1996; Frederiksen, 1998).

The results in this section, both with and without
viscosity, have shown that initial random errors tend

to evolve to structures similar to the dominant FT-
NMs, especially FTNM 1, and particularly for longer
time periods. The growth rates of initially random er-
rors are generally bounded by the growth rate of the
dominant FTNM. Only one out of 100 random initial
errors has been found to grow faster than the dom-
inant FTNM during the period from 20 to 26 April.
In the next two sections, we examine the generality of
our findings for other cases of block development.

5. Statistics of ensemble error growth in De-
cember

In this section we consider, rather briefly, the
statistics of the evolution of random errors for early
December when the blocking high developed over the
southernmost extent of the Tasman Sea. The synoptic
situation was somewhat similar to that when the east-
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Fig. 8. The probability distributions of correlations between the 100 evolved random errors on 26
April and FTNMs for the period 20 to 26 April for the viscous case. (a) Shown are the probability
distributions for the largest correlations taken over the five fastest growing FTNMs. (b) The
probability distributions for the correlations with FTNM 1. (c) The same as (a), but taken over
the five fastest growing normal modes. (d) The same as (b), but for normal mode 1.
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ern Australian block developed in April. Then, in sec-
tion 6, a more detailed discussion of error growth dur-
ing November will be given. For the remainder of this
paper we focus on the case of viscous dynamics.

For December, we again analyze the statistics of
the growth of 100 initial randomly generated error
fields, constructed as described in section 4. We study
error growth during the period from 5 to 11 December,
which covers the development, maturation and decay
of the Tasman Sea block. The 100 initial random per-
turbations are generated on 5 December and the stan-
dard deviations of the 100 evolved error fields are cal-
culated on each day and shown on 9 and 11 December
in Figs. 9a and 9b respectively. As the block developed

in the sector between 120◦E and 180◦E, the standard
deviation of the error fields was also concentrated in
this region (Fig. 9a). Then, as the block moved down-
stream and started to decay, the error field amplified
near the dateline (Fig. 9b). We again see a focusing
of errors in regions of rapid dynamical development.

Figures 9c and 9d also show the fastest growing
FTNMs for the periods 5–9 and 5–11 December respec-
tively. They are large scale wave train structures with
significant amplitudes in the regions where the error
fields are concentrated. Table 3 lists the eigenvalues,
amplification factors, growth rates and e-folding times
for the fastest growing FTNMs during the period 5–11
December. We find that the amplification factor for

Fig. 9. The standard deviations of the 100 evolved random errors on 9 December (a) and 11
December (b) 1989 for the viscous case. Shown are FTNM 1 for the periods 5–9 December (c) and
5–11 December (d) 1989 in the viscous case.
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each of the 100 evolved error fields is comparable with,
but slightly smaller than, that of the corresponding
dominant FTNM on each day (not shown).

Figure 10 shows the mean (solid) and mean ± the
standard deviation (dashed) of the pattern correlation
between each of the 100 error fields and FTNMs on
successive days between 5 and 11 December. Figure
10a depicts these statistics for the largest correlations
taken over the five fastest growing FTNMs. Figure
10b displays the corresponding statistics for correla-
tions between error fields and FTNM 1 (thick lines)
and FTNM 2 (thin lines) respectively. In Fig. 10a,
as in Fig. 7a, the statistics increase monotonically
with time. In contrast, from Fig. 10b it appears that
FTNM 1 and FTNM 2 swap roles on 8 and 9 Decem-
ber in that FTNM 2 yields larger pattern correlation
statistics than FTNM 1.

6. Error growth during November

Next, we examine the statistics of the development
of random errors during the second week of Novem-
ber when a blocking dipole pattern became established
over the Indian Ocean. The period of interest is be-
tween 8 and 14 November. We also study the growth
of initial random errors for the longer period stretching
from 1 to 15 November. Our interest is to see whether
the mean pattern correlations between the random er-
rors and dominant FTNMs increase further with time
above the values obtained for six-day periods (Figs. 7
and 10).

6.1 Statistics of ensemble error growth for 8 to
14 November

We again study the statistics of the growth of 100
initial, randomly generated error fields constructed as
described in section 4 on 8 November. Their evolution
is analyzed for the period 8–14 November, which cov-
ers the time interval of the development, maturation
and decay of the Indian Ocean block. The standard
deviations of the 100 evolved error fields are calculated
on each day and shown on 12 and 14 November in

Table 3. Nondimensional real (λr) and imaginary (λi)
parts of eigenvalues, amplification factors(| λ |), the di-
mensional growth rates (ωd, i) and e-folding times (τ) of
FTNM 1 during 05–11 December 1989 (viscous case).

Basic state λr λi | λ | ωd, i (d−1) τ (d)

05–06 1.093 –0.578 1.236 0.211 4.939

05–07 1.040 –1.169 1.565 0.223 4.485

05–08 1.989 0.0 1.989 0.229 4.375

05–09 1.884 0.0 1.884 0.158 6.337

05–10 –0.941 2.036 2.243 0.161 6.210

05–11 1.190 –2.004 2.331 0.141 7.110
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Fig. 10. Pattern correlations (Ac) between the dom-
inant FTNMs and the 100 evolved random errors in
the viscous case during the periods starting on 5 and
finishing on 6, 7, . . ., 11 December 1989 respectively.
(a). The mean (thick solid) and the mean ± the stan-
dard deviation of the largest correlations taken over
the five fastest growing FTNMs (thick dashed) are
shown. (b). The mean (solid) and mean ± stan-
dard deviation (dashed) of correlations between the
100 evolved random errors and FTNM 1 (thick) or
FTNM 2 (thin).

Figs. 11a and 11b respectively. By 12 November
we note that the error fields are concentrated in,
and downstream of, the blocking region in the In-
dian Ocean (Fig. 11a), with a second major center
over southern South America. On subsequent days
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the maximum standard deviation of the error fields
drifts down-stream and amplifies as the block starts
to decay (Fig. 11b). The major centers of the stan-
dard deviation error field again occur in the regions of
rapid dynamical development.

Figures 11c and 11d show the fastest growing FT-
NMs for the periods 8–12 and 8–14 November respec-
tively. These FTNMs are dipole or multi-pole wave
train disturbances with similar scale to the block; they
have largest amplitude in, and downstream of, the

blocking region. Comparing the FTNMs with the
standard deviations of the error fields, we see that
on respective days both quantities have largest am-
plitudes in the same regions. The dynamical diagnos-
tics for these FTNMs are shown in Table 4; displayed
are the eigenvalues, amplification factors, dimensional
growth rates and e-folding times. The amplification
factors shown there are fairly similar to those in Table
2 for April for the same respective time intervals. In
April, we found that only one out of the 100 initial

Fig. 11. The standard deviations of the 100 evolved random errors on 12 November (a) and 14
November (b) 1989 for the viscous case. Shown are FTNM 1 for the periods 8–12 November (c)
and 8–14 November (d) 1989 in the viscous case.
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error fields grew faster than FTNM 1 (after 2 days
of development). For November, we have found that
only one out of the 100 initial error fields grows faster
than FTNM 1, after four days of development, and
three grow faster than FTNM 1 after five days of de-
velopment. On the whole, it is improbable that initial
random errors will grow faster than FTNM 1.

Figure 12 shows the mean (solid) and mean ± the
standard deviation (dashed) of the pattern correla-
tions between each of the 100 error fields and FTNMs
on successive days. Figure 12a (thick lines) displays
these statistics for the largest correlations taken over
the five fastest growing FTNMs for periods starting on
8 November and ending on subsequent successive days
up until 14 November. The corresponding statistics
for correlations between error fields and FTNM 1 are
also shown in this figure (thin lines).

Again, the statistics in thick lines in Fig. 12a
increase monotonically with time and the mean has
reached a value greater than 0.6 after six days. The
mean of the pattern correlations between the error
fields and FTNM 1 again tend to increase with time
but not monotonically indicating on some days, e.g., 13
November, a sub-dominant FTNM yields the largest
mean of the pattern correlations. Our results here
are quantitatively similar to the respective results for
April (Fig. 7) and December (Fig. 10).

Next, we analyze probability distributions of cor-
relations between the 100 evolved error fields on 14
November and FTNMs for the period 8 to 14 Novem-
ber. Figure 13a displays the probability distribution
for the largest correlations taken over the five fastest
growing FTNMs, while Fig. 13b shows the distribu-
tion for correlations with FTNM 1. In both cases, the
peak in the probability distributions occur at pattern
correlations slightly larger than Ac = 0.6. The mean
of the correlations taken over the five fastest growing
FTNMs is 0.636 and the mean of the correlations with
FTNM 1 is 0.592.

Table 4. Nondimensional real (λr) and imaginary (λi)
parts of eigenvalues, amplification factors(| λ |), the di-
mensional growth rates (ωd, i) and e-folding times (τ) of
FTNM 1 during 08–14 November 1989 (viscous case).

Basic state λr λi |λ| ωd, i (d−1) τ (d)

08–09 0.927 –0.732 1.181 0.166 6.020

08–10 1.334 0.0 1.334 0.144 6.959

08–11 1.630 0.0 1.630 0.162 6.160

08–12 –0.286 1.931 1.952 0.167 5.999

08–13 2.239 0.0 2.239 0.161 6.225

08–14 –2.795 1.212 3.047 0.185 5.403

6.2 Statistics of ensemble error growth for 1 to
15 November

In this subsection, we analyze the growth of initial
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Fig. 12. The mean and mean ± the standard de-
viation of the pattern correlations between each of
the 100 error fields and FTNMs in November in vis-
cous case. (a). The mean (thick solid line) and mean
± the standard deviation (thick dashed lines) of the
largest pattern correlations taken over the five fastest
growing FTNMs for periods starting on 8 November
and ending on subsequent successive days up until 14
November. The mean (thin solid line) and mean ±
the standard deviation (thin dashed lines) of the pat-
tern correlations between the 100 evolved error fields
and FTNM 1 for the same periods. (b). As in (a) but
for the periods starting on 1 November and ending on
subsequent successive days up until 15 November.
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Fig. 13. The probability distributions of correlations between the 100 evolved random errors on
14 and 15 November and FTNMs for the periods 8–14 and 1–15 November for the viscous case. (a)
The probability distributions for the largest correlations taken over the five fastest growing FTNMs
during 8–14 November. (b) The probability distributions for the correlations with FTNM 1 during
8–14 November. (c) The same as (a), but for 1–15 November. (d) The same as (b), but for 1–15
November.

random errors over the longer time period than the six
days considered in the previous sections and in sub-
section 6.1. We consider the period between 1 and 15
November with the 100 random error fields initialized
on 1 November. We have calculated standard devia-
tion fields of the 100 evolved error fields on each day
from 1 to 15 November; we find that these standard
deviations on 12, 13 and 14 November are quite similar
in structure to those in Figs. 11a–c respectively, even
though the random fields are generated much earlier
(not shown). The standard deviation field is focussed
in the section between 60◦E and 120◦E by 7 Novem-
ber (not shown) as the Indian Ocean block starts to
develop (Fig. 1b). Thereafter, its evolution is quite
similar to the description given in section 6.1.

Figure 12b also shows the mean (solid) and mean
± standard deviation (dashed) of the pattern corre-
lations between the 100 error fields and FTNMs on
successive days during the period 1 to 15 November.
The statistics for the largest correlations taken over
the five fastest growing FTNMs, and the statistics for
correlations between the error fields and FTNM 1, are
displayed in thick and thin lines respectively. We note
that the increase in the mean correlations over the
first six days to 7 November is less in Fig. 12b than
it is over the six days to 14 November in Fig. 12a
respectively. This is related to the different stability
of the basic state during the respective periods. The
formation and decay of the Indian Ocean block in the
second week of November is associated with rapid er-
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ror growth, while in the first week of November the
flow is less unstable. We have confirmed this by an-
alyzing the amplification factors in these periods (not
shown). Thus, errors will tend to grow faster in the
second week and converge more rapidly to the domi-
nant FTNMs than during the first week.

Figure 13 also shows probability distributions of
correlations between the 100 evolved error fields (ini-
tialized on 1 November) on 15 November and FT-
NMs for the period 1–15 November. Figure 13c shows
the probability distribution for the largest correlations
taken over the five fastest growing FTNMs and Fig.
13d gives the distribution for correlations with FTNM
1. We see a significant shift to larger values of pat-
tern correlation in the right panel histograms com-
pared with the left histograms in Fig. 13. The mean
associated with the distribution in Fig. 13c is 0.766,
while for that in Fig. 13d, it is 0.710.

7. Discussion and conclusions

We have examined the structural organization of
initial random errors evolving in a barotropic tangent
linear model. The time-dependent basic state used has
been obtained by linear interpolation of daily 300 hPa
analysis fields. This ensures that the error fields see a
basic state that closely follows the truth throughout its
development. This is not generally possible using ba-
sic states taken from a nonlinear model forecast since
the flow fields in such a model will generally begin to
diverge from the analyses within a few days.

We have concentrated on studies of error growth
during periods of block development, maturation and
decay in the Southern Hemisphere in April, November
and December 1989. The growth of initial random er-
rors during each of these periods of blocking has been
analyzed. Our particular aim has been to study the
statistics of the growth of 100 initially random error
fields in these synoptic situations. We have compared
the structures of evolved error fields with the struc-
tures of normal modes, and in particular, FTNMs.

During April, we have shown by means of a case
study that an initial, random error field is organized
by the tangent linear dynamics to take up dipole or
multi-pole structures of similar scales to the blocks,
and which are focussed in the respective blocking re-
gions and extend downstream. After three to six days,
the evolved error field is structurally somewhat similar
to dominant normal modes of the instantaneous flow a
short time before the day of interest. The evolved er-
ror field more closely resembles the dominant FTNMs
calculated for the same period. As for the correspond-
ing Northern Hemisphere cases of blocking (Frederik-
sen, 1998; Frederiksen and Bell, 1990), the dominant

normal modes of the instantaneous flow characterize,
to a first approximation, the structures of instability
and error growth over the next one or two days. The
dominant FTNMs, however, provide a more accurate
representation of the structures of evolved errors due
to the fact that the tangent linear dynamics provides
a filtering of initial errors in favor of the dominant
FTNMs (Frederiksen, 1997, 2000).

The qualitative results for the above case study
for April have been confirmed by the statistics of 100
evolved error fields for each of the three cases of block-
ing in April, November and December. We have an-
alyzed the increase with time of amplification factors
of the error fields and compared them with some of
the fastest growing FTNMs for the same time inter-
vals. Most random errors have amplification factors
that are close to, but slightly less than, those of the
fastest growing FTNM. We find that the probability
of the evolved error exceeding the FTNM 1 amplifica-
tion (for the same period) is only a few percent. As
the 100 error fields evolve, their maxima of standard
deviations become focussed in the regions of rapid dy-
namical development, particularly associated with the
developing and decaying blocks.

We have calculated the mean and standard devia-
tions of the pattern correlations between each of the
100 evolved error fields and the five fastest growing
FTNMs (for the same time interval). The mean of the
largest pattern correlation taken over the five fastest
growing FTNMs increases with increasing time inter-
val reaching a value close to Ac = 0.6 or larger after
six days. The mean of the pattern correlations with
individual dominant FTNMs also generally increases
with time but not always monotonically. FTNM 1
generally, but not always, gives the largest mean pat-
tern correlation with the error fields. Pattern cor-
relations, taken over the five fastest growing normal
modes and with normal mode 1, tend to be lower than
with the respective FTNMs. However, they are signif-
icant and suggest that truncated expansions in terms
of the faster growing normal modes may provide rea-
sonable representations of evolved error fields (Fred-
eriksen and Bell, 1990; Anderson, 1996; Frederiksen,
1998). We have also compared probability distribu-
tions of correlations between the 100 evolved error
fields and the dominant FTNMs and dominant nor-
mal modes. These confirm the above conclusions.

For November, we have compared the statistics of
ensemble error growth for the 6-day period from 8 to
14 November with the longer 14-day period from 1 to
15 November. As expected, the final mean pattern
correlations between the 100 evolved error fields and
dominant FTNMs are larger for the longer period. The
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mean of the largest pattern correlations, taken over the
five fastest growing FTNMs, is 0.766 for the 14-day pe-
riod compared with 0.636 for the 6-day period. Sim-
ilarly, the mean correlations with FTNM 1 are 0.710
and 0.592 respectively. Our findings confirm the close
correspondence between instability, error growth and
dynamical developments noted in earlier works (e.g.,
Frederiksen and Bell, 1990; Kimoto, 1992). During the
first week of November, error growth is less rapid than
in the second week when the Indian Ocean block devel-
ops, matures and then decays. The faster error growth
in the second week results in more rapid convergence
to the dominant FTNMs.

In a sequel to this work, we compare the growth of
initially random errors during Southern Hemisphere
blocking with the growth and structures of evolved
singular vectors and Lyapunov vectors.
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APPENDIX

Iterative eigensolvers

The iterative eigensolvers that we have developed
are based on the Arnoldi method (Arnoldi, 1951),
which can be used to generate some of the leading
NMs of M in Eq. (4) when the basic state is station-
ary and to generate the dominant FTNMs of G in Eq.
(5) for a time-varying basic state. The basic point of
Arnoldi methods (Goldhirsch, 1987; Anderson, 1991)
is to reduce the size of the matrix that needs to be
solved to one only involving the most rapidly grow-
ing eigenvectors. For the case when the matrix M is
a constant, the sub-dominant eigenvectors are purged
by simply integrating the linear Eq. (4) forward for a
sufficiently long time from a random initial condition.
If the perturbation becomes too large after a certain
time, then the perturbation is normalized and the inte-
gration continued. This process is repeated until the
integrated perturbation is dominated by the leading
eigenvectors of M . In the case when M (t) is time
dependent, the purging is achieved by integrating an
initially random perturbation from t0 to t, then recy-
cling the perturbation back to t0, integrating to t and
continuing the process until the sub-dominant finite-
time eigenvectors have been purged. In both cases,
the final filtered perturbation vector is used to start
the Arnoldi process.

For both constant and time-dependent M (t), the
final filtered vector is denoted by x . From this vec-
tor we then create k vectors, x 1 = x , x 2 = Gx ,
. . ., xk = Gk−1x where G = G(t0, t0 + ∆t) for
the case when M is constant. The leading eigen-
pairs of M are independent of ∆t. When M (t) is
time dependent, we have G = G(t0, t). The subspace
spanned by these k vectors is called the Krylov sub-
space; Kk(G,x ) = span{x ,Gx ,G2x , . . . ,Gk−1x}
where G is of dimension n× n and k � n in general.
One can then extract approximations for G from this
k-dimensional subspace Kk(G,x ).

We start the Arnoldi process from an initially nor-
malized vector w1 = x (t)/||x (t)||, where x (t) is the
final filtered vector discussed above that is dominated
by the leading modes. The general terms in the factor-
ization are determined through the coupled equations

v i+1 = Gw i −
i∑

j=1

(wT
j ·Gw i)w j ,

w i+1 =
v i+1

||v i+1||
, i = 1, 2, . . . , k . (19)

Each of the vectors u i = Gw i is orthonormalised to
all those previously generated. It can be shown that
{w1,w2, . . . ,wk} forms an orthonormal basis of the
Krylov subspace Kk. We have used a modified Gram-
Schmidt scheme, always with double orthogonalization
(Saad, 1992).

Let W be the n × k matrix with column vectors
{w1,w2, . . . ,wk}, then a by-product of the Arnoldi
process is a small upper Hessenberg matrix H with
dimension k × k where H = W TGW . The process
can be described by

GW −WH = H k+1,kwk+1e
T
k , (20)

where T denotes the transpose, ek is a vector or k× 1
matrix, with elements ek(i) = δik. The eigenvalues
and eigenvectors of H can be computed by any stan-
dard method, i.e., H yi = λiyi, i = 1, 2, . . . , k. Here
λi and yi are the eigenvalues and eigenvectors of H
respectively. The Ritz eigenvalues and Ritz eigenvec-
tors are defined as λi and φi respectively (Saad, 1992),
where φi is given by

φi = W yi. (21)
Some of the λi and φi constitute good approxi-

mate eigenvalues and eigenvectors of G. In order to
see the extent to which the eigenpairs of G can be
obtained from these Ritz eigenvalues and eigenvec-
tors, we multiply both sides of (20) by yi yielding
GW yi − WH yi = H k+1,kwk+1e

T
k yi, which can be

further written as
||(G − λiI)φi||2 = H k+1,k|eT

k yi| = H k+1,k|yi,(k)|.
(22)
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Expression (22) indicates that the residual norm is
equal to the last component of the eigenvector yi mul-
tiplied by H k+1,k. From our experience in testing and
using the solver, we find that this is a very good indi-
cator of the actual error.

For both NMs and FTNMs, a chosen number of
the fastest growing modes are calculated and we have
found that time steps of ∆t = 450 s or 900 s are suit-
able choices in our studies. We have checked our re-
sults by comparing them with those calculated by us-
ing Linear Algebra PACKage (LAPACK) subroutines.

REFERENCES

Anderson, J. L., 1991: The robustness of barotropic unsta-
ble modes in a zonally varying atmosphere. J. Atmos.
Sci., 48, 2393–2410.

Anderson, J. L., 1993: The climatology of blocking in a
numerical forecast model. J. Climate, 6, 1041–1056.

Anderson, J. L., 1996: Selection of initial conditions for en-
semble forecasts in a simple perfect model framework.
J. Atmos. Sci., 53, 22–36.

Arnoldi, W. E., 1951: The principle of minimized itera-
tions in the solution of the matrix eigenvalue problem.
Quarterly of Applied Mathematics, 9, 17–29.

Bengtsson, L., 1981: Numerical prediction of atmospheric
blocking: A case study. Tellus, 33, 19–24.

Borges, M. D., and D. L. Hartmann, 1992: Barotropic in-
stability and optimal perturbations of observed non-
zonal flows. J. Atmos. Sci., 49, 335–354.

Buizza, R. and F. Molteni, 1996: The role of finite-time
barotropic instability during transition to blocking.
J. Atmos. Sci., 53, 1675–1697.

Buizza, R., P. Houtekamer, Z. Toth, G. Pelerin, Mozheng
Wei, and Y. Zhu, 2005: A comparison of the ECMWF,
MSC and NCEP global ensemble prediction systems.
Mon. Wea. Rev., in press.

CMB, 1989: Climate Monitoring Bulletin, Southern Hemi-
sphere, No. 39 April; No. 46, November; No.47, De-
cember 1989, National Climate Centre, Bureau of Me-
teorology, Australia.

Colucci, S. J. and D. P. Baumhefner, 1992: Initial weather
regimes as predictors of numerical 30-day mean fore-
cast accuracy. J. Atmos. Sci., 49, 1652–1671.

Coughlan, M. L., 1983: A comparative climatology of
blocking action in the two hemispheres. Australian
Meteorological Magazine, 31, 3–13.

de Pondeca, M. S. F. A., A. Barcilon, and X. Zou, 1998a:
An adjoint sensitivity study of the efficacy of modal
and nonmodal perturbations in causing model block
onset. J. Atmos. Sci., 55, 2095–2118.

de Pondeca, M. S. F. A., A. Barcilon, and X. Zou, 1998b:
The role of wave breaking, linear instability, and PV
transports in model block onset. J. Atmos. Sci., 55,
2852–2873.

Errico, R. M., T. Vukicevic, and K. Raeder, 1993: Ex-
amination of the accuracy of a tangent linear model.
Tellus, 45A, 462–477.

Farrell, B. F., 1989: Optimal excitation of baroclinic waves.
J. Atmos. Sci., 46, 1193–1206.

Frederiksen, J. S., 1982: A unified three-dimensional insta-
bility theory of the onset of blocking and cyclogenesis.
J. Atmos. Sci., 39, 970–982.

Frederiksen, J. S., 1984: The onset of blocking and cycloge-
nesis in Southern Hemisphere synoptic flows: Linear
theory. J. Atmos. Sci., 41, 1116–1131.

Frederiksen, J. S., 1997: Adjoint sensitivity and finite-time
normal mode disturbances during blocking. J. Atmos.
Sci., 54, 1144–1165.

Frederiksen, J. S.; 1998: Precursors to blocking anomalies:
The tangent linear and inverse problems. J. Atmos.
Sci., 55, 2419–2436.

Frederiksen, J. S., 2000: Singular vectors, finite-time nor-
mal modes and error growth during blocking. J. At-
mos. Sci., 57, 312–333.

Frederiksen, J. S., and R. C. Bell, 1990: North Atlantic
blocking during January 1979: Linear theory. Quart.
J. Roy. Meteor. Soc., 116, 1289–1313.

Frederiksen, J. S., and G. Branstator, 2001: Seasonal
and intraseasonal variability of large-scale barotropic
modes. J. Atmos. Sci., 58, 50–69.

Frederiksen, J. S., M. A. Collier, and A. B. Watkins, 2004:
Ensemble prediction of blocking regime transitions.
Tellus, 56A, 485–500.

Goldhirsch, I., S. A. Orszag, and B. K. Maulik, 1987:
An efficient method for computing leading eigenval-
ues and eigenvectors of large asymmetric matrices. J.
Sci. Computing., 2, 33–58.

Held, I. M., 1983: Stationary and quasi-stationary eddies
in the extratropical troposphere: Theory. Large Scale
Dynamic Processes in the Atmosphere, B.J.Hoskins
and R.P.Pearce, Eds., Academic Press, 127–167.

Houtekamer, P. L., and J. Derome, 1995: Methods for en-
semble prediction. Mon. Wea. Rev., 123, 2181–2196.

Kimoto, M., H. Mukougawa, and S. Yoden, 1992: Medium-
range forecast skill variation and blocking transition:
A case study. Mon. Wea. Rev., 120, 1616–1627.

Lacarra, J. F., and O. Talagrand, 1988: Short-range evo-
lution of small perturbations in a barotropic model.
Tellus, 40A, 81–95.

Legras, B., and R. Vautard, 1996: A guide to Liapunov
vectors. Proc. of a Seminar Held at ECMWF on Pre-
dictability, 4–8 September 1995, Vol.I, 143–156.

Lejenas, H., 1984: Characteristics of southern hemisphere
blocking as determined from a time series of observa-
tional data. Quart. J. Roy. Meteor. Soc., 110, 967–
979.

Lorenz, E. N., 1965: A study of the predictability of a 28-
variable atmospheric model. Tellus, 17, 321–333.

Molteni, F., and T. Palmer, 1993: Predictability and finite-
time instability of the northern winter circulation.
Quart. J. Roy. Meteor. Soc., 119, 269–298

Molteni, F., R. Buizza, T. Palmer, and T. Petroliagis, 1996:
The ECMWF ensemble prediction system: Methodol-
ogy and validation. Quart. J. Roy. Meteor. Soc., 122,
73–119

Mu, M., and W. Duan, 2003: A new approach to studying
ENSO predictability: Conditional nonlinear optimal
perturbation. Chinese Sci. Bull., 48, 1045–1047.

Mu, M., W. S. Duan, and B. Wang, 2003: Conditional
nonlinear optimal perturbation and its applications.
Nonlinear Process in Geophysics, 10, 493–501.

Noar, P. F., 1983: Numerical modelling of blocking with
reference to June 1982. Australian Meteorological
Magazine, 31, 37–49.



NO. 1 WEI AND FREDERIKSEN 89

Noone, D., and I. Simmonds, 1998: Similarity of “fast-
growing perturbations” and an illustrative experiment
with ensemble forecasting. Australian Meteorological
Magazine, 47, 5–19.

Palmer, T. N., 1993: Extended-range atmospheric predic-
tion and the Lorenz model. Bull. Amer. Meteor. Soc.,
74, 49–65.

Saad, Y., 1992: Numerical Methods for Large Eigenvalue
Problems. Halsted Press-John Wiley & Sons Inc.,
346pp.

Simmons, A. J., J. M. Wallace, and G. W. Branstator,
1983: Barotropic wave propagations and instability,
and atmospheric teleconnection patterns. J. Atmos.
Sci., 40, 1363–1392.

Szunyogh, I., E. Kalnay, and Z. Toth, 1997: A comparison
of Lyapunov and Optimal vectors in a low-resolution
GCM. Tellus, 48A, 200–227.

Tibaldi, S., and F. Molteni, 1990: On the operational pre-
dictability of blocking. Tellus, 42A, 343–365.

Tibaldi, S., P. Ruti, and M. Maruca, 1995: Operational
predictability of winter blocking at ECMWF: An up-
date. Ann. Geophysicae, 13, 305–317.

Toth, Z., and E. Kalnay, 1993: Ensemble forecasting at
NMC: the generation of perturbations. Bull. Amer.
Meteor. Soc., 174, 2317–2330.

Toth, Z., and E. Kalnay, 1997: Ensemble forecasting at
NCEP and the breeding method. Mon. Wea. Rev.,
125, 3297–3319.

Tribbia, J., and D. Baumhefner, 1993: On the problem
of prediction beyond the deterministic range. Proc.
NATO Workshop on Predictions of Interannual Cli-
mate Variations, S. Shukla, Ed., NATO ASI Series,
Springer-Verlag, 251–265.

van Loon, H., 1956: Blocking action in the Southern Hemi-
sphere, Part I. Notos, 5, 171–177.

Veyre, P., 1991: Direct prediction of error variances by the
tangent linear model: A way to forecast uncertainty
in the short range? Proc. ECMWF Workshop on New
Developments in Predictability, Reading, UK, 65–86.

Wei, Mozheng, 2000: Quantifying local instability and pre-
dictability of chaotic dynamical systems by means of
local metric entropy, International Journal of Bifur-
cation and Chaos, 10, No.1, 135–154.

Wei, Mozheng, and Z. Toth, 2003: A New Measure of
Ensemble Performance: Perturbation versus Error
Correlation Analysis (PECA). Mon. Wea. Rev., 131,
1549–1565.

Whitaker, J. S., and A. Barcilon, 1992: Type B cyclogen-
esis in zonally varying flow. J. Atmos. Sci, 49, 1877–
1892.

Wright, A. D. F., 1974: Blocking action in the Australian
region. Tech. Rep., No. 10, Bureau of Meteorology,
Australia, 29pp.


