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ABSTRACT

Climate change detection, attribution, and prediction were studied for the surface temperature in
the Northeast Asian region using NCEP/NCAR reanalysis data and three coupled-model simulations from
ECHAM4/OPYC3, HadCM3, and CCCma GCMs (Canadian Centre for Climate Modeling and Analysis
general circulation model). The Bayesian fingerprint approach was used to perform the detection and
attribution test for the anthropogenic climate change signal associated with changes in anthropogenic
carbon dioxide (CO2) and sulfate aerosol (SO2−

4 ) concentrations for the Northeast Asian temperature. It
was shown that there was a weak anthropogenic climate change signal in the Northeast Asian temperature
change. The relative contribution of CO2 and SO2−

4 effects to total temperature change in Northeast Asia
was quantified from ECHAM4/OPYC3 and CCCma GCM simulations using analysis of variance. For the
observed temperature change for the period of 1959–1998, the CO2 effect contributed 10%–21% of the
total variance and the direct cooling effect of SO2−

4 played a less important role (0%–7%) than the CO2

effect. The prediction of surface temperature change was estimated from the second CO2+SO2−
4 scenario

run of ECHAM4/OPYC3 which has the least error in the simulation of the present-day temperature field
near the Korean Peninsula. The result shows that the area-mean surface temperature near the Korean
Peninsula will increase by about 1.1◦ by the 2040s relative to the 1990s.
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1. Introduction

The response of the global climate to external
forcing mechanisms is inherently complex. Previous
studies which attributed global-mean surface temper-
ature increases over the last hundred years to anthro-
pogenic forcings (e.g., Mitchell et al., 1995; Santer
et al., 1996) relied on a few integrations of complex
coupled atmosphere-ocean general circulation models
(AOGCMs) and considered only a limited number of
forcings. In reality, over the last hundred years, the
Earth’s energy balance has been altered by many nat-
ural and anthropogenic forcings (Shine and Forster,
1999). Although some forcings, such as changes in car-
bon dioxide (CO2), can be reasonably well quantified,

the magnitude and spatial pattern of some other pos-
sible forcings are poorly known, such as the indirect
effect of sulphate aerosol (SO2−

4 ) on clouds. There are
also large uncertainties in the various feedback mech-
anisms and in the internal variability of the climate
system. Due to the complex nature of the various
feedbacks operating in the climate system, the simu-
lation of the global surface temperature response with
the AOGCMs is both computationally demanding and
uncertain.

The most recent improvement in the climate signal
detection problem is the inclusion of several possible
sources of climate forcings. It has become apparent
that when anthropogenic climate forcings are consid-
ered, one must include the forcings of greenhouse gases
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and sulfate aerosols (North and Stevens, 1998; Levine
and Berliner, 1999; Berliner et al., 2000; Lee et al.,
2001).

Since understanding and quantifying climatic
changes at the regional scale is one of the most impor-
tant and uncertain issues within the climate change
debate, the need to provide regional climate change
information has increased for both impact assessment
studies and policymaking (Mearns et al., 2001). A re-
gional climate is determined by interactions between
large, regional and local scales, but the available tools
have directed research toward understanding the cli-
mate system as a whole. In the Northeast Asian re-
gion, many climate models show that the increase of
the atmospheric CO2 should induce a long-term and
spatially coherent warming and the increase of the at-
mospheric SO2−

4 should induce a long-term and spa-
tially coherent cooling, though the warming and cool-
ing might be relatively weak in some regions (Dai et
al., 2001; Gao et al., 2001; Guo et al., 2001; Zeng et
al., 2001).

To date, projections of regional climate changes for
the twenty first century have been based on AOGCM
simulations of the climate system response to changes
in anthropogenic forcings (Kattenberg et al., 1996;
Cubasch et al., 2001). The AOGCM information can
then be enhanced with the use of “regionalization”
techniques to obtain finer regional detail (Giorgi and
Mearns, 1991; Giorgi et al., 2001).

An important step towards the understanding of
regional climate changes and their impacts is the as-
sessment of the characteristics of natural climate vari-
ability and the AOGCM performance in reproducing
it. Climate variability can, in fact, mask anthropogeni-
cally forced signals, so that a characterization of the
natural variability is necessary to evaluate the inten-
sity of the forced change signal. In addition, the vari-
ability is often more important than the average cli-
mate in determining impacts on human and natural
systems. Thus an assessment of the performance of
models in simulating the observed variability can im-
prove the interpretation of climate change simulations
for impact applications.

In this study, we applied a detection technique
known as Bayesian fingerprints and showed that
decadal changes in the patterns of surface temperature
in Northeast Asia can be explained partly by anthro-
pogenic factors. Furthermore, we show that for re-
gionally averaged surface temperature, internal noise
in the AOGCM is small enough that a signal emerges
from the data even on interannual timescales. Finally,
although anthropogenic forcings have had a signifi-
cant impact on global mean surface temperature, it
is shown that their influence on the pattern of local

deviations about this mean is hardly detectable, so its
signal is weak.

The study is organized as follows. We start with
descriptions of the AOGCM data and the observa-
tional datasets used in this study in section 2, followed
by an explanation of the detection method and its ap-
plication results for Northeast Asian temperature us-
ing the Bayesian fingerprint approach in section 3. In
section 4, the relative contribution of the CO2 and
SO2−

4 effects to total temperature change is examined
using analysis of variance. The prediction of surface
temperature change in Northeast Asia by the 2040s is
estimated from an AOGCM simulation in section 5.
Finally, conclusions are given in section 6.

2. Data and regions

We used the surface temperature of three AOGCM
simulations: ECHAM4/OPYC3, HadCM3, and the
Canadian Centre for Climate Modeling and Analy-
sis general circulation model (CCCma GCM). Model
details and arrangements for our experiments are de-
scribed by Roeckner et al. (1992), DKRZ (1992) and
Oberhuber (1993a, b) for ECHAM4/OPYC3, Gordon
et al. (2000) and Pope et al. (2000) for HadCM3, and
Lohmann et al. (1997, 1999a, b) for CCCma GCM.
Description of the experimental design and the results
by the three AOGCMs (ECHAM4/OPYC3, HadCM3,
and CCCma GCM) are summarized in Table 1 and
plotted in Fig. 1. All climate change simulations are
based on IS92a greenhouse (G) or greenhouse plus sul-
fate aerosols (GS) scenarios. In the tables, CO2+SO2−

4

forcing (1), CO2+SO2−
4 forcing (2) and CO2+SO2−

4

forcing (3) are the repeated results from the same sce-
nario but different initial conditions. So we considered
them as different scenario runs. We also used the Na-
tional Centers for Environmental Prediction (NCEP)
and the National Center for Atmospheric Research
(NCAR) Collaborative Reanalyses (hereafter, NNR)
for observed predictors. This is a 51-yr (1948–1998)
record of global analyses of atmospheric fields pro-
duced using a frozen global data assimilation system
(Kistler et al., 2001).

Since the statistical model applicability is highly
dependent on the quality of the predictors, the control
climatologies of the coupled models were first com-
pared with the NNR. All model fields were spatially
interpolated to the 5◦ × 5◦ grid of NNR because the
data structures of the above GCM outputs are the
5◦ × 5◦ grid. Comparisons were carried out for yearly
means over the 40 model years for the domain of 30◦–
60◦N and 120◦–150◦E which covers most of Northeast
Asia in order to track most of the circulation patterns
that affect the Korean peninsula.
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Fig. 1 Regional average of yearly mean surface air temperature: (a) NNR, (b) ECHAM4/OPYC3 [●: 

control run, ■: CO2 forcing, ▲: CO2+SO −2
4  forcing (1), ◆: CO2+SO −2

4  forcing (2)], (c) HadCM3 

(●: control run, ■: CO2 forcing, ▲: CO2+SO −2
4 ), and (d) CCCma GCM [●: control run, ■: CO2 

forcing, ▲: CO2+SO −2
4  forcing (1), ◆: CO2+SO −2

4  forcing (2), ●: CO2+SO −2
4  forcing (3)].  
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Table 1. List of AOGCM simulations used in this study.

GCM Experiment Forcing scenario

ECHAM4/OPYC3 control run constant CO2

CO2, forcing historic CO2 1860–1989, IS92a 1990–2099

CO2+SO2−
4 forcing(1) historic CO2 1860–1989, IS92a 1990–2049

historic SO2−
4 1860–1989, IS92a 1990–2049

CO2+SO2−
4 forcing(2) historic CO2 1860–1989, IS92a 1990–2049

historic SO2−
4 1860–1989, IS92a 1990–2049

HadCM3 control run constant CO2

CO2 forcing historic CO2 1900–1989, IS92a 1990–2100

CO2+SO2−
4 forcing historic CO2 1900–1989, IS92a 1990–2100

historic SO2−
4 1900–1989, IS92a 1990–2100

CCCma GCM control run constant CO2

CO2 forcing historic CO2 1900–1989, IS92a 1990–2100

CO2+SO2−
4 forcing(1) historic CO2 1900–1989, IS92a 1990–2100

historic SO2−
4 1900–1989, IS92a 1990–2100

CO2+SO2−
4 forcing(2) historic CO2 1900–1989, IS92a 1990–2100

historic SO2−
4 1900–1989, IS92a 1990–2100

CO2+SO2−
4 forcing(3) historic CO2 1900–1989, IS92a 1990–2100

historic SO2−
4 1900–1989, IS92a 1990–2100

3. Detection and attribution of anthropogenic
effects

3.1 Bayesian fingerprint approach

Berliner et al. (2000) proposed a Bayesian finger-
print approach for assessing anthropogenic impacts on
climate. The modeling process formalizes the relation

Observations = a× g + noise , (1)

where a is an unknown parameter, g is a spatially vary-
ing scenario run fingerprint, and “noise” is modeled to
account for both errors in the data and natural climate
variability. Our analysis will be for the unknown am-
plitude a introduced in Eq. (1). The formal mechanism
for Bayes’ Theorem yields the posterior distribution:

π(a|data) ∝ f(data|a)π(a) , (2)

where π(a) is the prior distribution and f(data|a) is
the conditional distribution of the data given a, often
known as the likelihood function. An intuitive inter-
pretation of Bayes’ Theorem is that once the data have
been observed, the prior distribution is reweighted by
the likelihood function to produce the posterior one.
General reviews can be found in Berger (1985), Ep-
stein (1985), and Bernardo and Smith (1994).

Define vectors of observations Y 1, . . . ,Y m, where
Y t represents the observed annual temperatures in
year t = 1, . . . ,m. Let Y = (Y ′

1, . . . ,Y
′
m)′ be the

collection of these vectors. Our data model includes
a formal adjustment for errors present in the observa-
tions. We assume that these errors all have mean zero,

are independent from year to year, and have normal
distributions. This is summarized for each year as

Y t|a, g,Σs ∼ N(ga,Σs) (3)

where n is the number of grid points, Σs is an n×n spa-
tial covariance matrix, g is an n-vector denoting the
fingerprint, and N(·, ·) represents the probability den-
sity function for a normal distribution; the first argu-
ment is the mean and the second is the variance. Note
that, as in the fingerprint work of Hasselmann (1997)
and the references therein, we assume that the finger-
print pattern is constant over time. Alternatively, we
can represent the model for all observations as

Y |a, g,D,Σ ∼ N(Ga,D + Σ) , (4)

where D is a block diagonal matrix with an n× n co-
variance matrix of true run, G is an m · n-vector of
g. The matrix Σ is equal to Σc ⊗Σs, where Σc is an
m×m correlation matrix for an autoregressive process
of order one and ⊗ denotes the Cartesian product. We
focus on the modeling and inference for the amplitude
a here.

Both Bayesian and traditional fingerprint ap-
proaches to statistical inference benefit from applica-
tion of the so-called sufficiency principle (Berger, 1985,
126–127; Epstein, 1985, 23–25). The idea is to con-
struct functions of the data which summarize all the
statistical information contained in the data regard-
ing the unknown parameter. It turns out that for the
model Eq. (4), a sufficient statistic for a is the general-
ized least squares estimator (GLS), denoted by â(Y ).
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This estimator is given by

â(Y ) = (G′V −1G)−1G′V −1Y (5)

where V = D + Σ, â(Y ) is the best linear unbiased
estimator. A further result from statistics (Graybill,
1976) implies that

â(Y )|a ∼ N(a, σ2) (6)

where

σ2 = (G′V
−1

G)−1 . (7)

In summary, we base our Bayesian inferences about a
only on Eq. (6) and our prior on a. The issues of cli-
mate change motivate construction of the prior π(a)
as a mixture of two main components as follows: with
probability p, a has a normal distribution with mean
0 and variance τ2, and with probability 1 − p, a has
a normal distribution with mean µA and variance τ2

A.
Symbolically, we write

π(a) = pN(0, τ2) + (1− p)N(µA, τ2
A) , (8)

The first component of Eq. (8) is to model information
about a under the qualitative statement that anthro-
pogenic CO2 or CO2+SO2−

4 forcings do not impact
global temperatures, at least not in a fashion reflected
by the fingerprint g. The selection of zero as the prior
mean of a in this component of the prior seems quite
natural. The variance τ2 is interpreted as the vari-
ability, arising naturally, anticipated in fitting a by
projecting temperature fields onto the selected finger-
print g. The probability p is then a quantification of
the degree of belief in the hypothesis of no anthro-
pogenic impacts. The second component of the prior
represents an implied distribution on a assuming sig-
nificant anthropogenic effects representable as changes
in temperature patterns along the fingerprint g. The
quantity µA is the hypothesized shift in a, which in
turn translates into shifts in temperature anomalies
ga. The variance τ2

A reflects anticipated variability
in a under CO2 or CO2+SO2−

4 forcings. This parame-
ter reflects, in part, natural climate variability, though
there is no requirement that τ2

A = τ2.
The variation represented by τ2 would be best esti-

mated through replications of the climate system un-
der AOGCM control run output. Prior parameters,
µA and τ2

A under CO2 or CO2+SO2−
4 forcings were

computed from CO2 or CO2+SO2−
4 forced outputs.

For a prior of the mixture form Eq. (8), the poste-
rior distribution is also a mixture (e.g., Berger, 1985,
127–128, 206). We have

π(a|â) =p(â)N [µ(a|â), τ2(a|â)]

+ [(1− p(â)N ][µA(a|â), τ2
A(a|â)] , (9)

where

µA(a|â) =
τ2
A

τ2
A + σ2

â +
τ2
A

τ2
A + σ2

µA ,

τ2
A(a|â) =

τ2
Aτ2

τ2
A + σ2

, (10)

and

p(â) =

{
1 +

(
1− p

p

) √
τ2 + σ2

τ2
A + σ2

× exp
[
−1

2

(
(â− µA)2

τ2
A + σ2

− â2

τ2 + σ2

)]}−1

.

(11)

This distribution is a mixture of the two posteriors
corresponding to each of the two components of the
prior Eq. (8). The mixing weight p(â) is a function of
the observed data. It is important to note that p(â)
is not necessarily interpretable as the posterior proba-
bility that the no-change prior distribution is correct.
Rather, it is a weight associated with the correspond-
ing posterior distribution. Indeed, depending on the
data, either one or both of the components of the pos-
terior distribution Eq. (9) may be very different from
their corresponding priors.

We next formalize the specialized inspections of the
posterior distribution intended to serve as Bayesian
procedures for detection and attribution. We define
“no significant climate change” to be the event that
a ∈ D, where D is some neighborhood of zero. Sim-
ilarly, we define another set A, a neighborhood of the
mean µA, to represent an attribution set which reflects
the physics of CO2 or CO2+SO2−

4 impacts on climate.
With these definitions, we can use the Bayesian

model for inferences regarding detection and attribu-
tion. Detection is defined as when the posterior prob-
ability that a departs significantly from 0 is large;
namely, if Pr(a ∈ D|â) is small. Attribution occurs
when both the posterior probability Pr(a ∈ A|â) s
large and 1 − p(â) is large. The two requirements in
the statement of attribution need not be redundant.
To learn about the Bayesian fingerprint approach in
detail, see Berliner et al. (2000).

3.2 Detection and attribution results

We present posterior inferences using four subsets
of three AOGCM datasets corresponding to the time
periods: (a) 1959–1998, (b) 1969–1998, (c) 1979–1998,
and (d) 1989–1998. The year 1959 was chosen as the
initial time point since the baseline from which the
NNR data was computed begins in 1959. These four
time periods are suggested since climate change trends
are anticipated to be increasingly more visible during
the latter part of the twentieth century. It should be
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noted that we should use different priors for a depend-
ing on the time period analyzed.

Tables 2 to 4 present the generalized least square
estimates â of the amplitude of fingerprint a defined in
Eq. (5) and the associated standard deviations σ com-
puted from Eq. (7) for each of the four time periods
considered. Note that σ increases as the time windows
get shorter. Tables 2 to 4 also present the means and
standard deviations in Eq. (10) and Eq. (11) for the
two components of the posterior distribution in Eq.
(9) and the posterior weight p(â) in Eq. (11) assum-
ing the prior weight p = 0.5. Figure 2 displays the
prior and posterior distributions of a for p = 0.5. The
plot also shows the likelihood functions derived from
Eq. (6). Note that the posterior distributions are uni-
modal for time periods (a) to (d). The unimodality is a
consequence of the posterior mixture probability p(â)

which is essentially zero or one. Thus, the posterior
distribution in these time periods is solely the compo-
nent of the posterior distribution under the no change
scenario. These results generally suggest that the data
most resemble the component of the posterior distribu-
tions corresponding to no change; this behavior seems
overwhelming for the most recent time periods. The
probability p(â) is the “no change” component of the
posterior model, as a function of the prior probabil-
ity p. The posterior probability p(â) is nearly near
one for all time periods. In fact, for p = 0.5, p(â) is
about 1, providing more weight for the “no change”
component of the posterior distribution. If the pos-
terior probabilities p(â) lie well below 0.5 for most of
the range of p, then this places substantial weight on
the “anthropogenic forcing” component of the poste-
rior distribution.

Table 2. List of values of parameters in the Bayesian fingerprint approach using NCEP/NCAR reanalysis and
ECHAM4/OPYC3 CO2 and CO2+SO2−

4 (1)–(2) runs for the time periods of 1959–1998, 1969–1998, 1979–1998, and
1989–1998: â is likelihood in Eq. (6), σ is the standard deviation of likelihood function in Eq. (7), τ is the standard
deviation of the first component of the prior mixture in Eq. (8), µâ) and τA are the mean and standard deviation of
the second component of the prior mixture in Eq. (8), µ(a | â) and τ(a | â)[µA(a | â) and τA(a | â)] are the mean and
standard deviation of the first [second] component of the posterior mixture in Eq. (9), and p(â) is the posterior weight
in Eq. (12). All values are in the case of the prior weight p = 0.5.

Scenario Period â σ τ µA τA µ(a | â) τ(a | â) µA(a | â) τA(a | â) p(â)

CO2 1959–1998 –0.0411 0.0231 0.0120 0.9299 0.2303 –0.0087 0.0106 –0.0314 0.0230 0.9999

1969–1998 0.0098 0.0265 0.0178 0.9170 0.2588 0.0030 0.0148 0.0193 0.0264 0.9997

1979–1998 –0.0054 0.0326 0.0233 0.9247 0.2939 –0.0018 0.0190 0.0059 0.0324 0.9990

1989–1998 0.0004 0.0454 0.0393 0.9292 0.3121 0.0003 0.0297 0.0200 0.0450 0.9974

CO2+SO2−
4 (1) 1959–1998 0.0577 0.0566 0.0345 1.2900 0.1204 0.0156 0.0295 0.2814 0.0512 0.9999

1969–1998 0.0428 0.0651 0.0667 1.2917 0.2191 0.0219 0.0466 0.1442 0.0624 0.9999

1979–1998 0.0059 0.0803 0.0891 1.2843 0.2940 0.0032 0.0596 0.0947 0.0775 0.9999

1989–1998 0.0017 0.1131 0.1454 1.3110 0.3486 0.0010 0.0892 0.1264 0.1076 0.9991

CO2+SO2−
4 (2) 1959–1998 0.0132 0.0691 0.0420 1.5560 0.1402 0.0035 0.0359 0.3150 0.0620 0.9999

1969–1998 –0.0078 0.0802 0.0697 1.5317 0.1494 –0.0033 0.0526 0.3367 0.0707 0.9999

1979–1998 0.0224 0.0987 0.0846 1.5360 0.2243 0.0095 0.0642 0.2688 0.0904 0.9999

1989–1998 –0.0005 0.1389 0.1435 1.5223 0.3623 –0.0002 0.0998 0.1947 0.1297 0.9997

Table 3. Same as Table 2 except for HadCM3 CO2 and CO2+SO2−
4 runs.

Scenario Period â σ τ µA τA µ(a | â) τ(a | â) µA(a | â) τA(a | â) p(â)

CO2 1959–1998 –0.0512 0.0279 0.0312 0.9620 0.2178 –0.0284 0.0208 –0.0347 0.0277 0.9999

1969–1998 –0.0149 0.0324 0.0344 0.9594 0.2509 –0.0079 0.0236 0.0010 0.0322 0.9998

1979–1998 –0.0195 0.0383 0.0393 0.9680 0.2794 –0.0100 0.0274 –0.0013 0.0379 0.9995

1989–1998 –0.0034 0.0535 0.0471 0.9626 0.3067 –0.0015 0.0353 0.0250 0.0527 0.9981

CO2+SO2−
4 1959–1998 –0.0558 0.0299 0.0264 0.9839 0.2153 –0.0244 0.0197 –0.0361 0.0296 0.9999

1969–1998 –0.0964 0.0350 0.0305 0.9762 0.2563 –0.0416 0.0230 –0.0767 0.0347 0.9997

1979–1998 –0.0234 0.0407 0.0335 0.9779 0.2690 –0.0094 0.0258 –0.0009 0.0403 0.9997

1989–1998 –0.0012 0.0562 0.0419 0.9727 0.3004 –0.0004 0.0336 0.0316 0.0552 0.9985
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Fig. 2. Likelihood function, prior distribution, and posterior distribution of a using
ECHAM4/OPYC3 fingerprint of Northeast Asia for the four time periods of 1959–1998, 1969–1998,
1979–1998, and 1989–1998: (a)–(d) are the likelihood (solid line) and prior distribution components
[anthropogenic CO2 forcing (dotted line); no anthropogenic impacts (dashed line)], respectively, and
(e)–(h) are the posterior mixture distribution, respectively.
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Table 4. Same as Table 2 except for CCCma GCM CO2 and CO2+SO2−
4 (1)–(3) runs.

Scenario Period â σ τ µA τA µ(a | â) τ(a | â) µA(a | â) τA(a | â) p(â)

CO2 1959–1998 –0.0209 0.0187 0.0084 0.9303 0.2983 –0.0035 0.0076 –0.0172 0.0187 0.9992

1969–1998 –0.0307 0.0219 0.0175 0.9244 0.3370 –0.0120 0.0137 –0.0267 0.0218 0.9972

1979–1998 0.0108 0.0268 0.0236 0.9353 0.3645 0.0047 0.0177 0.0158 0.0267 0.9958

1989–1998 0.0016 0.0385 0.0402 0.9355 0.4123 0.0008 0.0278 0.0097 0.0383 0.9895

CO2+SO2−
4 (1) 1959–1998 –0.0148 0.0220 0.0101 0.9317 0.2972 –0.0025 0.0092 –0.0096 0.0220 0.9993

1969–1998 –0.0435 0.0259 0.0231 0.9234 0.3404 –0.0193 0.0172 –0.0380 0.0258 0.9959

1979–1998 0.0224 0.0319 0.0312 0.9382 0.3781 0.0109 0.0223 0.0289 0.0318 0.9927

1989–1998 0.0030 0.0470 0.0504 0.9395 0.4223 0.0016 0.0344 0.0145 0.0467 0.9858

CO2+SO2−
4 (2) 1959–1998 –0.0226 0.0224 0.0114 0.9216 0.2897 –0.0046 0.0101 –0.0170 0.0223 0.9993

1969–1998 –0.0473 0.0262 0.0250 0.9127 0.3307 –0.0225 0.0181 –0.0413 0.0261 0.9961

1979–1998 0.0210 0.0322 0.0338 0.9331 0.3732 0.0110 0.0233 0.0278 0.0321 0.9929

1989–1998 0.0033 0.0474 0.0530 0.9357 0.4270 0.0017 0.0353 0.0147 0.0471 0.9844

CO2+SO2−
4 (3) 1959–1998 –0.0159 0.0218 0.0104 0.9414 0.2610 –0.0029 0.0094 –0.0092 0.0217 0.9998

1969–1998 –0.0448 0.0255 0.0247 0.9348 0.2984 –0.0216 0.0177 –0.0377 0.0255 0.9987

1979–1998 0.0213 0.0316 0.0339 0.9517 0.3282 0.0114 0.0231 0.0299 0.0315 0.9970

1989–1998 0.0035 0.0463 0.0535 0.9490 0.3790 0.0020 0.0350 0.0175 0.0460 0.9914

Table 5. Significance probabilities for detection and attribution test results from ECHAM4/OPYC3 scenario runs.
“Detection” has very small values; “attribution” may be suggested by moderate or large values.

Scenario
Time period

1959–1998 1969–1998 1979–1998 1989–1998

CO2 Detection 0.8503 0.8139 0.7047 0.4976

Attribution 0.1232 0.7782 0.6984 0.4976

CO2+SO2−
4 (1) Detection 0.4449 0.2991 0.2620 0.1771

Attribution 0.2091 0.3021 0.2621 0.1771

CO2+SO2−
4 (2) Detection 0.4201 0.2952 0.2416 0.1587

Attribution 0.4085 0.2948 0.2395 0.1587

Table 6. Same as Table 5 except for HadCM3.

Scenario
Time period

1959–1998 1969–1998 1979–1998 1989–1998

CO2 Detection 0.3323 0.5765 0.5047 0.4275

Attribution 0.4270 0.5818 0.5074 0.4273

CO2+SO2−
4 Detection 0.3987 0.1074 0.5304 0.4479

Attribution 0.2782 0.0646 0.4972 0.4478

Tables 5 to 7 show the posterior probabilities of
the detection and attribution regions, Pr(a∈D|â) and
Pr(a ∈ A | â), for the three AOGCMs (ECHAM4/
OPYC3, HadCM3, CCCma), as functions of p, for the
four time periods. We selected D = [0− 0.02, 0+0.02]
and A = [µA − 0.02, µA + 0.02] using a similar way to
Berliner et al. (2000). The latter proposed that when
the posterior probabilities of D lie within a range of
zero to 0.5, a climate change signal of anthropogenic
forcing is detected, and when the posterior probabil-

ities of A lie within a range of 0.3–1.0 the detected
climate change signal in the observation is attributed
to the anthropogenic forcing.

Table 5 shows the ECHAM4/OPYC3 results. The
detection result for the CO2 simulation shows large
probabilities for the detection region for all periods,
suggesting no evidence of a detected signal under CO2

forcing. The detection results for CO2+SO2−
4 simu-

lations represent moderate probabilities for the detec-
tion region for time period (a), implying no evidence
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Table 7. Same as Table 5 except for CCCma GCM.

Scenario
Time period

1959–1998 1969–1998 1979–1998 1989–1998

CO2 Detection 0.9823 0.7084 0.7228 0.5256

Attribution 0.6288 0.5343 0.7120 0.5256

CO2+SO2−
4 (1) Detection 0.9628 0.5017 0.5727 0.4363

Attribution 0.7991 0.3979 0.5688 0.4369

CO2+SO2−
4 (2) Detection 0.9256 0.4340 0.5560 0.4257

Attribution 0.5794 0.3881 0.5650 0.4260

CO2+SO2−
4 (3) Detection 0.9569 0.4527 0.5664 0.4305

Attribution 0.7711 0.4206 0.5698 0.4305

of a detected signal, but they represent small proba-
bilities for the detection region for time periods (b),
(c), and (d), indicating little evidence of a detected
signal under CO2+SO2−

4 (1) and CO2+SO2−
4 (2) forc-

ings. That is, there is some suggestion of a detected
change based on time periods (b), (c), and (d) in that
Pr(a∈D|â) < 0.5 for p = 0.5. The attribution results
of the ECHAM4/OPYC3 CO2 simulation shows that
there is strong evidence for attribution to periods (b),
(c), and (d) of the CO2 forcing since the corresponding
posterior probability Pr(a∈A|â) is of the order of 0.5
to 0.8. However, there is little evidence for attribution
to the CO2+SO2−

4 (1) and CO2+SO2−
4 (2) forcings rep-

resented in our ECHAM4/OPYC3-based fingerprint.
The result from HadCM3 (Table 6) shows moder-

ate or large probabilities for the detection region for
all periods, implying no evidence of a detected signal
under CO2 and CO2+SO2−

4 forcings except in (b) for
CO2+ SO2−

4 and that there is strong evidence for attri-
bution to the CO2 forcing while there is little evidence
for attribution to the CO2+SO2−

4 forcing except for
period (b). The result from the CCCma GCM (Table
7) shows large probabilities for the detection region for
all periods, implying no evidence of a detected signal
under CO2 and all three CO2+SO2−

4 forcings, and that
there is strong evidence for attribution to periods (b),
(c), and (d) of the CO2 and all CO2+SO2−

4 forcings.

4. Quantification of anthropogenic effects

We used analysis of variance for a quantification
measure of components for changes in surface air tem-
perature. Our regression model was as follows:

Y = β0 + β1X1 + β2X2 + ε

where Y ={NCEP/NCAR reanalysis–control run},
X1 ={Scenario run(CO2)–control run}, X2 ={scenario
run (CO2+SO2−

4 )–scenario run(CO2)}. In the regres-
sion model, the analysis of variance approach is based

on the partitioning of sums of squares associated with
the response variable Y . The least squares fitting pro-
cess, thus, provides a partition of the total variability
into a component that is attributed to the fitted line
(SSR) and a component that is due to departures from
that line (SSE). That is,

St = Sr + Se ,

where St stands for the total sum of squares, Sr stands
for the regression sum of squares, and Se stands for the
error sum of squares. In multiple regression, we can
obtain a variety of decompositions of Sr in the extra
sum of squares. An extra sum of squares measures
the marginal reduction in the error sum of squares
when one or several independent variables are added
to the regression model given that other independent
variables are already in the model. An extra sum of
squares involves the difference between the two corre-
sponding regression sums of squares (Von Storch and
Zwiers, 1999). If X1 is the extra variable, we have:

Sr(X1|X2) = Sr(X1, X2)− Sr(X2) .

We present relative contributions of CO2 and SO2−
4

to total surface temperature change using four sub-
sets of two AOGCM datasets and the four time pe-
riods: (a) 1959–1998, (b) 1969–1998, (c) 1979–1998,
and (d) 1989–1998. For each of the four time pe-
riods, Tables 8–12 present two type decompositions
of the regression sum of squares into extra sum of
squares and their ratio for CO2+SO2−

4 simulations
with ECHAM4/OPYC3 and CCCma GCM. The ra-
tio stands for the proportion of total variation associ-
ated with the independent variable, X1 or X2, and Ss

stands for the sum of squares.
The result of the ECHAM4/OPYC3 CO2+SO2−

4 (1)
in Table 8 shows that surface temperature variability
by the CO2 effect is about 7% to 18% when SO2−

4 is
the extra variable and it is about 7% to 23% when
CO2 is the extra variable. On the other hand, surface
temperature variability by the SO2−

4 effect is about 1%
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Table 8. Contribution ratio of CO2 (X1) and SO2−
4 (X2)

to the total temperature change in Northeast Asia inferred
from ECHAM4/OPYC3 CO2 and CO2+SO2−

4 (1) runs.

Time period Source Ss(X1) Ss(Xz | X1) Se

1959–1998 Ss 300.46 98.39 1692.58

Ratio 0.1437 0.0470 0.8093

1969–1998 Ss 308.22 85.68 1312.63

Ratio 0.1806 0.0502 0.7692

1979–1998 Ss 175.97 32.12 949.61

Ratio 0.1520 0.0277 0.8203

1989–1998 Ss 35.78 6.26 460.68

Ratio 0.0712 0.0125 0.9164

Table 9. Same as Table 8 except for ECHAM4/OPYC3
CO2 and CO2+SO2−

4 (2) runs.

Time period Source Ss(X1) Ss(Xz | X1) Se

1959–1998 Ss 300.46 153.05 1637.92

Ratio 0.1437 0.0732 0.7832

1969–1998 Ss 308.22 101.44 1296.86

Ratio 0.1806 0.0594 0.7599

1979–1998 Ss 175.97 58.17 923.56

Ratio 0.1520 0.0502 0.7978

1989–1998 Ss 35.78 17.53 449.42

Ratio 0.0712 0.0349 0.8940

Table 10. Same as Table 8 except for CCCma GCM CO2

and CO2+SO2−
4 (1) runs.

Time period Source Ss(X1) Ss(Xz | X1) Se

1959–1998 Ss 1005.60 25.64 7871.36

Ratio 0.1130 0.0029 0.8842

1969–1998 Ss 1267.58 145.29 5526.02

Ratio 0.1827 0.0209 0.7964

1979–1998 Ss 928.47 419.20 3506.55

Ratio 0.1913 0.0864 0.7224

1989–1998 Ss 891.38 265.83 1339.89

Ratio 0.3570 0.1065 0.5366

Table 11. Same as Table 8 except for CCCma GCM CO2

and CO2+SO2−
4 (2) runs.

Time period Source Ss(X1) Ss(Xz | X1) Se

1959–1998 Ss 1005.60 43.54 7853.45

Ratio 0.1130 0.0049 0.8822

1969–1998 Ss 1267.58 84.47 5586.85

Ratio 0.1827 0.0122 0.8051

1979–1998 Ss 928.47 305.05 3620.70

Ratio 0.1913 0.0628 0.7459

1989–1998 Ss 891.38 354.07 1251.64

Ratio 0.3570 0.1418 0.5012

Table 12. Same as Table 8 except for CCCma GCM CO2

and CO2+SO2−
4 (3) runs.

Time period Source Ss(X1) Ss(Xz | X1) Se

1959–1998 Ss 1005.60 197.24 7699.75

Ratio 0.1130 0.0222 0.8649

1969–1998 Ss 1267.58 217.28 5454.04

Ratio 0.1827 0.0313 0.7860

1979–1998 Ss 92.847 310.29 3615.46

Ratio 0.1913 0.0639 0.7448

1989–1998 Ss 891.38 336.95 1268.76

Ratio 0.3570 0.1349 0.5081

Table 13. RMSE of 40-yr (1959–1998) mean surface tem-
perature near the Korean Peninsula.

AOGCM Scenario RMSE

ECHAM4/OPYC3 CO2 1.9953

CO2+SO2−
4 (1) 1.7195

CO2+SO2−
4 (2) 1.5736

CCCma GCM CO2 2.6111

CO2+SO2−
4 (1) 2.6658

CO2+SO2−
4 (2) 2.6710

CO2+SO42−(3) 2.5966

to 5% when SO2−
4 is the extra variable and it is about

0% to less than 1% when CO2 is the extra variable.
The result of ECHAM4/OPYC3 CO2+SO2−

4 (2) in
Table 9 shows similar results.

Over all, the results of the ECHAM4/OPYC3 sce-
nario runs provide evidence that the CO2 effect of
ECHAM4/OPYC3 is about 14% to 23% from 1959
to 1998 and the SO2−

4 effect of ECHAM4/OPYC3 is
about 0% to 7% from 1959 to 1998. These results
indicate that the effect of anthropogenic forcings of
CO2 and SO2−

4 explains a part of the surface temper-
ature increase in Northeast Asia. The results of three
CO2+SO2−

4 simulations with CCCma GCM (from Ta-
bles 10 to 12) show that the CO2 effect is about 9% to
12% from 1959 to 1998 and the SO2−

4 effect is about
0% to 2% from 1959 to 1998. It is suggested that
for the decadal timescale, climate change signals can
be detected on a regional scale although with a weak
amplitude.

5. Projection of surface temperature near the
korean peninsula

Using seven scenario runs from ECHAM4/OPYC3
and CCCma GCM, we examined which scenario run
is most similar to NNR over the 1959 to 1998 periods
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with a 2.5◦ × 2.5◦ grid spacing on a domain near the
Korean Peninsula from 32.5◦N to 45◦N and 122.5◦E to
132.5◦E. The main statistical tool used for this com-
parison is the root mean square error (RMSE) between
the AOGCMs scenario runs and NNR surface temper-
ature. The RMSE (σe) is defined as

σe =

[
1
L

L∑
k=1

(yk − ok)2
]1/2

,

where yk = CO2 − NNR or yk = (CO2 + SO2−
4 ) −

NNR, ok = NNR and L is the total number of grid
points in the domain.

Table 13 summarizes the RMSE between the
AOGCMs scenario runs and NNR surface tempera-
ture. The comparison result shows that the CO2

+SO2−
4 (2) scenario run of ECHAM4/OPYC3 is most

similar to NNR.

Table 14 shows the decadal surface temperature
changes from the 2000s to the 2040s under the
CO2+SO2−

4 (2) scenario of ECHAM4/OPYC3 over the
Korean peninsula. It can be seen that the warming
starts from about 0.2◦C in the 2000s to 1.1◦C in the
2040s. The surface temperature changes have a highly
significant warming effect for all periods.

Table 14. Prediction of temperature change near the Korean Peninsula from ECHAM4/OPYC3 CO2+SO2−
4 (2) runs.

Period 2000–2009 2010–2019 2020–2029 2030-2039 2040-2049

Variation of 0.2253 0.4560 0.5103 0.9722 1.0884

temperature (◦C) (0.0341) (0.0484) (0.0295) (0.0512) (0.0613)

t-statistic 6.61 9.42 17.24 18.95 17.75

p-value < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

( ): standard error.

 3

     

   

Fig. 3. Horizontal patterns of the surface temperature change in 2000’s to 2040’s estimated from 

ECHAM4/OPYC3 CO2+SO4 (2) : (a) 2000’s, (b) 2010’s, (c) 2020’s, (d) 2030’s, and (e) 2040’s. 

 

Fig. 3. Horizontal patterns of surface temperature change in the 2000s to the 2040s estimated from
ECHAM4/OPYC3 CO2+SO2−

4 (2): (a) 2000s, (b) 2010s, (c) 2020s, (d) 2030s, and (e) 2040s.
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Figure 3 shows the horizontal pattern of mean sur-

face temperature change for the 2000s to the 2040s of the

CO2+SO2−
4 (2) scenario of ECHAM4/OPYC3. It shows

that the temperature increase becomes larger with time

and that the increase in the northern part is a little larger

than in the southern part.

6. Concluding remarks

We performed a climate change detection and attri-

bution test of the anthropogenic signal associated with

changes in CO2 and SO2−
4 concentrations for Northeast

Asia from the ECHAM4/OPYC3, HadCM3, and CCCma

GCM simulations using a Bayesian fingerprint approach.

We found a weak evidence of a detected signal under CO2

and CO2+SO2−
4 forcings and a stronger evidence for attri-

bution to the CO2 and CO2+SO2−
4 forcings represented in

our fingerprints.

In addition, we performed a quantification of com-

ponents of climate change and prediction of variation

of surface temperature to 2049 based on scenario runs

of ECHAM4/OPYC3, HadCM3, and CCCma GCMs in

Northeast Asia. In the scenario run of ECHAM4/OPYC3,

the CO2 effect of climate change is 14% to 21% in 1959

to 1998 and the SO2−
4 effect of climate change is 0 to 7%

from 1959 to 1998. In the scenario run of the CCCma

GCM, the CO2 effect of climate change is 10 to 12% from

1959 to 1998 and the SO2−
4 effect of climate change is 0 to

3% from 1959 to 1998.

The model validation was done in the context of

RMSE for the present day temperature field, and the CO2

+SO2−
4 (2) scenario run of ECHAM4/OPYC3 turned out

to have the best performance of temperature near the Ko-

rean Peninsula. Using the best scenario run, the tempera-

ture prediction was estimated to 2049; it is projected that

a warming of about 1.1◦C will appear in the 2040s near

the Korean Peninsula. However, it should be noted that

there is much uncertainty in this prediction because it came

from a single realization of a single coupled model. A multi-

model ensemble method from a number of simulations from

both AOGCMs and Regional Climate Model (RCMs) can

be a promising way to reduce the uncertainty in the pre-

diction of regional climate change.
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