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ABSTRACT

Using the recently developed Weather Research and Forecasting (WRF) 3DVAR and the WRF
model, numerical experiments are conducted for the initialization and simulation of typhoon Rusa (2002).
The observational data used in the WRF 3DVAR are conventional Global Telecommunications System
(GTS) data and Korean Automatic Weather Station (AWS) surface observations. The Background Error
Statistics (BES) via the National Meteorological Center (NMC) method has two different resolutions, that
is, a 210-km horizontal grid space from the NCEP global model and a 10-km horizontal resolution from
Korean operational forecasts. To improve the performance of the WRF simulation initialized from the WRF
3DVAR analyses, the scale-lengths used in the horizontal background error covariances via recursive filter
are tuned in terms of the WRF 3DVAR control variables, streamfunction, velocity potential, unbalanced
pressure and specific humidity. The experiments with respect to different background error statistics and
different observational data indicate that the subsequent 24-h the WRF model forecasts of typhoon Rusa’s
track and precipitation are significantly impacted upon the initial fields. Assimilation of the AWS data
with the tuned background error statistics obtains improved predictions of the typhoon track and its
precipitation.
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1. Introduction

The problem of determining a physically consis-
tent and accurate snapshot of the atmosphere is cen-
tral to numerical weather prediction (NWP). Nearly
50 years ago, in the period of scientific excitement and
challenge that followed the first successful numerical
weather prediction, the variational approach to mete-
orological analysis was introduced by Sasaki (1958).
In succeeding decades, with advances in both comput-
ing power and optimization strategies, more sophisti-
cated constraints and more diverse observations have
been included in the problem. In the nomenclature of
meteorology, this methodology has become known as
three-dimensional variational (3DVAR, all space coor-
dinates but excluding time) and four-dimensional vari-

ational (4DVAR, when time is included) data assim-
ilation. The adjoint formalism was first proposed by
Le Dimet (1982) for meteorological applications and
was then implemented by Derber (1985), Lewis and
Derber (1985), Courtier (1985), Le Dimet and Tala-
grand (1986), Talagrand and Courtier (1987), Navon
et al. (1992), Zupanski (1993), Zou et al. (1993a,
b), Li et al. (2000) and Xiao et al. (2002), among
others. However, 4DVAR has been known to be very
time-consuming due to the adjoint nature of model
integration in iteratively searching for the optimal so-
lution (Li and Navon, 2001). In 3DVAR, since both
model integration and adjoint model integration are
not needed, it greatly simplifies the filtering processes
with relatively cheaper adjoint operators for ingestion
of various observations (Rabier et al., 1997; Courtier
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et al., 1998).
The Weather Research and Forecasting (WRF)

project is a multi-institutional effort to develop an ad-
vanced mesoscale forecast and data assimilation sys-
tem that is accurate, efficient, and scalable across a
range of scales. The newest version (2.0) of the WRF
model and the WRF 3DVAR were released in 2004.
The configuration of the WRF 3DVAR system is based
on an incremental formulation producing a multivari-
ate incremental analysis in the WRF model space. The
incremental cost function minimization is performed
in a preconditioned control variable space. The pre-
conditioned control variables we use in this study are
stream-function, velocity potential, unbalanced pres-
sure and specific humidity. Balance between mass and
wind increments is achieved via a geostrophically and
cyclostrophically balanced pressure derived from the
wind increments. Statistics of differences between 24
h and 12 h forecasts are used to estimate background
error covariances via the National Meteorological Cen-
ter (NMC) method (Parrish and Derber, 1992). Rep-
resentation of the horizontal component of background
error is via horizontally isotropic and homogeneous
recursive filters. The vertical component is applied
through projection onto climatologically averaged (in
time, longitude, and optionally latitude) eigenvectors
of vertical error estimated via the NMC method. Hor-
izontal/vertical errors are nonseparable in that hori-
zontal scales vary with vertical eigenvectors. A de-
tailed description of the 3DVAR system can be found
in Barker et al. (2004).

Numerical prediction of tropical cyclones has im-
proved enormously over the past few decades. The
difficulties in the numerical prediction of tropical cy-
clone track, intensity and inner-core structure are as-
sociated with insufficient observations over the oceans
and with the limitations of numerical models, such as
low-resolution, crude physical parameterization, and
the inability to treat multiscale interaction. Recently,
tropical cyclone forecast models at high resolution
have greatly improved as a result of advances in com-
puter resources. More sophisticated models have been
developed and used for tropical cyclone study and fore-
cast. To improve the tropical cyclone analysis and to
produce an adequate initial condition for prediction
becomes an important procedure. In the recent stud-
ies of Zou and Xiao (2000), Xiao et al. (2000), and
Zhang et al. (2003), the MM5 4DVAR data assimila-
tion method was proposed to generate the structure of
a tropical cyclone and the adjacent synoptic features
with insufficient observations over the ocean in the ini-
tial condition of the high-resolution mesoscale model
MM5. The predictions of tropical cyclone track and
intensity were improved in their studies.

The main purpose of this paper is to demonstrate
the ability of the WRF 3DVAR in analyses of Typhoon
Rusa (2002) and its surrounding atmosphere and to as-
sess their impact on the subsequent the WRF model
forecasts of the typhoon. The WRF 3DVAR analyses
for typhoon initialization are tuned by changing the
scale-lengths of horizontal Background Error Statis-
tics (BES). Conventional Global Telecommunication
System (GTS) and Korean Automatic Weather Sta-
tion (AWS) observational data are used to enhance
the 3DVAR analyses of the typhoon and surrounding
atmosphere. Numerical forecasts of the typhoon track
and rainfall are conducted with the WRF model. This
paper is organized as follows. The next section briefly
describes the WRF 3DVAR and the WRF modeling
system. Section 3 gives a synoptic overview of ty-
phoon Rusa (2002). The preprocessing of the conven-
tional GTS and Korean AWS observational data, and
the preparation of the WRF 3DVAR first-guess fields
using National Centers for Environmental Prediction
(NCEP) AVN data and the WRF standard initializa-
tion (SI), will be presented in section 4. In section
5, the scale-lengths of the WRF 3DVAR assimilation
are tuned based on the root-mean-square errors and
the single observation tests. Section 6 will describe
our experimental design and list our data assimilation
and simulation experiments. In section 7, the numer-
ical simulation results are presented. And finally, the
summary and conclusions are given in section 8.

2. Brief description of the WRF 3DVAR and
the WRF modeling system

2.1 The WRF 3DVAR

The basic goal of the WRF 3DVAR system is to
seek an “optimal” estimate of the true atmospheric
state at analysis time through iterative solution of a
prescribed cost-function:

J(x) =
1
2
(x− xb)TB−1(x− xb)

+
1
2
(y − y0)

TO−1(y − y0) . (1)

The problem can be summarized as the iterative solu-
tion of Eq. (1) to find the analysis state x that min-
imizes J(x). This solution represents the estimate of
the true atmospheric state given the two sources of
a priori data: the background (previous forecast) xb

and observations y0 (Lorenc 1986). B and O are the
background and observation error covariance matri-
ces respectively. The observation operator H is used
to transform the gridded analysis x to observation
space y = Hx for comparison against observations.
One practical solution to this problem is to perform
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a preconditioning via a control variable v-transform
defined by δx = Uv, where δx = x − xb. The trans-
form U is chosen to approximately satisfy the rela-
tionship B = UUT. Using the incremental formula-
tion (Courtier et al., 1994) and the control variable
transform, Eq. (1) can be rewritten as:

J(v)=
1
2
vTv+

1
2
(d−H ′Uv)TO−1(d−H ′Uv) , (2)

where d = y0 −H(xb) is the innovation vector and
H ′ is the linearization of the potentially nonlinear ob-
servation operator.

The “NMC method” (Parrish and Derber, 1992)
provides a climatological estimate of background er-
ror covariance, assuming it to be well approximated
by averaged forecast difference (e.g., month-long series
of 24-h minus 12-h forecasts valid at the same time)
statistics:

B = (xb − xt)(xb − xt)T = εbεT
b

∼= (x24 − x12)(x24 − x12)T . (3)

The control variable transform is in practice com-
posed of a series of operations δx = UpUvUhv
(Lorenc et al., 2000) ensuring the relationship B =
UpUvUhUT

h UT
v UT

p . The horizontal component of
the background error covariance Bh = UhUT

h is per-
formed using recursive filters (Hayden and Purser,
1995; Purser et al., 2003a). The version of the re-
cursive filter used in this paper possesses two free pa-
rameters for each control variable: the number of ap-
plications N of the filter [N = 2 defines a second-order
autoregressive (SOAR) function response; as N →∞,
the response approximates a Gaussian] and the corre-
lation scale length s of the filter. The recursive filter
(RF) is presented with an initial function Ai at grid-
points i where 1 6 i 6 I. A single pass of the RF
consists of an initial smoothing from “left” to “right”:

Bi = αBi−1 + (1− α)Ai i = 1, 2, . . . , I (4)

followed by a pass from “right” to “left”:

Ci = αCi+1 + (1− α)Bi i = 1, 2, . . . , l . (5)

Given parameters N, s and ∆x, the value of α to be
used in the RF algorithm is then

α = 1 + E −
√

E(E + 2) , (6)

where

E = N(∆x)2/4s2 . (7)

The NMC method is used to derive estimates of the re-
cursive filter’s characteristic scale length s that depend
on model level streamfunction (Ψ), velocity potential
(χ), unbalanced pressure (pu) and specific humidity (q)
projected onto their vertical error modes. The verti-
cal component Bv = UvUT

v is applied via a projection

from eigenvectors and eigenvalues of a climatological
estimate onto model levels, and the physical variable
transformation Bp = UpU

T
p converts control variables

to model variables (e.g., u, v, T, p, q).

2.2 The WRF model

The WRF model is a next-generation mesoscale
model that advances both the understanding and the
prediction of mesoscale weather systems and promotes
closer ties between the research and operational fore-
casting communities. The WRF model is intended
for a wide range of applications, from idealized re-
search to operational forecasting with priority empha-
sis on horizontal grids of 1–10 km. It is a joint ef-
fort of model development among several organiza-
tions, such as the National Center for Atmospheric Re-
search (NCAR), Forecast Systems Laboratory (FSL)
of the National Oceanic and Atmospheric Administra-
tion (NOAA), Center for the Analysis and Prediction
of Storms (CAPS) at the University of Oklahoma, Na-
tional Aeronautics and Space Administration (NASA),
Air Force Weather Agency (AFWA), and a number of
collaborating institutes and universities.

The equations are in terms of a terrain-following
hydrostatic pressure vertical coordinate:

η = (ph − pht)/µ , (8)

where µ = phs − pht, ph is the hydrostatic component
of the pressure, and phs and pht refer to values along
the surface and top boundaries, respectively. µ(x, y)
represents the mass per unit area within the column
in the model domain, and the appropriate flux form
variables are:

V = µv = (U, V,W ) , Ω = µη̇ , Θ = µθ . (9)

So the prognostic equations are:

∂tU + (∇ · vU)η + µα∂xp + ∂ηp∂xφ = FU , (10)

∂tV + (∇ · vV )η + µα∂yp + ∂ηp∂yφ = FV , (11)

∂tW + (∇ · vW )η − g(∂ηp− µ) = FW , (12)

∂tΘ + (∇ · vΘ)η = FΘ , (13)

∂tµ + (∇ · V )η = 0 , (14)

∂tφ + (v · ∇φ)η = gw , (15)

∂ηφ = −µα , (16)

p =
(

RΘ
p0µα

)γ

. (17)

The WRF dynamical core uses Eulerian finite-
differencing to integrate the fully compressible non-
hydrostatic equations in mass-coordinate, scalar-
conserving flux form using a time-split small step for
acoustic modes. Large time steps utilize a third-order
Runge-Kutta technique. The horizontal staggering is
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an Arakawa-C grid. The WRF physical processes for
real-data mesoscale forecasts include selections of ex-
plicit microphysics schemes, cumulus convective pa-
rameterizations, planetary boundary layer (PBL) pa-
rameterizations, and long-wave and shortwave radia-
tion schemes.

3. Overview of Typhoon Rusa (2002)

Typhoon Rusa was initiated from a tropical wave
in the mid-Pacific ocean. On 23 August 2002, Rusa
formed as a tropical depression over the Pacific, about
600 km southwest of Wake Island. It tracked to-
wards the west-northwest and strengthened into a
tropical storm the same day. Rusa reached typhoon
strength on 26 August 2002 and continued to move
west-northwestwards over the Pacific Ocean. It then
turned to the northwest and skirted the Ryukyu Is-
lands. Rusa turned north on 30 August 2002 and made
landfall over South Korea on 31 August at around 0630
UTC.

Rusa was a very strong typhoon with the minimum
sea-level pressure of 950 hPa sustained from 0000 UTC
29 till 1200 UTC 30 August 2002. Before landfall on

31 August 2002, the typhoon kept the strength of its
central sea-level pressure between 950 and 960 hPa.
But it weakened rapidly after landfall and became an
extratropical cyclone over the Sea of Japan on the first
day of September 2002.

During the final day of August 2002, typhoon Rusa
swept past the Japanese island of Kyushu and clob-
bered South Korea, killing more than 110 people and
submerging thousands of homes. Typhoon Rusa was
the most disastrous weather system in Korea in 2002.
It moved across the country and dumped very heavy
rainfall in a short time period. The heavy rainfall
of 870 mm d−1 at Kangnung city was the highest on
record in Korea’s 100-year meteorological history. The
KMA Jindo radar captured the system before the ty-
phoon landed at the south coast. Figure 1 shows
the radar images (rainfall rate) captured by the Jindo
radar at about 0000 UTC 31 August 2002. It can be
seen that the typhoon structure is well depicted.

0000 UTC 31 August 2002 is selected as the analy-
sis time for assimilation and the initial time for simu-
lation. The observations of conventional GTS and Ko-
rea AWS data are assimilated into the WRF 3DVAR
analyses to generate the initial conditions at that time.

Assimilation and Simulation of Typhoon Rusa (2002) Using the WRF System 
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Fig. 1: Korea Jindo radar captured image (rainfall rate) of typhoon Rusa at about 00 UTC 31 August 2002 
 

 

 

 

 

 

 

 

 
 

 

Fig. 1. Korea Jindo radar captured image (rainfall rate) of typhoon Rusa at about 0000
UTC 31 August 2002.



NO. 3 GU ET AL. 419

4. Data preprocessing

The domain of the WRF 3DVAR analysis and
the WRF model simulation has 178×160 grid points
and the center of the domain is located at (37.03◦N,
125.13◦E). The standard latitudes of the Lambert map
projection are 30◦N and 60◦N. The horizontal resolu-
tion is 10 km and the vertical levels are 34 in the WRF
model framework.

The domain specification (projection parameters,
dimensions, location, etc.) is made in the WRF SI.
From this definition, the WRF SI creates the grid spec-
ification as well as various static fields such as topogra-
phy, land use, soil types, monthly greenness fraction,
latitudes, longitudes, etc. The WRF REAL program
interpolates the NCEP AVN data to the WRF grid in
horizontal and vertical space as the analysis, and speci-
fies the lateral boundary conditions. The NCEP AVN
analysis data used in this paper are from 0000 UTC
30 August 2002 to 0000 UTC 1 September 2002 with
a 6-hour interval. The fields of the WRF model 24 h
integration from 0000 UTC 30 August 2002 to 0000
UTC 31 August 2002 provide the background (first
guess) for the WRF 3DVAR.

Conventional observations from GTS and AWSs
are preprocessed using the WRF 3DVAR observation
preprocessor (3DVAR OBSPROC). Because observa-
tion errors can be introduced at all stages including
measurement, reporting practices, transmission and
decoding, it is important that careful quality control
(QC) is performed to avoid the assimilation of erro-
neous observations. In the WRF 3DVAR observation
preprocessor, a number of QC checks are performed
including the removal of observations outside the time
range and domain (horizontal and top), re-ordering
and merging the duplicate data reports in time loca-
tion, retrieving the pressure or height based on the
observation information with the hydrostatic assump-
tion, ensuring the vertical consistency and super adi-
abatic property for multi-level observations, and esti-
mating observational error based on the pre-specified
errors. Numerous QC checks are redone in the WRF
3DVAR itself and an “error max” check is performed
to reject observations whose innovation vector (O−B)
is greater than 5 times of the assumed observation er-
ror standard deviation.

We select 0000 UTC 31 August 2002 as the anal-
ysis time for assimilation and as the initial time for
simulation. All the assimilation observations in our
designed experimental domain are shown in Fig. 2. To-
tally, the conventional GTS data (Fig. 2a) consist of
197 surface observations (SYNOP, symbol “×”), 28
radiosonde profiles (SOUND, symbol “O”) and 6 ship
reports (SHIP, symbol “×”). As extra information,

the Korean AWS network provided 490 surface obser-
vations (Fig. 2b) in South Korea (AWS, symbol “+”).

5. Scale-length tunings of the background
error statistics

We have two types of background error statistics
(BES) via the NMC method; one is calculated from the
NCEP global model with a 210 km horizontal grid dis-
tance (global BES), and the other is from the Korean
operational MM5 mesoscale model with a 10 km hori-
zontal resolution and identical domain to this study

 30N

40N

115E 120E 125E 130E 135E

(a)

 35N 

34N

38N

124E 126E 128E 130E

(b)

   36N

Fig. 2. The assimilation observation data distribution
in the domain (a) The SYNOP (×), SOUND (◦), and
SHIP (∗) observations; (b) The METAR (+) observations
in South Korea.
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Fig. 3. The increment profiles at a S-N cross section from the WRF 3DVAR with single observation test. (a) The
increments of T (solid lines) and qv (dashed lines) with the default global BES; (b) The increments of φ (solid
lines) and wind speed (dashed lines) with the default global BES; (c) Same as (a) but with the tuned global BES;
(d) Same as (b) but with the tuned global BES.

(MM5 BES). Using the WRF 3DVAR system, we as-
similate a single observation at 500 hPa from Kwangju
sounding station in Korea (35.11◦N, 126.81◦E) to in-
spect its influence scales. Figure 3 shows the incre-
ments at the S-N cross section from the WRF 3DVAR
analyses with the global BES. As the default, we have
an interpolated BES from the global BES. It can be
seen that the horizontal influence extension of incre-
ments is unreasonable large with the default global
BES (Figs. 3a, b).

In order to find an optimal horizontal component
of background error covariance (Bh = UhUT

h ) in the
WRF 3DVAR system for this case study, one impor-
tant thing we can do is to tune the BES file. The
scale-lengths in the recursive filter can be tuned based
on the statistics of the 3DVAR analyses. As Wu et
al. (2002) found that the horizontal scales decrease
when the resolution of the forecast model is increased,

we apply tuning factors for the scale-lengths of the
3DVAR control variables to the global BES (210-km
resolution). Many WRF 3DVAR experiments are con-
ducted, and the root-mean-square errors (RMSEs) of
all the 3DVAR analyses compared to the observations
are calculated. The statistics indicate that the 3DVAR
analyses are reasonably close to the observations with
the tuning factors of 0.11, 0.11, 0.11, and 0.45 respec-
tively for the control variables of streamfunction (Ψ),
velocity potential (χ), unbalanced pressure (pu), and
the specific humidity (qv). Figures 3c and 3d present
the increments with the tuned global BES. It can be
seen that the horizontal influence extension of incre-
ments is more reasonable for this typhoon case.

In the same way, we also tuned the scale-lengths of
the MM5 BES in our experiments. It is indicated that
the tuning factors of 0.5, 0.5, and 0.5 for streamfunc-
tion (Ψ), velocity potential (χ) and unbalanced pres-
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Fig. 4. Typhoon Rusa’s simulated and observed tracks.
Symbol “O” is the best track; Symbol “C” is the CNTL
track; Symbol “G” is the experiment MBESD track.

sure (pu) give reasonably small RMSEs in the 3DVAR
analyses.

6. Experimental design

Totally, seven experiments were designed and car-
ried out according to different BESs and different ob-
servational data. The first guess of the WRF 3DVAR
is the WRF model 24-h forecast with the NCEP AVN
analysis and the WRF SI as the initial condition at
0000 UTC 30 August 2002. The tropical cyclone
initialization using the WRF 3DVAR system is con-
ducted at 0000 UTC 31 August 2002. The 7 experi-
ments are listed below:

CNTRL: The control experiment is the WRF
model straightforward 24-h forecast starting with the
WRF 3DVAR first guess without observational data
assimilation;

GBESD: Conventional GTS observation data (Fig.
2a) are assimilated via the WRF 3DVAR with the de-
fault global BES (Figs. 3a, b), followed by a 24-h fore-
cast using the WRF model. The first letter “G” repre-
sents global and the last letter “D” represents default;

GBESL: Same as GBESD, but the scale-lengths of
the global BES are tuned in the WRF 3DVAR (Figs.
3c, d). The last letter “L” represents the tuning of the
length factors in the WRF 3DVAR;

GBESM: Same as GBESL, but assimilating both
GTS and Korean AWS data (Fig. 2b) in the WRF
3DVAR. The last letter “M” represents the assim-
ilation of METeorological Actual Report (METAR)
(AWS) data;

MBESD: Conventional GTS observational data
(Fig. 2a) are assimilated via the WRF 3DVAR with
the default MM5 BES, followed by a 24-h forecast us-
ing the WRF model. The first letter “M” represents
MM5;

MBESL: Same as MBESD, but with the tuned
scale-lengths of MM5 BES in the WRF 3DVAR;

MBESM: Same as MBESL, but assimilating both
GTS and Korean AWS data (Fig. 2b) in the WRF
3DVAR.

All experiments are executed for 24 hours numeri-
cal simulation using the WRF model from 0000 UTC
31 August 2002 to 0000 UTC 1 September 2002 with
a 3-hour interval output. The boundary conditions for
the numerical predictions use the NCEP AVN anal-
ysis with a 6-h interval. The model physics are ex-
actly the same in all experiments, which include YSU-
PBL, RRTM longwave and Dudhia shortwave radi-
ation schemes, Monin-Obukhov multiple soil layers,
Betts-Miller-Janjic cumulus parameterization, and the
Lin et al. (1983) explicit microphysics scheme with
graupel. The integration time step is 60 seconds.

7. Numerical results

7.1 Track

For typhoon forecasts, the main concerns are the
track prediction and precipitation forecast. Table 1
lists the position deviations of Rusa’s track between
simulations and observation every 3 hours. The Rusa
observation locations are from the Tokyo Typhoon
Center.

From Table 1, it is obvious that the WRF predic-
tions with background error statistics from mesoscale
model MM5 (MM5 BES) obtain a better track than
those with global error statistics (Global BES). The
average position deviations are reduced from 93.8 km
in GBESD to 68.0 km in MBESD, from 72.0 km in
GBESL to 65.6 km in MBESL, and from 70.7 km
in GBESM to 60.5 km in MBESM. This indicates
that the background error statistics using the model
forecasts with similar resolution and domain via the
NMC method are beneficial to the 3DVAR analyses
and the subsequent forecast. It is difficult to obtain
a sound mesoscale 3DVAR analysis using the global
background error statistics.
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Table 1. The deviation between simulation and observation of the Rusa position (units: km)

EXPT. 0-h 3-h 6-h 9-h 12-h 15-h 18-h 21-h 24-h aver.

CNTRL 35.4 44.6 81.8 72.4 110.6 111.8 86.5 136.8 144.3 91.6

GBESD 36.9 43.0 79.6 73.2 129.8 127.9 129.8 113.9 110.2 93.8

GBESL 33.1 30.6 86.5 84.3 93.8 100.7 87.2 75.9 56.1 72.0

GBESM 41.4 30.4 85.2 96.9 101.6 73.6 80.7 73.9 52.6 70.7

MBESD 29.2 32.8 79.9 81.4 91.9 84.2 81.2 77.7 53.6 68.0

MBESL 30.1 31.9 62.0 71.1 93.3 88.7 81.2 78.5 53.8 65.6

MBESM 44.5 40.4 61.9 45.9 67.5 74.9 75.4 78.2 55.7 60.5

Comparing experiment CNTRL with MBESD, we
can probe the enhancement of conventional GTS ob-
servations (Fig. 2a) in tropical cyclone initialization
and numerical prediction. Figure 4 shows the simu-
lated 24-h tracks of Typhoon Rusa at every 3 hours
for CNTRL (symbol “C”) and MBESD (symbol “G”).
The Tokyo Typhoon Center best track (OBS) of ty-
phoon Rusa (symbol “O”) is also plotted in the figure
for comparison. From the figure and Table 1, we see
that the typhoon Rusa initial position of experiment
MBESD is better than experiment CNTRL. The land-
fall location and time of experiment MBESD are closer
to the observation than experiment CNTRL. The track
after 9 hours in experiment MBESD is also closer to
the best track. The average track deviation of exper-
iment MBESD is 23.6 km less than experiment CN-
TRL. The WRF 3DVAR can extract useful informa-
tion from conventional GTS observation data in the
typhoon initialization and has a positive impact on
the numerical prediction.

Figure 5 depicts the difference in wind vector and
wind speed (solid lines) between experiment MBESD
and experiment CNTRL at the initial time at 500 hPa.
The symbol “O” is Typhoon Rusa’s observational cen-
ter. After assimilation of GTS observations, the circu-
lation of typhoon Rusa is intensified. The surrounding
wind speed is increased mainly in the northern part of
the typhoon. The east wind is strengthened more than
4 m s−1 near the tip of the Korean Peninsula. Com-
pared with the Jindo radar image of typhoon Rusa at
the same time (Fig. 1), the increase of the east wind
speed near the tip of the Korean Peninsula in Fig. 5 is
consistent with the radar observations. The assimila-
tion of GTS observations using the WRF 3DVAR re-
sults in the strengthening of typhoon circulation, and
obtains improvement in the typhoon initialization and
subsequent track prediction.

The tuning of scale-lengths in the recursive filter
also has an impact on the 3DAVR analysis and subse-
quent prediction. Figure 6 shows the 24-h forecasted
Rusa track by the WRF model at every 3 hours for
experiment CNTRL (symbol “C”), GBESD (symbol

“D”) and GBESL (symbol “T”). The Tokyo Typhoon
Center best track (OBS) of typhoon Rusa (symbol
“O”) is also shown in the figure for comparison. From
the figure and Table 1, we can see that the track in ex-
periment GBESD is worse than experiment CNTRL,
and the landfall time of experiment GBESD is delayed
by about 3 hours compared with experiment CNTRL.
After tuning the scale-lengths of the recursive filter in
global BES, the average Rusa position in experiment
GBESL improves 21.8 km from experiment GBESD.
The typhoon initial position of experiment GBESL
is closer to the observation location than experiments
GBESD and CNTRL. The landfall position and time
of experiment GBESL are also closer to the best track
than experiments GBESD and CNTRL. The typhoon
movement in GBESL speeds up after 9 hours, which is
consistent with the observation. The track in exper-
iment MBESL is also better than the experiment

30N
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36N

124E 126E 128E 130E

Fig. 5. The difference in wind vector and wind speed
(solid; units: m s−1; contour interval: 0.5) between exper-
iment MBESD and experiment CNTRL at initial time at
500 hPa. The symbol “O” is Rusa’s observed position.
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Fig. 6. Typhoon Rusa’s simulated and observed tracks.
Symbol “O” is the best track; Symbol “C” is the CNTL
track; Symbol “D” is the experiment GBESD track; Sym-
bol “T” is the experiment GBESL track.
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Fig. 7. The difference in wind vector and vertical vorticity
(solid, units: s−1, contour interval: 0.7×10−5) between ex-
periment GBESL and experiment GBESD at initial time
at 500 hPa. The symbol “O” is Rusa’s observed position.

MBESD. This result demonstrates that the tuning of
scale-lengths in the recursive filter of the WRF 3DVAR
is meaningful to the analysis and subsequent numerical
prediction, especially for the global BES.

Figure 7 shows the difference in wind vector and
relative vorticity (solid lines) between experiment

GBESL and experiment GBESD at 500 hPa at the
initial time. The symbol “O” is Rusa’s observational
center position. After tuning scale-lengths in the re-
cursive filter, the circulation of typhoon Rusa is inten-
sified. The vertical vorticity is increased around the
typhoon region. The southeast wind in the northern
part of the typhoon and the south wind in the eastern
part of the typhoon are all enhanced. These two re-
gions of wind strengthening (more than 4 m s−1) are
also consistent with the radar observations (Fig. 1).
The tuning of scale-lengths in the recursive filter of the
WRF 3DVAR results in the strengthening of typhoon
circulation and gives rise to the improved typhoon ini-
tialization and forecast.

In the interest of assessing the assimilation of Ko-
rean AWS observations, we inspect the experiments of
GBESM versus GBESL, and MBESM versus MBESL.
Figure 8 shows that the assimilation of AWS obser-
vations (GBESM and MBESM) obtains reduced ty-
phoon track deviation, compared with the experiments
GBESL and MBESL, respectively. The experiment
GBESM slightly improves the average deviation by
1.3 km; the experiment MBESM improves the average
deviation by 5.1 km (Table 1).

7.2 Precipitation

Another important interest in typhoon predic-
tion is the inland precipitation forecast at the ty-
phoon’s landfall. The U.S. Weather Research Pro-
gram (USWRP) and World Weather Research Pro-
gram (WWRP) have identified quantitative precipita-
tion forecasting (QPF) as a major focus of their re-
search on hurricanes at landfall. Therefore the accu-
mulated 24-h precipitation from Korean AWS obser-
vations between 0000 UTC 31 August 2002 and 0000
UTC 1 September 2002 (Fig. 9) is used to verify the
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Fig. 8. The typhoon track deviation of experiments
GBESL, GBESM, MBESL and MBESM every 3 hours.
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Fig. 9: The observation 24-h accumulation precipitation 
from 00 UTC 31 August to 00 UTC 1 September 2002. 
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Fig. 9. The observed 24-h accumulation precipitation
from 0000 UTC 31 August to 0000 UTC 1 September 2002.

precipitation forecast skill of the designed experi-
ments. The dominant precipitation centers in South
Korea are P1 (350 mm), P2 (300 mm), P3 (250 mm)
and P4 (250 mm) (Fig. 9). Figure 10 illustrates the 24-
h simulation accumulated rainfall distribution for the
different experiments. The control experiment (Fig.
10a) can simulation these 4 rainfall centers, but the
amounts are apparently less than the observation ex-
cept for at P4. The deviations of accumulated rainfall
between the observation and the experiment CNTRL
are 150 mm at P1, 45 mm at P2 and 42 mm at P3.

In order to inspect the effect of the two differ-
ent BESs in the WRF 3DVAR on the rainfall predic-
tion, we compare experiment GBESD (Fig. 10b) with
MBESD (Fig. 10d). It is obvious that the WRF fore-
cast with background error statistics from mesoscale
model MM5 (MM5 BES) obtains more intensified
simulation precipitation than those with global error
statistics (Global BES). The prediction rainfall quan-
tities of experiment MBESD increase 25 mm at P1,
36 mm at P2, and 49 mm at P3; compared to those
of experiment GBESD. The simulated precipitations
in MBESD are closer to the observation (Fig. 9) than
GBSED except for P4. Compared with the observa-
tion, the deviations are reduced from 150 mm at P1,
61 mm at P2 and 25 mm at P3 in GBESD to 125 mm
at P1, 25 mm at P2 and 24 mm at P3 in MBESD. This
indicates that the background error statistics using the
model forecasts with similar resolution and domain via
the NMC method are beneficial to the typhoon precip-
itation prediction.

After tuning scale-lengths of the recursive filter in
the WRF 3DVAR, the simulated rainfall also increases.
Figure 10c shows that the 24-h accumulated precipita-
tions in experiment GBESL are 200 mm at P1, 243.6
mm at P2, 253.8 mm at P3 and 250 mm at P4. The
deviations from the observation are reduced from 61
mm at P2 and 25 mm at P3 in GBESD to 56 mm at P2
and 4 mm at P3 in GBESL. This result demonstrates
that the tuned scale-lengths can improve the typhoon
precipitation prediction.

Comparing the experiments MBESD (Fig. 10d)
and CNTRL (Fig. 10a), the assimilation of conven-
tional GTS observations with the WRF 3DVAR also
increases the accumulated typhoon precipitation. Fig-
ure 10d shows that the 24-h precipitations of the 4 cen-
ters in experiment MBESD are 225 mm at P1, 275.4
mm at P2, 273.6 mm at P3 and 308.3 mm at P4. Al-
though the precipitation at P4 is unreasonably large
compared to the observation, MBESD simulated the
other 3 centers reasonably well. The precipitation dif-
ferences between observation and experiment MBESD
are reduced to 125 mm at P1, 25 mm at P2 and 24 mm
at P3.

A more realistic simulation of the precipitation dis-
tribution compared to the other experiments is ob-
tained in experiment MBESM (Fig. 10e). Except for
P4, the 24-h accumulated precipitations for P1, P2,
and P3 are 250 mm, 267.7 mm, and 256 mm, respec-
tively. The deviations of the 24-h accumulated rainfall
at these 3 centers between the observation and the ex-
periment MBESM are 100 mm at P1, 32 mm at P2
and 4 mm at P3. Assimilation of Korea AWS data
with the tuned scale-lengths of the background error
statistics results in an improved skill in precipitation
simulation.

8. Summary and conclusions

Using the recently developed the WRF 3DVAR
and the WRF model, this paper studied the impact
of typhoon initial fields enhanced via scale-length tun-
ing in the recursive filter and assimilation of conven-
tional GTS data and AWS observations upon the sub-
sequent track and precipitation forecasts of typhoon
Rusa (2002). The most important results from this
study are summarized as follows:

(1) The WRF 3DVAR analyses improve typhoon
track and rainfall prediction compared with the ex-
periment without initial data assimilation. The im-
provements include enhanced typhoon initial circula-
tion, better landfall location and landfall time, and a
reasonable forecast rainfall distribution.
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Fig. 10. The 24-h accumulated precipita-
tion from 0000 UTC 31 August to 0000 UTC 1
September 2002 (contour interval: 25 mm). (a)
CNTRL; (b) GBESD; (c) GBESL; (d) MBESD;
(e) MBESM.
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(2) The mesoscale background error statistics
which have the same resolution and domain are more
suitable for the 3DVAR analyses and subsequent ty-
phoon forecast than the background error statistics
from the global model forecast (Global BES).

(3) The scale-length tunings for the 3DVAR recur-
sive filter can significantly improve the typhoon initial
structure and the subsequent typhoon track and pre-
cipitation forecasts, especially when using global back-
ground error statistics. The improvements include
strengthening the typhoon initial circulation, better
forecasting the landfall location and landfall time, and
improving the forecasted rainfall distribution (but the
results of precipitation prediction along the Korean
northeast coast seem mixed). This result indicates
that the background error statistics are a crucial com-
ponent of the 3DVAR system, allowing the 3DVAR
system to more effectively extract useful information
from the observations and to improve the typhoon sim-
ulation.

(4) Incorporation of extra AWS observations in the
assimilation procedure can result in a more realistic
simulation of the typhoon-induced inland precipitation
distribution and a better typhoon track prediction.

In this paper, we only study the horizontal compo-
nent of BES. In future work, we will pay attention to
studying the vertical and physical components of BES
as well as observation errors.
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