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ABSTRACT

In the cost function of three- or four-dimensional variational data assimilation, each term is weighted
by the inverse of its associated error covariance matrix and the background error covariance matrix is
usually much larger than the other covariance matrices. Although the background error covariances are
traditionally normalized and parameterized by simple smooth homogeneous correlation functions, the
covariance matrices constructed from these correlation functions are often too large to be inverted or
even manipulated. It is thus desirable to find direct representations of the inverses of background error
correlations. This problem is studied in this paper. In particular, it is shown that the background term can
be written into

∫
dx|Dv(x)|2, that is, a squared L2 norm of a vector differential operator D, called the

D-operator, applied to the field of analysis increment v(x). For autoregressive correlation functions, the D-
operators are of finite orders. For Gaussian correlation functions, the D-operators are of infinite order. For
practical applications, the Gaussian D-operators must be truncated to finite orders. The truncation errors
are found to be small even when the Gaussian D-operators are truncated to low orders. With a truncated
D-operator, the background term can be easily constructed with neither inversion nor direct calculation
of the covariance matrix. D-operators are also derived for non-Gaussian correlations and transformed into
non-isotropic forms.
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1. Introduction

Various variational formulations have been devel-
oped and used in meteorological data analyses and as-
similation since the pioneering studies of Sasaki (1958,
1970). As a powerful mathematical tool, the varia-
tional framework has great flexibility to allow various
types of constraints to be incorporated into the cost
function and weighted differently. For practical appli-
cations, various differential operators have sometimes
been used as smoothness constraints to suppress noise
and improve the smoothness of the analyses. Theoret-
ically, however, it is not obvious how different types
of constraints should be selected and weighted unless
the variational formulations are derived formally based
on Bayesian probabilistic principles such as those in
three- and four-dimensional variational data assimila-
tion (Jazwinski, 1970; Wahba and Wendelberger, 1980,
Lorenc 1986; Cohn 1997). The paper by Wahba and
Wendelberger (1980) was, perhaps, the first in meteo-
rology that not only extended Sasaki’s variational for-
malism rigorously in several aspects but also put it in

the context of Bayesian estimation of conditional ex-
pectation. Based on Bayesian probabilistic principles,
each term in the costfunction should be weighted by
the inverse of its associated error covariance matrix.
How to estimate these error covariances and represent
their inverses then becomes the central issue. This pa-
per concerns representations of the inverse covariances,
especially the inverse background error covariances in
three-dimensional variational data assimilation.

Qualitatively, it has then been well recognized that
the smoothing effect of the background term can be
mimicked by a smoothing penalty term in which a
Laplacian or a polynomial of a Laplacian is applied
to the analysis increment field as a weak constraint
(Wahba and Wendelberger, 1980; Purser, 1986; Xu et
al., 2001a). In the seminal paper by Wahba and Wen-
delberger (1980), the differential operator in the spline
formulation was related to an (implicit) prior back-
ground covariance, while the averaged background
error variance (inversely related to the background

*E-mail: Qin.Xu@noaa.gov



182 REPRESENTATIONS OF INVERSE COVARIANCES BY DIFFERENTIAL OPERATORS VOL. 22

weight) and the required smoothness (related to the or-
der of the differential operator) were estimated by the
Generalized Cross Validation method from the data
being analyzed. Motivated by the above and other
subsequent studies, it should be interesting to explore
quantitatively whether and how a differential operator
can be constructed concisely and precisely in consis-
tency with a given background error correlation among
all admissible forms. This problem is addressed in this
paper by using a functional approach.

Due to lack of sufficient knowledge about the true
covariance structures, simplifications often have to be
made in order to obtain stable error statistics as well
as to facilitate computations. In this respect, back-
ground error covariances are often assumed to be de-
scribable by a small number of parameters (such as
the variance and the characteristic spatial scale or
truncated spectral coefficients describing the gross fea-
tures of the shape of the covariance function). Then,
the parameters can be estimated by fitting the pa-
rameterized covariance function to observation inno-
vations (Gandin, 1963; Hollingsworth and Lönnberg,
1986; Lönnberg and Hollingsworth, 1986; Thiebaux et
al., 1986; Bartello and Mitchell, 1992; Dévényi and
Schlatter, 1994; Xu et al., 2001c; Xu and Wei, 2001,
2002) or to forecast differences (Parrish and Derber,
1992; Derber and Bouttier, 1999). Although the co-
variance functions are parameterized with relatively
simple analytical forms, the covariance matrices con-
structed from these functions are often too large and
too complex to be inverted into the weight matrix in
the background term. Thus, it is necessary to find an
equivalent or approximate representation of the back-
ground covariance matrix or its inverse in the varia-
tional analysis to reduce the computational demand.

Traditionally, as reviewed in the next section, the
above task was accomplished by introducing an inter-
mediate state vector through a linear transformation
of the analysis increment vector so that the cost func-
tion can be reformulated and minimized with respect
to the intermediate state vector without inverting the
background error covariance matrix. This paper con-
siders a direct approach in which the inverse covariance
matrix is represented by the inverse of its associated
correlation function (as an operator) in the limit of
infinitely high resolution for continuous fields of anal-
ysis. In this case, as an example in the one-dimensional
space of x, the inverse relationship between a homo-
geneous univariate correlation function C(x) and its
inverse Q(x) is defined by∫

dx′C(x− x′)Q(x′) = δ(x) , (1.1)

where δ(·) is the delta function (Courant and Hilbert,
1962) and the integral

∫
dx′ is over the entire space.

The associated background term can then be expressed
by

Jb =
∫

dx

∫
dx′v(x)Q(x− x′)v(x′) , (1.2)

where v(x) is the increment analysis field normal-
ized by the background error standard deviation.
By applying the generalized Fourier transformation
(Lighthill, 1958) to Eq. (1.1), the inverse relationship
is expressed concisely in the space of wavenumber k
by

S(k)G(k) = (2π)−1 , (1.3)

where S(k) and G(k) are the Fourier transforma-
tions of C(x) and Q(x), respectively. As power spec-
tra, S(k) and G(k) are real and even functions of k,
so G(k) can be derived from S(k) [or directly from
C(x) as shown in the appendix] as a Taylor expan-
sion in terms of k2, say, G(k) =

∑
0 gnk2n, where

the summation
∑

0 is over n (= 0, 1, 2, . . .). The in-
verse Fourier transformation of this expansion gives
Q(x) = (2π)1/2

∑
0(−1)ngn(d/dx)2nδ(x). Substitut-

ing this into Eq. (1.2) gives

Jb =
∫

dx|Dv(x)|2 , (1.4)

where integration by parts is used, and

D = (2π)1/4[g0
1/2, g1

1/2d/dx , . . . , gn
1/2(d/dx)n, . . .]T

is a vector differential operator, called the D-operator.
The functional approach outlined above in Eqs.

(1.1)–(1.4) indicates that the background term can
be written into a squared L2 norm of a D-operator
applied to the field of analysis increment. Similar D-
operator formulations can be derived for homogeneous
and isotropic univariate correlation functions in two-
and three-dimensional space, and the details will be
presented in sections 4–5 of this paper. Depending on
the form of S(k) or C(x), the D-operator can be of
either finite or infinite order. For practical applica-
tions, a D-operator of infinite order must be truncated
to a finite order. With a truncated D-operator, the
background term can be constructed directly just like
a smoothing penalty term except that the smoothing
is controlled precisely by the background correlation
(rather than arbitrarily or empirically). In this case,
neither inversion nor direct calculation of the back-
ground error covariance matrix is required. The back-
ground term and its gradient can be directly and easily
computed.

The D-operator is very different from the general-
ized diffusive operator of Weaver and Courtier (2001)
in correlation modeling. Their approach is to model
the background correlation (rather than its inverse) by



NO. 2 XU 183

the inverse of a generalized diffusive operator (rather
than by the operator itself). As the inversion is im-
plemented by a recursive algorithm, their approach
can be viewed as a recursive filter (see section 2.2).
This paper takes an opposite but straightforward ap-
proach, that is, to model the inverse of the background
correlation directly by a differential operator. This
functional approach is similar to that used in Prob-
lems 7.7 and 7.9 of Tarantola (1987) for exponentially
decaying correlation functions in one-dimensional and
two-dimensional spaces. These exponential functions,
however, are not differentiable at zero correlation dis-
tance, so they are not suitable for smooth background
error covariances. For example, the exponential corre-
lation function has the form of C(x) = exp(−|x|/L) in
one-dimensional space, which is simply the first-order
autoregressive correlation. By using the approach out-
lined above in Eqs. (1.1)–(1.4), D-operators can be
derived for any high-order autoregressive correlation
functions. The analytical forms of these high-order
functions can be found in Jenkins and Watts (1968),
and here we only need to show their D-operators. The
n-th order autoregressive correlation is defined by

C(x− x′) = 〈ξ(x)ξ(x′)〉/σ2 ,

where 〈(·)〉 denotes the probabilistic mean, σ2 is
the variance of the random field ξ(x) generated by∑

(0,n)an′(d/dx)n′
ξ(x) = w(x) from the white-noise

field w(x) for which 〈w(x)w(x′)〉 = δ(x−x′), an′ is the
coefficient for the n′-th order term [as in Eq.(A.1) of
Thiebaux et al., 1986], and the summation

∑
(0,n) is

over n′ (= 0, 1, 2, . . . , n). This definition leads to

δ(x) =
[∑

(0,n)an′(d/dx)n′
]

×
[∑

(0,n)an′(−d/dx)n′
]
C(x)σ2

or, equivalently,

(2π)−1/2 =
[∑

(0,n)an′(ik)n′
]

×
[∑

(0,n)an′(−ik)n′
]
S(k)σ2 ,

so S(k) is known explicitly. Substituting this S(k) into
Eq. (1.3) gives

G(k) =
∑

(0,n)gn′k2n′
,

where gn′ = [a2
n′+2

∑ ′′
(−1)n′′

an′′a2n′−n′′ ]σ2(2π)−1/2,
and the summation

∑ ′′
is over n′′(= 1, 2, . . . , n′ − 1).

Thus, for the n-th order autoregressive correlation,
the D-operator in Eq. (1.4) is only of a finite order up
to n. When n = 1, the D-operator recovers the result
in Problem 7.7 of Tarantola (1987).

This paper considers the widely used Gaussian cor-
relations first and then deals with other more general
and complex situations. The Gaussian correlations

are infinitely differentiable and their inverses are D-
operators of unlimited high order, so proper trunca-
tions must be considered and justified by the smallness
of the truncation errors. This problem is addressed in
this paper. Furthermore, when a background correla-
tion is estimated from innovation data, its spectrum
(Fourier transformation) is often in a discrete form
rather than a closed analytical form (Xu et al., 2001c;
Xu and Wei, 2001, 2002). Thus, it will be interesting
and practically useful to derive a properly truncated
D-operator for a correlation whose Fourier transfor-
mation is not analytically available. This problem is
also addressed in this paper with the detailed deriva-
tion of general D-operator formulations presented in
the appendix.

D-operators will be derived first and essentially
for homogeneous and isotropic univariate correlations.
Via proper variable and coordinate transformations,
the derived D-operators can be extended and used for
multivariate, non-homogeneous and non-isotropic co-
variances (although the cross-correlation between the
transformed variables may not be truly negligible and
the transformed coordinate may allow limited degrees
of non-homogeneity and non-isotropy). To demon-
strate this, we need to briefly review the traditional
multivariate approaches in the next section, and then
introduce the representer method for continuous fields
of multivariate analyses in section 3 to show that the
analyses are at least as smooth as the multivariate
correlations and thus possess the differentiability re-
quired by the associated D-operator. D-operator for-
mulations are derived subsequently for one- and two-
dimensional Gaussian correlation functions in section
4, and for three-dimensional ellipsoidal Gaussian cor-
relation functions in section 5. General D-operator
formulations for non-Gaussian and non-isotropic cor-
relation functions are presented in the appendix. The
results are discussed with conclusions in section 6.

2. Review of traditional approaches

During each cycle of three-dimensional variational
data assimilation, observations are linearly combined
into the background field provided by the prediction of
a numerical model. Errors in the background fields are
often assumed to be Gaussian random with zero mean,
while errors in the updated observations (with biases
removed) are also Gaussian random with zero mean
and independent of the background errors (see Chap-
ter 4 of Daley, 1991). Under these assumptions and
based on Bayesian probabilistic principles (see Lorenc,
1986; Cohn, 1997), the maximum likelihood estimate
(optimal analysis) of the true state can be obtained by
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minimizing the following increment form of the cost
function:

J = Jb + Jo = ∆aTB−1∆a

+ (H∆a− d)TR−1(H∆a− d) . (2.1)

Here, ∆a = a − b is the analysis increment which is
taken to be the control vector in the discrete model
space, d = o − H(b) is the observation innovation
vector in the observation space, b is the background
state vector, a is the analysis vector, o is the observa-
tion vector, B and R are the background and obser-
vation error covariance matrices, respectively, H is a
tangent linear approximation of the (nonlinear) obser-
vation operator H that maps the model space to the
observation space, and (·)T denotes the transpose of
(·). The optimal analysis (maximum likelihood esti-
mate) is given by a = b + ∆a at the minimum of J .
The value of ∆a at the minimum of J is called the min-
imizer of J but, for simplicity, it will still be denoted
by ∆a as long as the meaning is clearly understood
from the derivations developed in this paper.

To facilitate the presentation, the model space is
decomposed into subspaces and each subspace corre-
sponds to one variable only. Denote by ξk(x) the ran-
dom field of background error for the k-th variable
(in the k-th subspace), where x = (x, y, z) denotes a
point in the three-dimensional coordinate system used
by the model. Then,

〈ξk(x)ξk′(x′)〉 ≡ Bkk′(x,x′) (2.2a)

defines the background error covariance function asso-
ciated with the k-th and k′-th subspaces, where 〈(·)〉
denotes the expectation (probabilistic mean) of (·).
When the field is discretized on a grid, then ξk(x)
reduces to ξk—a random vector representing the grid
field of background error in the k-th subspace. Then,
Eq. (2.2a) reduces to

< ξkξT
k′ >≡ Bkk′ . (2.2b)

Here, Bkk′ is the (k, k′)-th submatrix of B associated
with the k-th and k′-th subspaces. The components of
ξk are given by ξk(xi), where xi denotes the i-th grid
point. The elements of Bkk′ are given by

Bkk′(xi,xi′) ≡ 〈ξk(xi)ξk′(xi′)〉 .

In principle, the minimizer of J can be obtained by
solving the linear algebraic equations derived from

∂J/∂∆a = 0 .

In practice, however, the background error covariance
matrix is often too large to be inverted. To avoid large
matrix inversion, different approaches have been devel-
oped (Lorenc, 1986; Cohn, 1997; Courtier et al., 1998;
Daley and Barker, 2001). One common strategy is to
introduce an intermediate state vector, c, through a

linear transformation ∆a = Tc, so the cost function
can be reformulated in terms of c without inverting
B. Thus, previous approaches can be classified based
on their selected types of T , as reviewed briefly in the
following subsections.

2.1 Observation space approach

By choosing T = BHT, the minimizer of J can be
obtained in the observation space by solving the linear
algebraic equation derived from ∂J/∂c = 0, that is,

(HBHT + R)c = d . (2.3)

The minimizer of J in the original model space is then
given by

∆a = BHTc . (2.4)

This is the statistical interpolation scheme often called
optimal interpolation (OI) (see Daley, 1991). Often
the observation space is still too large to al-
low Eq. (2.3) be solved directly. The traditional OI
approach is to partition the observation space into
partially overlapped subspaces so that HBHT and
BHT become small enough in each subspace. The fi-
nal solution is not truly global as it is pieced by local
solutions (minimizers in subspaces). In this case, the
global solution requires an iterative approach with a
descending algorithm to find the minimum of the cost
function. This leads to the three-dimensional varia-
tional (3D Var) scheme with different approaches, in-
cluding the Physical-space Statistical Analysis Scheme
(PSAS). The PSAS is an observation space approach
in which the cost function is reformulated from Eq.
(2.3) with T = BHT (Cohn et al., 1998; Daley and
Barker, 2001). Other 3D Var approaches are reviewed
in the following subsections.

2.2 Model space approach

By choosing T = B, the cost function in Eq. (2.1)
can be reformulated as a function of c = B−1∆a. As
B−1 is absorbed into c, the inversion of B is avoided
and the reformulated cost function is preconditioned
(Lorenc, 1988; Derber and Rosati, 1989). Although
B−1 disappears in the reformulated cost function (not
shown), the size of the problem is still often very large
in the model space and an iterative method must be
resorted to for the minimization. The most costly part
in each iteration is the multiplication of c by B, and
even a single multiplication can become prohibitively
expensive if carried out with the full matrix B. One
remedy, as adopted by Gaspari and Cohn (1999), is
to constrain the covariance functions to zero beyond
certain distances (compactly supported) and thus to
make B sparse. The computational cost can also be
reduced by choosing T = B1/2 while B1/2 is mod-
eled by a recursive filter (Purser and McQuigg, 1982;
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Lorenc, 1992; Hayden and Purser, 1995; Huang, 2000;
Purser et al., 2003a, b) or by inverting a generalized
diffusive operator (Weaver and Courtier, 2001). How-
ever, when the covariance function in Eq. (2.2) is non-
isotropic (Xu and Gong, 2003), B1/2 cannot be easily
computed or modeled. In this case, it is convenient
and efficient to choose T = B and model B by a re-
cursive filter (Purser et al., 2003a, b).

2.3 Spectral-space approach

Assume that the analysis increment is horizontally
periodic (on either a flat or spherical domain). Denote
by F the matrix operator of the discrete Fourier trans-
formation in the horizontal (or Legendre-Fourier trans-
formation on the spherical surface). Denote by ∆ak

the component of ∆a in the k-th subspace. By choos-
ing T = F−1 in each subspace, we have ∆ak = F−1ck,
where ck = F∆ak is the Fourier transformation of
∆ak. Substituting this into the cost function in
Eq. (2.1) gives

J =
∑ ∑ ′

cT
k (S−1)kk′ck′

+
(∑

HkF−1ck−d
)T

R−1
(∑

HkF−1ck−d
)

,

(2.5)

where
∑

and
∑′ are summations indexed by k and

k′, respectively, Hk is the k-th block of columns of H
that maps ∆ak from the k-th subspace to the observa-
tion space, (S−1)kk′ denotes the (k, k′)-th submatrix
of S−1, and the (k, k′)-th submatrix of S is given by

Skk′ = FBkk′F T = 〈sksT
k′〉 . (2.6)

Here, Bkk′ is as in Eq. (2.2b), sk = Fξk and sk′ =
Fξk′ are the random vectors of the background errors
in the k-th and k′-th spectral subspaces, respectively.

When the vector field of horizontal velocity is
represented by the scalar fields of the streamfunc-
tion and velocity potential, all the analysis variables
are scalars. The associated normalized scalar back-
ground errors can be assumed to be jointly homo-
geneous and isotropic in the horizontal, so spectral
components of different horizontal wavenumbers are
not correlated [see section 2.9 of Panchev (1971) for
a one-dimensional example, and Boer (1983) for the
spherical spectral representation]. Thus, each Skk′ =
〈sksT

k′〉 is block-diagonal with each diagonal block as-
sociated with a horizontal wavenumber. As each di-
agonal block is a small matrix in the space of vertical
levels or modes, it can be easily converted into a diag-
onal form by its eigenvectors and so does Skk′ . This
simplifies the inversion of S in Eq. (2.5). For large-
scale analyses (Parrish and Derber, 1992; Courtier
et al., 1998), the background errors are often as-
sumed to be not correlated between different scalar

variables (except for the geostrophically coupled error
fields of the streamfunction and geopotential height),
so Skk′ = 〈sksT

k′〉 = 0 for k 6= k′ except that k and
k′ are associated with a pair of streamfunction and
geopotential height fields. This further simplifies the
inversion of S.

2.4 Reformulated spectral-space approach

Recently, Derber and Bouttier (1999) proposed a
comprehensive yet very compact reformulation of S
in the spectral-space approach which allows for the
separation of the univariate and multivariate compo-
nents of S into distinct operators. In this formulation,
the intermediate state vector c = F∆a in the spec-
tral space is partitioned into balanced and unbalanced
parts except for one variable (that is, the vorticity
or streamfunction) which is balanced-only (or taken
in totality). This balanced-only variable and all the
unbalanced variables are assumed to be univariate in
the sense that their background errors are not cross-
correlated, so their error covariance matrix, denoted
by U [or Bu as in Eq. (7) of Derber and Bouttier
(1999)], is block-diagonal with each diagonal block as-
sociated with one of the univariate variables. All the
remaining balanced variables are related to the uni-
variate variables by a linear operator, denoted by K ′.
Thus, c = Ku where K = I + K ′ as in Eq. (10) of
Derber and Bouttier (1999) and u is the vector that
represents all the univariate variables in the spectral
space. With this K transformation, S takes the form
of S = KUKT and Eq. (2.5) can be written into

J =uTU−1u

+ (HF−1Ku− d)TR−1(HF−1Ku− d) .

(2.7)

For the same reason as explained in section 2.3, each
diagonal block of U is a block-diagonal matrix and
can be easily converted into a diagonal form. Since U
is univariate-block-diagonal but S is not, U−1 can be
computed more easily than S−1 in Eq. (2.5).

3. Representer method for continuous fields of
analyses

The difficulties in computing the background term
(and its gradient) can be greatly reduced by using
the spectral-space approach as shown in Eq. (2.5) and
(2.7). The spectral-space approach is particularly suit-
able for spectral models over horizontally periodic do-
mains or on spherical surfaces. When the domain is
not periodic and is discretized by a grid in the hor-
izontal, other approaches (see sections 2.1 and 2.2)
are often used to avoid the inversion of B. In this
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paper, the inverse of B is directly represented by a
Taylor series of differential operators in the functional
space for each univariate variable. Applying this func-
tional approach to Eq. (2.1) requires B to be reformu-
lated into a block-diagonal form with each diagonal
block associated with a univariate variable. This is
done by a K transformation as in Eq. (2.7) but in
the grid space. In this case, u = K−1c = K−1F∆a
and U = K−1SK−T = K−1FBF TK−T are re-
placed by u = K−1∆a and U = K−1BK−T, respec-
tively. Denote by Λ2 the diagonal part of U . Then,
C = Λ−1UΛ−1 is the error correlation matrix for u
or, equivalently, the error covariance matrix for the
normalized vector v = Λ−1u. As in Eq. (2.7), U is
block-diagonal and so is C. Their k-th diagonal blocks
are linked by Ck = Λ−1

k UkΛ−1
k , where Λk is the k-th

diagonal component of Λ in the k-th subspace associ-
ated with the k-th univariate variable. Denote by uk

the k-th vector component of u in the k-th subspace
and thus vk = Λ−1

k uk is the k-th vector component
of v = Λ−1u. With the above K transformation, the
cost function in Eq. (2.1) can be rewritten into the
following univariate form:

J =
∑

vT
k C−1

k vk +
(∑

Hk

∑ ′
Kkk′Λk′vk′ − d

)T

×R−1
(∑

Hk

∑ ′
Kkk′Λk′vk′ − d

)
, (3.1)

where the summations
∑

and
∑′ are over k and k′,

respectively, Hk is the k-th block of columns of H
that maps ∆ak from the k-th subspace of ∆a to the
observation space, and Kkk′Λk′ is the (k, k′)-th sub-
matrix of KΛ that maps vk′ (from the k′-th subspace
of v) to ∆ak (in the k-th subspace of ∆a). It is easy
to see that ∆ak =

∑ ′
Kkk′uk′ =

∑ ′
Kkk′Λk′vk′ .

After the above preparations, the aforementioned
functional approach can be introduced in two steps.
First, we show that in the limit of infinitely high res-
olution (for continuous fields of analysis) the back-
ground term can be expressed as a sum of squared
norms of the normalized univariate variables in repro-
ducing kernel Hilbert spaces, and the reproducing ker-
nels are Ck(x,x′)(k = 1, 2, . . .) [see Eqs. (3.2b) and
(3.7)], so the optimal analysis is a smooth function
constructed by Ck(x,x′) [see Eqs. (3.10) and (3.16)].
This first step is presented in this section. Then,
based on the smoothness of the solution and by as-
suming that Ck(x,x′) is homogeneous, we show in the
next three sections that the inverse of Ck(x,x′) can
be represented by a Taylor series of differential oper-
ators applied to the delta function in the functional
space for each normalized univariate variable. Conse-
quently, the background term can be written into a
squared Sobolev norm for each normalized univariate
variable [see Eqs. (4.17) and (5.10)].

In the continuous limit, we have
vk = Λ−1

k uk → vk(x) = uk(x)/σk(x) , (3.2a)

Ck → Ck(x,x′) ≡ 〈ζk(x)ζk(x′)〉 , (3.2b)

Kkk′ → Kkk′(x,x′) , (3.2c)

ξk =
∑ ′

Kkk′Λk′ζk′ →
∑ ′

∫
dx′Kkk′(x,x′)

× σk′(x′)ζk′(x′) = ξk(x) , (3.2d)

∆ak =
∑ ′

Kkk′Λk′vk′ →
∑ ′

∫
dx′Kkk′(x,x′)

× σk′(x′)vk′(x′) = ∆ak(x) . (3.2e)
Here, vk(x) and ∆ak(x) are the continuous fields of
analysis increment for the normalized univariate vari-
able and original variable, respectively, in the k-th sub-
space; ζk(x) and ξk(x) denote random fields of back-
ground errors for vk(x) and ∆ak(x), respectively; and
ξk and ζk are random vectors composed of ξk(xi) and
ζk(xi), respectively (where xi denotes the i-th grid
point and i = 1, 2, . . .). The integral

∫
dx′ is over the

entire space. Substituting Eq. (3.2d) into Eq. (2.2a)
and using Eq. (3.2b) yield

Bkk′(x,x′)=
〈∑ ′′

∫
dx′′Kkk′′(x,x′′)σk′′(x′′)ζk′′(x′′)

×
∫

dx′′′Kk′k′′(x′,x′′′)σk′′(x′′′)ζk′′(x′′′)
〉

=
∑ ′′

∫
dx′′

∫
dx′′′Kkk′′(x,x′′)σk′′(x′′)

× Ck′′(x′′,x′′′)σk′′(x′′′)Kk′k′′(x′,x′′′) .

(3.3)
After the above preparations, the k-th subspace for

vk(x) can be completed as a Hilbert space or, specif-
ically, as a Sobolev space [since Ck(x,x′) is smooth],
denoted by Hk, with the following inner product:

{ϕ1(x), ϕ2(x)}k ≡
∫

dx

∫
dx′ϕ1(x)Qk(x,x′)ϕ2(x′)

(3.4)

for any functions ϕ1 and ϕ2 in Hk, where Qk(x,x′) is
the inverse of Ck(x,x′) defined by∫

dx′Ck(x,x′)Qk(x′,x′′) = δ(x− x′′) , (3.5)

and δ(·) denotes the delta function. Using Eqs. (3.4)–
(3.5), one can verify that

{Ck(x,x′), vk(x′)}k = vk(x) , (3.6a)

{Ck(x,x′), Ck(x′,x′′)}k = Ck(x,x′′) , (3.6b)
so Ck(x,x′) is the reproducing kernel and Hk is a re-
producing kernel Hilbert space. Using Eq. (3.2b) and
(3.4)–(3.5), one can verify that

Jb =
∑

vT
k C−1

k vk →
∑

{vk(x), vk(x)}k (3.7)
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in the continuous limit.
The observation term in the cost function is given

by the second term in Eq. (3.1), where Hk is the k-th
submatrix of H that maps ∆ak from the k-th sub-
space of ∆a to the observation space. Note that∑

Hk∆ak →
∑∫

dxhk(x)∆ak(x) (3.8)

in the continuous limit, where hk(x) is the vec-
tor kernel function of the observation operator that
maps ∆ak(x) to the observation space. Substituting
Eq. (3.2e) into Eq. (3.8) gives∑

Hk

∑ ′
Kkk′Λk′vk′ →

∑ ∑ ′
∫

dxhk(x)

×
∫

dx′Kkk′(x,x′)σk′(x′)vk′(x′)

=
∑

{Lk(x), vk(x)}k , (3.9)

where Eq. (3.6a) is used in the last step with the sub-
scripts k and k′ exchanged and

Lk(x) ≡
∑ ′

∫
dx′′hk′(x′′)

×
∫

dx′Kk′k(x′′,x′)σk(x′)Ck(x′,x) (3.10)

is the observation operator that maps the k-th
subspace Hk to the observation space. Substituting
Eqs. (3.9) and (3.7) into Eq. (3.1) gives

J =
∑

{vk(x), vk(x)}k+
(∑

{Lk(x), vk(x)}k−d
)T

×R−1
(∑

{Lk(x), vk(x)}k − d
)

(3.11)

in the continuous limit.
As a function in Hk, each vk(x) in Eq. (3.11) can

be expressed in general by

vk(x) =
∑

cTLk(x) + pk(x) , (3.12)

where c is an intermediate vector to be determined in
the observation space and pk(x) is an element in Hk

perpendicular to every component function of Lk(x)
[see Eq. (3.10)]. Substituting Eq. (3.12) into Eq. (3.11)
gives

J =cTLCLTc +
∑

{pk, pk}

+ (LCLTc− d)TR−1(LCLTc− d) , (3.13a)

where

LCLT =
∑

{Lk(x) ,LT
k (x)}k

is a symmetric matrix in the observation space. Using
Eqs. (3.3)–(3.5) and (3.10), one can verify that

LCLT =
∑ ∑ ′

∫
dx

∫
dx′hk(x)Bkk′(x,x′)hT

k′(x′) .

(3.13b)

For a point observation of ∆ak′(x) at x = xj′ ,hk(x)
reduces to δkk′δ(xj′ − x) which gives∫

dx
∑

hk(x)∆ak(x) = ∆ak′(xj′)

in Eq. (3.8). Corresponding to a pair of point observa-
tions, namely, ∆ak(xj) and ∆ak′(xj′), the element of
LCLT in Eq. (3.13b) is just Bkk′(xj ,xj′). Thus, for
point observations, LCLT is identical to HBHT in
Eq. (2.3).

Clearly, {pk, pk} is non-negative and thus must be
zero if vk(x) minimizes J in Eq. (3.11). This implies
that the unobservable field pk(x) must be discarded,
so the cost function in Eq. (3.13a) reduces to the fol-
lowing finite-dimensional form:

J =cTLCLTc

+ (LCLTc− d)TR−1(LCLTc− d) . (3.14)

The minimizer of J is solved from the following linear
algebraic equation derived from ∂J/∂c = 0:

(LCLT + R)c = d . (3.15)

As explained with Eq. (3.13b), LCLT is identical to
HBHT for point observations, so the system of
Eq. (3.15) is identical to Eq. (2.3). The solution for
the increment field, however, is a continuous function
given by Eq. (3.12) with p(x) = 0, that is,

vk(x) =
∑

cTLk(x) . (3.16)

This approach belongs to the representer method [see
Chapters 1–2 of Wahba (1990); Chapter 5 of Bennett
(1992)].

4. D-operators for Gaussian correlations in
one- and two-dimensional spaces

Assume that Ck(x,x′) is homogeneous in the hor-
izontal, that is,

Ck(x,x′) = Ck(xh − x′h, z, z′)

where xh = (x, y) denotes the horizontal component
of x = (x, y, z). In a properly transforming vertical
coordinate, Ck(x,x′) can be further assumed approx-
imately to have a homogeneous form in the vertical
(Franke, 1999; Franke and Barker, 2000). In this case,
we have Ck(x,x′) = Ck(xh−x′h, z−z′) = Ck(x−x′),
where and hereafter z is the transformed vertical coor-
dinate over (-∞, ∞). For each normalized univariate
variable, the background term in Eq. (3.7) reduces to

Jb =
∫

dx

∫
dx′v(x)Q(x− x′)v(x′) , (4.1)∫

dx′C(x− x′)Q(x′) = δ(x) , (4.2)
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where the subscript k is dropped because we only
need to consider a single normalized univariate vari-
able in this section and the results apply to any of
the normalized univariate variables. To facilitate the
derivations in this section, we assume that C(x) is
separable between the horizontal and vertical, that is,
C(x) = Ch(xh)Cz(z). In this case, Q(x) is also sep-
arable, that is, Q(x) = Qh(xh)Qz(z), and thus the
integrals in Eqs. (4.1) and (4.2) can be separated as
follows:

Jb =
∫

dxh

∫
dx′hQh(xh − x′h)Jz(xh,x′h) , (4.3a)

Jz(xh,x′h) =
∫

dz

∫
dz′v(xh, z)Qz(z − z′)v(x′h, z′) ,

(4.3b)∫
dx′hCh(xh − x′h)Qh(x′h) = δ(xh) , (4.4a)∫
dz′Cz(z − z′)Qz(z′) = δ(z) . (4.4b)

The D-operator formulations will be derived for the
background term first in the vertical as a one-
dimensional example and then in the horizontal as a
two-dimensional example in the following two subsec-
tions. Three-dimensional D-operators will be exam-
ined in section 5. As will be seen, with the D-operator,
the double integral in Eq. (4.3a) [or Eq. (4.3b)] will re-
duce to a single integral with an infinite sum in the
integrand, and the infinite sum can be truncated to a
finite one.

4.1 One-dimensional D-operator

As a typical example, the vertical correlation is as-
sumed to have a Gaussian form, say, given by Cz(z) =
exp(−z2/2L2

z) where Lz is the vertical decorrelation
length. The associated spectrum is the Fourier trans-
formation of Cz(z) given by

Sz(kz) = (2π)−1/2

∫
dzCz(z) exp(−ikzz)

= Lz exp(−k2
zL2

z/2) .

By substituting this into the Fourier transformation of
Eq. (4.4b), that is, Sz(kz)Gz(kz) = (2π)−1 as in Eq.
(1.3), we obtain

Gz(kz) = (2πLz)−1 exp(k2
zL2

z/2)

= (2πLz)−1
∑

0(n!2n)−1(k2
zL2

z)
n , (4.5)

where

Gz(kz) = (2π)−1/2

∫
dzQz(z) exp(−ikzz)

is the Fourier transformation of Qz(z), and the sum-
mation

∑
0 is over n from 0 to ∞. Limited by the

ordinary test functions introduced in Lighthill (1958,

page 5), the generalized Fourier transformation and
its inverse cannot be directly applied to exponentially
growing functions (to the infinity in the spaces of z and
kz, respectively). However, one can apply the gener-
alized inverse Fourier transformation term-by-term to
any high-order terms in the summation of Eq. (4.5)
and then let the sum of the transformed terms go to
infinity. This leads to

Qz(z) = (2πL2
z)
−1/2

∑
0(n!2n)−1(−L2

z∂
2
z )nδ(z) .

(4.6)

Substituting this into Eq. (4.3b) and using the prop-
erty of ∂2n

z δ(z − z′) = (−1)n∂n
z ∂n

z′δ(z − z′) and inte-
gration by parts, that is,∫

dz

∫
dz′v(xh, z)[∂n

z ∂n
z′δ(z − z′)]v(x′h, z′)

=
∫

dz

∫
dz′[∂n

z v(xh, z)]δ(z − z′)[∂n
z′v(x′h, z′)]

=
∫

dz[∂n
z v(xh, z)][∂n

z v(x′h, z)] ,

we obtain the following D-operator formulation:

Jz(xh,x′h) =
∫

dz[Dzv(xh, z)]T[Dzv(x′h, z)] ,

(4.7a)

where v(xh, z) = vk(x) is the continuous field of anal-
ysis increment for the normalized univariate variable
[see Eq. (3.2a)], and

Dz ≡ (2πL2
z)
−1/4{1, 2−1/2Lz∂z , (2!2)−1/2(Lz∂z)2 ,

. . . , (n!2n)−1/2(Lz∂z)n, . . .}T (4.7b)

is the D-operator (of infinite order). Note from
Eq. (3.12) that v(xh, z) belongs to Hk (Sobolev space
of infinite order), so v(xh, z) and all its derivatives ap-
proach 0 as |z| → ∞. Thus, all the boundary terms
vanish when integration by parts is used in the above
derivation.

The background term is formulated in Eq. (4.7a)
into a squared L2 norm of Dzv or, equivalently, a
squared Sobolev norm of v (Adams, 1975). The or-
der of the D-operator is unlimitedly high and so is the
order of the associated Sobolev space. This Sobolev
space of infinite order is nontrivial (not empty) ac-
cording to Theorem 2.1 of Dubinskij (1986). The D-
operator of infinite order in Eq. (4.6) is thus the in-
verse of the Gaussian correlation operator Cz(z) in
this space. For a practical application, Dz must be
truncated to a finite order. Denote by D(n)

z the n-
th order truncation of Dz that contains only the first
n + 1 terms in Eq. (4.7b). The associated n-th order
truncation of Gz = Gz(kz) is denoted by G

(n)
z . Since

all the terms of Gz in Eq. (4.5) are positive, we have
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Gz > G
(n)
z > 0 and Gz > Gz − G

(n)
z > 0 for n > 0.

The truncation error can be estimated by

|G(n)
z −Gz| =Gz −G(n)

z < [(n + 1!)]−1

× (k2
zL2

z/2)n+1Gz , (4.8a)

where the inequality (n+1)![(n+1+n′)!]−1 < (n′!)−1 is
used. For any fixed kz, |G(n)

z −Gz| → 0 as n →∞. In
association with G

(n)
z , the truncated correlation spec-

trum is given by S
(n)
z = (2πG

(n)
z )−1 according to Eq.

(1.3). The truncation error is

S(n)
z − Sz = [2πG(n)

z ]−1 − Sz

= Lz

{[∑
(0,n)(n′!)−1(k2

zL2
z/2)n′

]−1

− exp(−k2
zL2

z/2)
}

, (4.8b)

where S
(n)
z = (2πG

(n)
z )−1 > (2πGz)−1 = Sz > 0 is

used and the summation
∑

(0,n) is over n′ from 0 to

n. Note that the truncation error estimated for G
(n)
z

in Eq. (4.8a) increases as a power function of k2
z , but

the truncation error for S
(n)
z in Eq. (4.8b) decreases

rapidly as kz increases.

The truncated correlation is given by the inverse
Fourier transform of S

(n)
z :

C(n)
z (z) = (2π)−1/2

∫
dkzS

(n)
z exp(ikzz)

= (2π)−1/2Lz

∫
dkz

[∑
(0,n)(n′!)−1

×(k2
zL2

z/2)n′
]−1

cos(kzz) , (4.9)

where the integral
∫

dkz is over the entire wavenumber
space of kz. The truncation error is bounded by

|C(n)
z (z)−Cz(z)|=

∣∣∣∣(2π)−1/2

∫
dkz[S(n)

z −Sz] cos(kzz)
∣∣∣∣

6 (2π)−1/2

∫
dkz[S(n)

z − Sz] = C(n)
z (0)− Cz(0)

= (2π)−1/2

∫
dη

[∑
(0,n)(n′!)−1(η2/2)n′

]−1

− 1

≡ ε1(n) , (4.10)

Fig. 1. Cz(n) - Cz plotted as functions of z/Lz for n = 2, 3, 4, 5 and 6. The bottom portion of the

one-dimensional Gaussian correlation function Cz is also shown by the solid curve. The

top of this solid curve is at Cz(0) = 1 beyond the plotted range.
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Fig. 1. C
(n)
z − Cz plotted as functions of z/Lz for

n = 2, 3, 4, 5 and 6. The bottom portion of the one-
dimensional Gaussian correlation function Cz is also shown
(solid curve). The top of this solid curve is at Cz(0) = 1
beyond the plotted range.

Table 1. Truncation errors estimated by Eqs. (4.10) and
(4.14) for one-dimensional Gaussian correlation function
and related single-observation analysis, respectively.

n 2 3 4 5 6

ε1(n) 0.141 0.045 0.017 0.007 0.003

e1(n) 0.066 0.022 0.008 0.0035 0.0015

where η = kzLz, Eq. (4.8b) and Cz(0) = 1 are used.
This result shows that the truncation error is an even
function of z and reaches the upper bound ε1(n) at
z = 0. Setting kz = 0 in the Fourier integral of
C

(n)
z (z)− Cz(z) gives∫

dz[C(n)
z (z)− Cz(z)]

= (2π)1/2[S(n)
z (0)− Sz(0)] = 0 , (4.11)

where S
(n)
z (0) = Sz(0) = Lz is used. This result indi-

cates that the domain average of the truncation error
is zero. The truncation errors are plotted as functions
of |z| for n = 2, . . . , 6 in Fig. 1. As shown, these
functions decrease to zero around |z| = 0.6Lz, reach
negative peaks around |z| = 1.1Lz and then diminish
rapidly as |z| increases beyond 3Lz. The upper bound
ε1(n) decreases rapidly as n increases (see Table 1).

Using the above results, we can further estimate
the truncation-caused error in the analysis of a sin-
gle observation. According to Eqs. (3.10) and (3.12),
vk(x) is a convolution of Kk′k(xj ,x′) with Ck(x′ ,x),
so vk(x) is at least as smooth as Ck(x′,x) even when
Kk′k(xj ,x

′) reduces to δ(xj−x′)δkk′ which is the least
differentiable case considered below. In this case, for a
single observation of the k-th univariate variable uk(x)
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at x = xj , the observation space is one-dimensional,
Lk(x) in Eq. (3.10) reduces to σk(xj)Ck(xj ,x), and
LCLT in Eq. (3.13) reduces to {Lk(x),LT

k (x)}k =
[σk(xj)]2. Without loss of generality, we may choose
xj = 0 and drop the subscript k. Substituting
vk(x) = v(xh, z) together with σk(xj) = σk(0) = σ
and Ck(xj ,x) = C(x) = Ch(xh)Cz(z) into Eqs.
(3.15)–(3.16) yields

[σ2Cz(0) + σ2
ob]c = do , (4.12a)

v(xh, z) = cσ2Ch(xh)Cz(z) , (4.12b)

where c is a scalar reduced from vector c in Eq. (3.15),
and σ2

ob and do are the observation error variance and
observation innovation at xj = 0, respectively. Note
that Cz(0) = 1 but the symbol is retained as a tracer
in Eq. (4.12a). When Dz is truncated to D(n)

z in the
background formulation Eq. (4.7a), then Eq. (4.12) is
replaced by

[σ2C(n)
z (0) + σ2

ob]c(n) = do , (4.13a)

v(n)(xh, z) = c(n)σ2Ch(xh)C(n)
z (z) , (4.13b)

where C
(n)
z (0) = 1 + ε1(n) > 1 and v(n)(xh, z) is the

truncation-affected analysis. The associated trunca-
tion error is estimated by

|v(n)(xh, z)− v(xh, z)||v(xh, 0)|−1 =

[c(n)C(n)
z (z)− cCz(z)]σ2Ch(xh)|v(xh , 0)|−1

6 ε1(n)σ2
ob{σ2[1 + ε1(n)] + σ2

ob}−1 ≡ e1(n) (4.14)

where Eq. (4.10) and

|v(xh, 0)| = cσ2|Ch(xh)Cz(0)| = cσ2|Ch(xh)|
are used. For σ = σob, we have

e1(n) = ε1(n)[2 + ε1(n)]−1 .

As shown in Table 1, e1(n) decreases rapidly as n in-
creases, and D(n)

z can be a good approximation of Dz

for n > 3 or even n = 2.

4.2 Two-dimensional D-operator

The generalized Fourier transformation of Eq.
(4.4a) yields

Sh(kh)Gh(kh) = (2π)−2 , (4.15)

where

Sh(kh) = (2π)−1

∫
dxhCh(xh) exp(−ikh·xh) ,

Gh(kh) = (2π)−1

∫
dxhQh(xh) exp(−ikh·xh) ,

kh = (kx, ky) is the horizontal vector wavenumber,
and · denotes the dot-product. In addition to the as-
sumed homogeneity in Eq. (4.4a), the correlation con-
sidered here is isotropic and has a Gaussian form, say,

given by

Ch(xh) = exp(−|xh|2/2L2
h)

where Lh is the horizontal decorrelation length. The
associated spectrum is Sh(kh) = L2

h exp(−|kh|2L2
h/2).

Substituting this into Eq. (4.15) gives

Gh(kh) = (2πLh)−2
∑

0(n!2n)−1(Lh|kh|)2n .

(4.16a)

Applying the generalized inverse Fourier transforma-
tion term-by-term to Eq. (4.16a) gives

Qh(xh) = (2πL2
h)−1

∑
0(n!2n)−1(−L2

h∆h)nδ(xh) ,

(4.16b)

where ∆h = ∂2
x +∂2

y . Substituting this with Eq. (4.7a)
into Eq. (4.3a) and integrating by parts yield the fol-
lowing D-operator formulation:

Jb =
∫

dxh

∫
dz[DhDT

z v(xh , z)]··[DhDT
z v(xh, z)] .

(4.17a)

Here, ·· denotes the Schur product defined by A··B ≡∑
i

∑
i′Aii′Bii′ where the double summation is over

i and i′, and Aii′ and Bii′ denote the elements of A
and B, respectively. As a matrix differential operator,
DhDT

z is constructed by the outer-product of Dh and
Dz, where Dz is as in Eq. (4.7b) and Dh is defined by

Dh ≡ (2π)−3/4(L2
hLz)−1/2{1, 2−1/2Lhdh1, (2!2)−1/2

× L2
hdh2, . . . , (n!2n)−1/2Ln

hdhn, . . .}T , (4.17b)

dh1 = {∂x, ∂y} ,

dh2 = {∂2
x, 21/2∂x∂y, ∂2

y} ,

. . .

dhn ={∂n
x , n1/2∂n−1

x ∂y , . . . ,

(αn,p)1/2∂n−p
x ∂p

y , . . . , ∂n
y } ,

. . .

(4.17c)

and αn,p = n![(n− p)!p!]−1 for 0 6 p 6 n.
Denote by D

(n)
h the n-th order truncation of

Dh that contains only the first n + 1 terms up to
(1/n!)1/2(Lh2−1/2)ndhn in Eq. (4.17b), and by G

(n)
h

the n-th order truncation of Gh in Eq. (4.16a). The
truncated correlation spectrum is given by S

(n)
h =

[(2π)2G(n)
h ]−1 according to Eq. (4.15). The truncation

error can be estimated for G
(n)
h as in Eq. (4.8a) except

that kzLz is replaced by |kh|Lh. The truncation error
for S

(n)
h is

S
(n)
h − Sh = [(2π)2G(n)

h ]−1 − Sh

= L2
h

{[∑
(0,n)(n′!)−1(|kh|2L2

h/2)n′
]−1

− exp(−|kh|2L2
h/2)

}
, (4.18)
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where S
(n)
h > Sh > 0 is used and

∑
(0,n) is as in

Eq. (4.8b).
The truncated correlation is the inverse Fourier

transform of S
(n)
h :

C
(n)
h (xh) = (2π)−1

∫
dkhS

(n)
h cos(kh·xh)

=
∫ ∞

0

khdkhS
(n)
h (kh)Jo(khrh) , (4.19)

where kh = |kh|, rh = |xh|, S(n)
h (kh) denotes the same

spectrum as S
(n)
h (kh) but expressed as a function of

kh, and Jo(·) is the zero-th order Bessel function of
(·). The truncation error is bounded by

|C(n)
h (xh)− Ch(xh)|

= |(2π)−1

∫
dkh[S(n)

h − Sh] cos(kh·xh)|

6
∫ ∞

0

khdkh[S(n)
h (kh)− Sh(kh)] = C

(n)
h (0)− Ch(0)

=
∫ ∞

0

dη
[∑

(0,n)(n′!)−1ηn′
]−1

− 1 ≡ εh(n) ,

(4.20)

where η = (khLh)2/2, Eq. (4.18) and Ch(0) = 1
are used. Setting kh = 0 in the Fourier integral of
C

(n)
h (xh)− Ch(xh) gives∫

dxh[C(n)
h (xh)− Ch(xh)]

= 2π[S(n)
h (0)− Sh(0)] = 0 , (4.21)

so the domain average of the truncation error is zero.
As shown in Fig. 2, the errors decrease to zero around
rh = 0.8Lh, reach negative peak values around rh =
1.3Lh and then diminish rapidly as rh increases be-
yond 3Lh. The upper bound εh(n) decreases rapidly
as n increases (see Table 2).

Fig. 2. As in Fig. 1 but for Ch(n) - Ch plotted as functions of rh/Lh for the two-dimensional case.
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of rh/Lh for the two-dimensional case.

Table 2. Truncation errors estimated by Eqs. (4.20) and
(4.22) for two-dimensional Gaussian correlation function
and related single-observation analysis, respectively.

n 2 3 4 5 6

εh(n) 0.57 0.16 0.062 0.026 0.012

eh(n) 0.22 0.074 0.030 0.013 0.006

As explained earlier, for a single observation at the
point of x = xj = 0, the analysis is given by Eq.
(4.12b). When Dh is truncated to D

(n)
h in Eq. (4.17a),

the analysis is given by

v(n)(xh, z) = c(n)σ2C
(n)
h (xh)Cz(z) ,

where c(n) is obtained as in Eq. (4.13a) except that
C

(n)
z (0) is replaced by C

(n)
h (0). The truncation-caused

analysis error relative to |v(0, z)| is bounded by

|v(n)(xh, z)− v(xh, z)||v(0, z)|−1

= [c(n)C
(n)
h (xh)− cCh(xh)]σ2Cz(z)|v(0, z)|−1

6 εh(n)σ2
ob{σ2[1 + εh(n)] + σ2

ob}−1 ≡ eh(n) , (4.22)

where Eq. (4.20) and |v(0, z)| = cσ2|Ch(0)Cz(z)| =
cσ2|Cz(z)| are used. For σ = σob, we have eh(n) =
εh(n)[2 + εh(n)]−1. As shown in Table 2, eh(n) de-
creases rapidly as n increases, and D

(n)
h can be a good

approximation of Dh for n > 4 or even n = 3.

5. D-operators in three-dimensional space

5.1 D-operators for correlation functions separ-
able between horizontal and vertical

In the previous section, the correlation function is
assumed to be separable between the horizontal and
vertical. The D-operator is also separable and is given
by DhDT

z as shown in Eq. (4.17a). When DhDT
z is

truncated to D
(n)
h D(n′)T

z , the truncation error can be
estimated by

|C(n)
h (xh)C(n′)

z (z)− Ch(xh)Cz(z)|

6 |C(n′)
z (z)− Cz(z)||C(n)

h (xh)|

+ |C(n)
h (xh)− Ch(xh)||Cz(z)|

6 ε1(n′)|C(n)
h (xh)|+ εh(n)|Cz(z)|

6 ε1(n′) + εh(n) , (5.1)

where Eqs. (4.10) and (4.20) are used.
As in Eqs. (4.14) and (4.22), the truncation error

in the analysis of a single observation is bounded by

|v(n,n′)(xh, z)− v(xh, z)| 6 [εh(n) + ε1(n′)]σ2
ob

× {σ2[1 + εh(n) + ε1(n′)] + σ2
ob}−1|v(0, 0)| . (5.2)
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The results in Tables 1–2 indicate that D
(n)
h D(n′)T

z

can be a good approximation of DhDT
z for n > 4 and

n′ > 3.

5.2 D-operators for correlation functions separ-
able between vertical modes

When the background errors are not correlated be-
tween different vertical modes, we have

C(x) =
∑

Cm(xh)Zm(z) , (5.3)

Q(x) =
∑

Qm(xh)Zm(z) , (5.4)

where the summation is over m,Cm(xh) and Qm(xh)
are the projections of C(x) and Q(x), respec-
tively, onto the m-th vertical mode, and the verti-
cal modes are assumed to be orthonormal, that is,∫

dzZm(z)Zm′(z) = δmm′ . Similarly, the analysis field
can be expressed by

v(x) =
∑

vm(xh)Zm(z) , (5.5)

where vm(xh) is the projection of v(x) onto the m-
th vertical mode. Substituting Eqs. (5.3)–(5.4) into
Eqs. (4.1)–(4.2) gives

Jb =
∑

Jm , (5.6a)

Jm =
∫

dxh

∫
dx′hvm(xh)Qm(xh − x′h)vm(x′h) ,

(5.6b)∫
dx′hCm(xh − x′h)Qm(x′h) = δ(xh) . (5.6c)

The two-dimensional D-operator in section 4.2 can be
applied to each Jm in Eq. (5.6a), since Jm involves only
horizontal correlation as shown in Eqs. (5.5b)–(5.5c).

5.3 D-operators for ellipsoidal correlations

The generalized Fourier transformation of Eq. (4.2)
is

S(k)G(k) = (2π)−3 , (5.7)

where

S(k) = (2π)−3/2

∫
dxC(x) exp(−ik·x) ,

G(k) = (2π)−3/2

∫
dxQ(x) exp(−ik·x) ,

and k = (kx, ky, kz) is the three-dimensional vector
wavenumber. In Eq. (4.1), the correlation is assumed
to be homogenous but not necessarily isotropic or sep-
arable. The correlation considered here is homogenous
and has a Gaussian ellipsoidal form, say, given by

C(x) = exp(−|λEx|2/2L2) = exp(−|x′|2/2L2) .

Here, E is the matrix that rotates the x-coordinates to
coincide with the ellipsoidal axes, λ = diag(λ1, λ2, λ3)

is the diagonal matrix that transforms the Gaussian el-
lipsoid into a sphere, and L is the decorrelation length
for the Gaussian function in the transformed coordi-
nate system of λEx = x′ = (x′, y′, z′)T. Without
loss of generality, det(λ) = λ1λ2λ3 = 1 is chosen, so
det(λE) = 1 and the transformation conserves vol-
umes. The correlation is isotropic in x′. The associ-
ated spectrum is given by

S(k) = (2π)−3/2

∫
dxC(x) exp(−ik·x)

= (2π)−3/2

∫
dx′ exp(−|x′|2/2L2) exp(−ik′·x′)

= L3 exp(−|k′|2L2/2)

= L3 exp(−|λ−1Ek|2L2/2) , (5.8)

where det(∂x/∂x′) = det(λE) = 1 and k′·x′ =
(λ−1Ek)T(λEx) = k·x are used, and k′ = λ−1Ek
is the transformed wavenumber in association with x′.
Substituting Eq. (5.8) into Eq. (5.7) gives

G(k) = (2πL)−3
∑

0(n!2n)−1(|λ−1Ek|L)2n .

(5.9a)

Applying the generalized inverse Fourier transforma-
tion term-by-term to Eq. (5.9a) gives

Q(x) = (2πL2)−3/2
∑

0(n!2n)−1(−L2∆′)nδ(x) ,

(5.9b)

where ∆′ = ∇′·∇′,∇′ = {∂x′ , ∂y′ , ∂z′}T = λ−1E∇
and ∇ = (∂x, ∂y, ∂z)T. Substituting Eq. (5.9b) into
Eq. (4.1) and integrating by parts lead to the follow-
ing D-operator formulation:

Jb =
∫

dx|Dv(x)|2 , (5.10a)

where

D ≡ (2πL2)−3/4{1, 2−1/2Ld1, (2!2)−1/2L2d2 ,

. . . , (n!2n)−1/2Lndn, . . .}T , (5.10b)



d1 = {∂x′ , ∂y′ , ∂z′} ,

d2 = {∂2
x′ , ∂2

y′ , ∂2
z′ , 21/2∂x′∂y′ , 21/2∂x′∂z, 21/2∂y′∂z′} ,

. . .

dn = {∂n
x′ , ∂n

y′ , ∂n
z′ , n1/2∂n−1

x′ ∂y′ , . . . ,

(βn,p,q)1/2∂n−p−q
x′ ∂p

y′∂
q
z′ . . .} ,

. . .

(5.10c)

βn,p,q = n![(n− p− q)!p!q!]−1, p and q are integers be-
tween 0 and n, and their sum is bounded by p+q 6 n.
The derivatives in (5.10c) are given in the transformed
coordinates. They can be transformed back to the
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original coordinates by using ∇′ = λ−1E∇ or, equiv-
alently,

{∂x′ , ∂y′ , ∂z′} = (λ1e1·∇, λ2e2·∇, λ3e3·∇)

where e1, e2 and e3 are the three row vectors of E,
that is, (e1, e2, e3) = ET. This gives

∂n−p−q
x′ ∂p

y′∂
q
z′ = (λ1e1·∇)n−p−q(λ2e2·∇)p(λ3e3·∇)q

in Eq. (5.10c).
Denote by D(n) the n-th order truncation of D in

Eq. (5.10b), and by G(n) the n-th order truncation of
G in Eq. (5.9a). The truncated correlation spectrum is
given by S(n) = [(2π)3G(n)]−1 according to Eq. (5.7).
The truncation error is

S(n) − S = [(2π)3G(n)]−1 − S

= L3

{[∑
(0,n)(n′!)−1(|k′|2L2/2)n′

]−1

− exp(−|k′|2L2/2)
}

, (5.11)

where
∑

(0,n) is as in Eq. (4.8b).
The truncated correlation is given by the inverse

Fourier transform of S(n):

C(n)(x) = (2π)−3/2

∫
dkS(n) cos(k·x)

= (2π)−3/2

∫
dk′S(n)(|k′|) cos(k′·x′)

= (2/π)1/2

∫ ∞

0

k′2dk′S(n)(k′)[sin(k′r′)/(k′r′)] ,

(5.12)

where k′ = |k′|, r′ = |x′|, S(n)(k′) = S(n)(|k′|) denotes
the same spectrum as S(n)(k) but expressed as a func-
tion of k′ = |k′|. The truncation error is bounded by

|C(n)(x)− C(x)|

= |(2π)−3/2

∫
dk′[S(n)(|k′|)− S(|k′|)] cos(k′·x′)|

6 (2/π)1/2

∫ ∞

0

k′2dk′[S(n)(k′)− S(k′)]

= C(n)(0)− C(0)

= (2/π)1/2

∫ ∞

0

η2dη[
∑

(0,n)(n′!)−1(η2/2)n′
]−1 − 1

≡ ε(n) , (5.13)

where η = Lk′, Eq. (5.11) and C(0) = 1 are used.
Similarly to Eq. (4.11) and (4.21), one can verify that∫

dx[C(n)(x)− C(x)]

= (2π)3/2[S(n)(0)− S(0)] = 0 . (5.14)

The truncation errors are plotted in Fig. 3. As shown,
the errors decrease to zero around r′ = 1.1L, reach
negative peaks around r′ = 1.4L, and then diminish

rapidly as r′ increases beyond 3L. The upper bound
ε(n) decreases rapidly as n increases (see Table 3).

When D is replaced by D(n) in the background for-
mulation (5.10a), the analysis of a single observation
is given by v(n)(xh, z) = c(n)σ2C(n)(x), where c(n) is
obtained as in Eq. (4.13a) except that C

(n)
z (0) is re-

placed by C(n)(0) = 1 + ε(n). The truncation error in
the analysis is bounded by

|v(n)(x)− v(x)|/|v(0)|

6 ε(n)σ2
ob{σ2[1 + ε(n)] + σ2

ob}−1

≡ e(n) . (5.15)

For σ = σob, e(n) = ε(n)[2 + ε(n)]−1. As shown in
Table 3, e(n) decreases rapidly as n increases, and
D(n) can be a good approximation of D for n > 5
or even n = 4. General D-operator formulations for
non-Gaussian correlations are derived in the appendix.

6. Discussion and conclusion

It is shown in this paper that the continuous-form
background term in the cost function of three- or four-
dimensional variational data assimilation can be writ-
ten into a squared Sobolev norm (Adams, 1975) or,
equivalently, a squared L2 norm of a vector differen-
tial operator (D-operator) applied to the continuous

Table 3. Truncation errors estimated by Eqs. (5.13) and
(5.15) for three-dimensional Gaussian correlation function
and related single-observation analysis, respectively.

n 2 3 4 5 6

ε(n) 1.8 0.43 0.160 0.066 0.030

e(n) 0.47 0.177 0.074 0.032 0.015

Fig. 3. As in Fig. 1 but for C(n) - C plotted as functions of r/L for the three-dimensional case.
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field of analysis increment [see Eq. (5.10) or Eq.
(A.6)]. In particular, D-operators are derived for
Gaussian correlation functions in one-, two- and three-
dimensional spaces. These Gaussian D-operators have
unlimitedly high order, so their associated norms be-
long to Sobolev spaces of infinite order (Dubinskij,
1986), which means that the analysis increment fields
are infinitely smooth.

For practical applications, the Gaussian D-
operators should be truncated to finite orders. Errors
in the truncated correlations are estimated analytically
and found to be small (< 0.07, see line 1 in Tables 1–3)
even when the Gaussian D-operators are truncated to
the third, fourth and fifth orders in one-, two- and
three-dimensional spaces, respectively. Truncation-
caused errors are also estimated for single-observation
analyses obtained with truncated D-operators. These
errors are found to be smaller than those for the trun-
cated correlations (compare line 2 with line 1 in Tables
1–3). Since the domain-averaged errors are zero for
all the truncated correlations [see Eqs. (4.11), (4.21)
and (5.14)], positive and negative errors caused by a
truncated correlation applied to a large number of ob-
servations may largely cancel out. The actual errors
caused by using truncated D-operators in the analyses
should be lower than estimated in this paper (and this
is confirmed by numerical results reported in follow-
up papers). Furthermore, when truncated D-operators
are used for the background term in four-dimensional
variational data assimilation, truncation-caused errors
in the solution might be further reduced because the
smoothness of the solution is controlled not only by the
background error correlation but also by the predic-
tion model equations, although the truncation-caused
errors could also be amplified due to various instabili-
ties in the prediction model.

D-operator formulations are also derived for non-
Gaussian and non-isotropic correlations in the ap-
pendix. The associated truncation errors (if any) can
be estimated in the same way as demonstrated for the
truncated Gaussian D-operators in sections 4–5. It
is necessary to point out, however, that many non-
Gaussian D-operators have finite orders only and ex-
actly, so there is no need for truncation. This is espe-
cially true for the autoregressive correlations for finite
orders, including the widely used second-order autore-
gressive (SOAR) function (Thiebaux, 1976; Gaspari
and Cohn, 1999). As shown in the introduction, the D-
operator is exactly of n-th order for the n-th order au-
toregressive correlation in the one-dimensional space.
This result remains true when it is extended to two-
and three-dimensional spaces (not shown). As men-
tioned in section 2b for the model space approach, var-
ious compactly supported correlation functions (con-

strained to zero beyond certain distances) have been
proposed (Gaspari and Cohn, 1999) to reduce the com-
putational cost in the multiplication of the state vector
by the covariance matrix (and to improve the analyses
in the Tropics). With the D-operator formulation, the
state vector is “multiplied” by the D-operator instead
of the covariance matrix, so the computational cost is
affected mainly by the order and the (discrete) form
of the D-operator regardless whether the correlation
function is compactly supported. In a spectral model,
the D-operator is simply a power series in wavenumber,
so the background term and its gradient can be com-
puted very efficiently similarly to the spectral-space
approach reviewed in section 2.3. In a grid model, the
background term and its gradient can be computed ef-
ficiently if the D-operator is truncated to a relatively
low order and discretized by low-order finite-difference
schemes.

It is assumed in this paper that the correlations are
homogeneous over the entire space of analysis. This as-
sumption can be relaxed and applied to local areas. In
this case, the parameters that describe the shape and
orientation (if not isotropic) of a specified correlation
are not necessarily constant but can slowly vary in the
analysis space. The correlation is thus only locally ho-
mogeneous. D-operator formulations can be derived
similarly by applying the generalized Fourier transfor-
mation approximately within the concerned ranges of
length scales or wavenumbers. The formulation will
have the same form as derived in this paper except
that the D-operator coefficients [such as gn in
Eq. (A.6c)] will be slowly varying functions in the anal-
ysis space. Furthermore, by using a proper curvilinear
coordinate transformation, the D-operator can be for-
mulated first for a homogeneous correlation function in
the transformed space, and then transformed back to
the original space to represent the inverse of a desired
and admissible non-homogeneous correlation function.
This technique is worthy of further investigations.

As mentioned in the introduction, differential oper-
ators have sometimes been used to construct penalty
terms to filter noise and improve the smoothness of
the analysis. For example, weak vorticity and diver-
gence constraints were used by Xu et al. (1994, 1995)
to suppresses spurious strong divergence and vorticity
caused by shortwave noise in the data, and the asso-
ciated differential operators can be reviewed as a hor-
izontal Laplacian applied to the streamfunction and
velocity potential fields. In general, differential oper-
ators used in smoothing penalty terms can be viewed
as D-operators and their implied “correlations” can be
examined by using the general inverse relationship de-
rived in Eqs. (A.4)–(A.10). The D-operators can also
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be viewed as generalized spline filters (Wahba, 1990).
Owing to the duality between the spline model solution
and Bayes estimate, the spline model solution can be
obtained by the representer method in section 3 except
that the null space of the differential operator may no
longer be empty and should be excluded from the so-
lution space [see Chapter 1 of Wahba (1990)]. The
D-operator formulations derived in this paper have
demonstrated how to construct a generalized spline
filter whose response function is precisely consistent
with the background error correlation.

Quadratic bi-spline basis functions have been used
to express the fields of analysis on coarse finite-element
meshes to filter shortwave noise and reduce the analy-
sis space dimension (Xu et al., 2001b). The filter prop-
erty, however, was controlled only implicitly by the
finite-element meshes. Using the formulations derived
in this paper, D-operators can be conveniently con-
structed with spline basis functions to achieve the de-
sired filter property (in consistency with the estimated
background error covariances). This approach was
used recently in Doppler radar data assimilation with
encouraging results (Xu et al., 2001a), although the
D-operator was simply a Laplacian constructed with
quadratic bi-spline basis functions on coarse finite-
element meshes in the horizontal. The utilities and
potential merits of D-operator formulations for prac-
tical applications to discrete models will be examined
in follow-up papers.
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APPENDIX

D-operators for non-Gaussian correlations

For simplicity, x is used to represent a point in any
of the three spaces and k is a point in the associated
wavenumber space. Denote by C(|λEx|) = C(|x′|)
a non-Gaussian correlation which is isotropic in the
transformed space of x′ = λEx, where the trans-
formed matrix λE is similar to that in section 5.3 but
is used here for both two- and three-dimensional spaces
and reduces to 1 for one-dimensional space. This corre-
lation function is elliptical or ellipsoidal in the original
two- or three-dimensional space of x. The associated

correlation spectrum is given by

(2π)−nd/2

∫
dxC(|λEx|) exp(−ik·x)

= (2π)−nd/2

∫
dx′C(|x′|) exp(−ik′·x′)

= S(|k′|) , (A.1)

where k′ = λ−1Ek and nd(= 1, 2, 3) is the number of
dimensions. The function forms of C and S are related
to each other by

S(k′) =
∫ ∞

0

r′nd−1dr′C(r′)P (k′r′) , (A.2a)

C(r′) =
∫ ∞

0

k′nd−1dk′S(k′)P (k′r′) , (A.2b)

where k′ = |k′|, r = |x′|, P (r′k′) is given by
(2/π)1/2 cos(k′r′) for nd = 1, by Jo(k′r′) for nd = 2,
and by (2/π)1/2(k′r′)−1 sin(k′r′) for nd = 3. As a cor-
relation spectrum, S(k′) is an even and non-negative
function of k. Assume further that S(k′) > 0 for
k′ < ∞. According to Eqs. (1.3), (4.15) and (5.7),
we have

S(k′)G(k′) = (2π)−nd . (A.3)

This implies that G(k′) is an even, positive and non-
singular function for k′ < ∞ and thus can be expressed
by the following Taylor expansion

G(k′) =
∑

0 gnk′2n =
∑

0 gn|k′|2n , (A.4)

where gn ≡ (n!)−1∂nG/∂ηn|η=0, ∂
nG/∂ηn|η=0 is the

n-th order derivative of G = G(k′) = G(η1/2) with
respect to η = k′2 = |k′|2 evaluated at η = 0, and

∑
0

is as in Eq. (4.6). Applying the generalized inverse
Fourier transformation term-by-term to (A.4) gives

Q(x) = (2π)nd/2
∑

0 (−1)ngn|dn|2δ(x) , (A.5)

where dn (n = 1, 2, . . .) are as in Eq. (4.7b) but with z
replaced by x for nd = 1, as in Eq. (4.17c) but with xh

replaced by x′ for nd = 2, and as in (5.10c) for nd = 3.
Substituting (A.5) into (4.1) and integrating by parts
gives

Jb = (2π)nd/2

∫
dx

∑
0 gn|dnv(x)|2 . (A.6a)

This result can be written into the following compact
D-operator form:

Jb =
∫

dx|Dv(x)|2 , (A.6b)

where

D ≡ (2π)nd/4{1, g1
1/2d1, g2

1/2d2, . . . , gn
1/2dn, . . .}T .

(A.6c)

Note that the n-th component in Eq. (A.6c) becomes
imaginary when gn is negative, but the coefficients in
Eq. (A.6a) are always real.
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Denote by D(n) the n-th order truncation of D in
(A.6c), and by G(n) the n-th order truncation of G
in Eq. (A.4). The associated correlation spectrum is
given by S(n) = [(2π)ndG(n)]−1 according to Eq. (5.3).
The truncation error is

S(n) − S = [(2π)ndG(n)]−1 − S

= (2π)−nd [
∑

(0,n)gn′ |k′|2n′
]−1 − S(|k′|) .

(A.7)

The truncated correlation, denoted by C(n)(x), is the
inverse Fourier transform of S(n). The associated trun-
cation error is bounded by

|C(n)(|x′|)− C(|x′|)|

= |(2π)−nd/2

∫
dk′[S(n)(|k′|)− S(|k′|)] cos(k′·x′)|

=
∣∣∣∣∫ ∞

0

k′nd−1dk′[S(n)(k′)− S(k′)]P (k′r′)
∣∣∣∣

6
∫ ∞

0

k′nd−1dk′[S(n)(k′)− S(k′)] = C(n)(0)− C(0)

=
∫ ∞

0

k′nd−1dk′P (0)
[∑

(0,n)gn′k′2n′
]−1

− 1

≡ ε(n) , (A.8)

where P (k′r′) is as in Eq. (A.2). If the correlation
has a Gaussian form as previously assumed, then
gn = (2π)−nd(n!)−1(L2/2)n and Eq. (A.8) reduces to
Eq. (4.10) for nd = 1, to Eq. (4.20) for nd = 2, and to
(5.13) for nd = 3.

The truncation error in Eq. (A.8) depends on the
specific form of the correlation. To estimate the er-
ror, it is necessary to calculate gn(n = 0, 1, . . .). If
an analytical form is available for S(k′), then gn can
be derived from the n-th order derivative of Eq. (A.3)
with respect to η = k′2 = |k′|2 evaluated at η = 0.
The results are

g0 = (2π)−nd/S0 ,

g1 = (2π)−nd [−S1/S2
0 ] ,

g2 = (2!)−1(2π)−nd [−S2/S2
0 + 2S2

1/S3
0 ] ,

g3 = (3!)−1(2π)−nd [−S3/S2
0

+6S2S1/S3
0 − 6S3

1/S4
0 ] ,

. . .

(A.9a)

where

Sn = ∂nS/∂ηn|η=0 . (A.9b)

If an analytical form is not available for S(k′), then
Sn can be calculated in terms of the moments of C(r′)
and then gn can be obtained from Eq. (A.9a). The
detailed formulations for this two-step approach are
omitted here. There is also a simple one-step approach
to calculate gn as described below.

Substituting the Taylor expansion of P (k′r′) into
Eq. (A.2a) and using the fact that C(r′) is an even
function, we obtain

S(k′) =
∑

0 (−1)nsnk′2n , (A.10)

where the summation
∑

0 is over n from 0 to ∞, and

sn = [(2n− 1)!!(2n)!!]−1
∫∞
0

dr′C(r′)r′2n

for nd = 1 ,

sn = [(2n)!!(2n)!!]−1
∫∞
0

dr′C(r′)r′2n

for nd = 2 ,

sn = [(2n)!!(2n + 1)!!]−1
∫∞
0

dr′C(r′)r′2n+2

for nd = 3 .

(A.11)

Substituting Eq. (A.4) and Eq. (A.10) into Eq. (A.3)
and collecting terms of the same powers of k′, we ob-
tain

s0g0 = (2π)−nd ,

s0g1 − s1g0 = 0 ,

s0g2 − s1g1 + s2g0 = 0 ,

. . .

s0gn − s1gn−1 + s2gn−2 + . . . + (−1)nsng0 = 0 ,

. . .

(A.12)

so gn can be calculated from sn recursively (for n =
0, 1, 2, . . .). When the correlations are represented
by a truncated spectral expansion (Hollingsworth and
Lönnberg, 1986; Lönnberg and Hollingsworth, 1986;
Xu et al., 2001c; Xu and Wei, 2001, 2002), S(k′) is
discrete but C(r′) is given analytically by the spec-
tral expansion. In this case, sn can be obtained either
from C(r′) by using Eq. (A.11) or by directly fitting
a truncated form of Eq. (A.10) to the estimated dis-
crete values of S(k′). Thus, truncated D-operators can
always be obtained from Eq. (A.12) even when S(k′)
and C(r′) are given in discrete forms.

Note that the differential operator
∑

0 (−1)ngn|dn|2
defined by Q(x) in Eq. (A.5) is elliptical because its
characteristic function is positive-definite (Courant
and Hilbert, 1962). By substituting Eq. (A.5) into Eq.
(4.2), one can see that the Green’s response function of
this differential operator is just the correlation. This
further explains the inverse relationship defined in Eq.
(3.5) or Eq. (4.2).
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