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ABSTRACT

Based on the physical analysis that the soil moisture and vegetation depend mainly on the precipitation
and evaporation as well as the growth, decay and consumption of vegetation a nonlinear dynamic coupled
system of soil moisture-vegetation is established. Using this model, the stabilities of the steady states of
vegetation are analyzed. This paper focuses on the research of the vegetation catastrophe point which
represents the transition between aridness and wetness to a great extent. It is shown that the catastrophe
point of steady states of vegetation depends mainly on the rainfall P and saturation value v0, which is
selected to balance the growth and decay of vegetation. In addition, when the consumption of vegetation
remains constant, the analytic solution of the vegetation equation is obtained.
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1. Introduction

We can see from El Niño events that the ocean
plays an important role in global climate variation. In
the same way as the action of the ocean on the climate
changes, the land surface also has a great effect on the
climate variation. In the research of aridness, the soil
moisture and vegetation in the land surface process
are two very important variables. Physical analysis
shows that the variations of soil moisture and vege-
tation are both concerned with the rainfall; the soil
moisture and vegetation increase and decrease simul-
taneously due to their interaction (Holdridge, 1974;
Lieth, 1975; Ma and Osamu, 2002). Eagleson (1978a–
f, 1982, 2002) presented a statistical-dynamic model
on the average water balance during the vegetation
growing season in terms of three variables: average
soil moisture, canopy cover and canopy conductance.
This model has provided insight into the physical basis
for the role played by water in the growth of vegeta-
tion communities. Rodriguez-Iturbe and his collabo-
rators (Rodriguez-Iturbe et al., 2001; Porporato et al.,
2001; Laio et al., 2001a; Laio et al., 2001b; Guswa et
al., 2002; Fernandez-Illescas et al., 2004) have deeply
studied plants in water controlled ecosystems. Zeng
and Neelin (1999, 2000), Zeng et al. (2002) have an-
alyzed the relationship between the vegetation and

rainfall and the interaction of vegetation and climate,
and they established a nonlinear model on the coupled
vegetation-atmosphere system. However, they did not
analyze the catastrophe point of vegetation which rep-
resents the climate change; they also did not discuss
the quick and slow variables in the coupled system.

In this paper, the major factors which determine
the changes of soil moisture and vegetation are an-
alyzed, and a nonlinear dynamic system on the cou-
pled soil moisture and vegetation is established. Using
this system, the catastrophe point of vegetation and
the evolutions of the soil moisture and vegetation are
studied. It is shown that the catastrophe point of veg-
etation represents the transition between the climatic
aridness and wetness to a great extent.

2. Physical analysis and mathematical model
of the variation of soil moisture

Assuming that the soil moisture is m and disre-
garding the runoff and irrigation, the variation of m
with time is dependent mainly on the precipitation
rate P and evaporation rate E (Zeng et al., 1994),
namely,

dm

dt
= P − E . (1)
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The research by Walker and Rowntree (1977)
shows that the soil moisture and rainfall are variant
simultaneously. Yeh et al. (1984) simulated the effect
of great increases in soil moisture on the climate varia-
tion by a simple short-term climatic model and showed
that the increases in the precipitation and evaporation
are bound to follow the increases in the soil moisture.

The above analysis implies that P and E are di-
rectly proportional to m, but as a whole in the arid
and semi-arid regions of the northern part of China,
the precipitation times are far shorter than those of
evaporation. So we assume that

P − E ∝ −m . (2)

In fact the variation of soil moisture depends also
on the vegetation cover v. Generally speaking, the
higher the precipitation rate, the greater the vegeta-
tion cover and the lower the evaporation rate. So the
following assumption can be made

P − E ∝ v . (3)

Thus, by means of Eqs. (2) and (3), Eq. (1) may be
rewritten as

dm

dt
= −a1m + b1v , (4)

where a1 > 0 and b1 > 0, and a1 is known as the linear
decaying rate of the soil moisture, while b1 represents
the coupled action of vegetation on the variation of
soil moisture.

3. Physical analysis and mathematical model
of the variation of vegetation cover

The variation of vegetation cover v with time de-
pends mainly on the growth rate G, decay rate D and
consumption rate C (Zeng et al., 1994), namely,

dv

dt
= G−D − C . (5)

Firstly, similar to the fact that increases in the pre-
cipitation rate and evaporation rate are bound to fol-
low increases in the soil moisture, for a given air tem-
perature and sunlight amount, G and D both increase
with increases in vegetation cover v. However, be-
cause of natural factors (sunlight, rodents and so on)
v cannot increase infinitely and reaches only a satu-
rated value after which the vegetation amount decays.
Therefore, we assume that

G−D ∝ v

(
1− v

v0

)
(6)

which implies that G 6 D at v > v0.
Secondly, G−D is of great importance to the soil

moisture m. Generally speaking, the greater the soil

moisture, the greater the growth rate and the smaller
the decay rate of vegetation. So we have

G−D ∝ m . (7)

As for the consumption of vegetation, it includes
artificial felling and grazing. Usually, the consump-
tion rate depends indirectly on the vegetation cover.
However, there is an approximate threshold vc for veg-
etation. The consumption is smaller at v < vc and
larger at v > vc. We take the form for C suggested by
Ludwig et al. (1978)

C =
bv2

a2 + v2
, (8)

where a and b are positive constants which have deter-
minate meanings. The variations of the consumption
rate with v are illustrated in Fig. 1. We see from Fig.
1 and Eq. (8) that

vc =
a√
3
(it satisfies

∂2C

∂v2
= 0) ,

b = lim
v→∞

C .

By making use of Eqs. (6), (7) and (8), Eq. (5) may
be written as

dv

dt
= a2v

(
1− v

v0

)
+ b2m−

bv2

a2 + v2
, (9)

where a2 > 0 and b2 > 0, and a2 represents the linear
growth rate of vegetation, while b2 denotes the coupled
action of soil moisture on the variation of vegetation.

4. A nonlinear coupled soil moisture-vegetation
model

Combining Eqs. (4) and (9), a simple nonlinear
coupled soil moisture-vegetation model is given by

dm

dt
= −a1m + b1v , (10a)

v
c

v

b

 

 

C

Fig. 1. The variation of vegetation consumption rate with
the vegetation over.
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dv

dt
= a2v

(
1− v

v0

)
+ b2m−

bv2

a2 + v2
. (10b)

We see from Eq. (10) that m and v increase or decrease
simultaneously by their interaction.

The research on nonlinear dynamic systems is di-
vided into two parts. In the first part, the quick or
slow variations of m and v are studied, and focus is
laid on the catastrophe behavior of the dynamic sys-
tem. In the second part, the research focuses on the
evolutions of soil moisture and vegetation under cer-
tain conditions.

5. The catastrophe point in the nonlinear
coupled system

We can see from Eq. (10) that there exists a damp-
ing to changes in m. Hence, comparatively speak-
ing, m is called the fast variable and v is called the
slow variable which dominates the behavior of system.
For this reason, we introduce the small parameter ε
(0 < ε� 1) and rewrite Eq. (10) as

ε
dm

dt
= −a1m + b1v , (11a)

dv

dt
= a2v

(
1− v

v0

)
+ b2m−

bv2

a2 + v2
. (11b)

Setting ε = 0, one has

m =
b1

a1
v . (12)

Substituting Eq. (12) into Eq. (11b) yields

dv

dt
= a2v

(
1− v

v0

)
+

b1b2

a1
v − bv2

a2 + v2
(13)

which is the evolution equation for the slow variable
v. In Eq. (13) the first term on the right hand repre-
sents the net effect between the growth and decay of
vegetation cover, where a2 is the linear growth rate in
v, and it mainly depends on the precipitation P . The
second term represents the coupled effect between the
soil moisture and vegetation cover, and it is also re-
lated to the precipitation. The third term represents
the consumption rate of vegetation cover.

Introducing the following non-dimensional quanti-
ties

v∗ =
v

a
, p =

aa2

b
,

q =
ab1b2

a1b
, v∗0 =

v0

a
,

t∗ =
bt

a
, (14)

then Eq. (13) can be rewritten as
dv

dt
= pv

(
1− v

v0

)
+ qv − v2

1 + v2
, (15)

where the star symbol is omitted. In Eq. (15), p is
a non-dimensional precipitation and q is also related
to the precipitation, which denotes the coupling coeffi-
cient of soil moisture and vegetation cover. The model
(15) is similar to the results given by Murray (2000)
when q = 0.

Suppose that
q = αp ,

g(v) = p

(
1− v

v0

)
+ q = p

(
1 + α− v

v0

)
,

h(v) =
v2

1 + v2
, (16)

where α is a coefficient, then Eq. (15) may be rewritten
as

dv

dt
= v[g(v)− h(v)] . (17)

The steady states (equilibria) of vegetation satisfy
v = 0 (trivial) or

g(v) = h(v) (18)
which is the set of intersections of the straight line g(v)
and the curve h(v).

The changes of the straight line g(v) and the curve
h(v) with v are shown in Fig. 2. The intersection
points of the straight line g(v) with the abscissa and
the ordinate are (1 + α)v0 and (1 + α)p, respectively.

Eq. (18) can be reduced to a cubic algebraic equa-
tion

v3−(1+α)v0v
2+

(
1+

v0

p

)
v−(1+α)v0 =0 . (19)

In Fig. 2, for the straight line (1), there is only
one intersection point P (stable) with the curve h(v),
which implies that there is only one real root in Eq.
(19). For the straight line (2), there are three inter-
section points Q (stable), R (unstable) and S (stable)
with the curve h(v), with abscissa v1, v2 and v3, re-
spectively, which implies that there are three real roots
in Eq. (19). For the straight line (3), there are two
intersection points U (stable) and T (stable), which
coincid with Q and R. For the straight line (4), there
is only one intersection point V with the curve h(v).
Therefore, the steady states of vegetation cover jump
from one to three as the parameter p changes. This
is just a catastrophe of the vegetation cover; T is the
catastrophe point in which not only g(v) and h(v) in-
tersect, but also g(v) is the tangent line of h(v) at this
point. It satisfies

g(v) = h(v),
∂g

∂v
=

∂h

∂v
, (20)
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Fig. 2. Solutions for the steady states of the vegetation
cover represented by g(v) = h(v) [Eq. (18)] for straight line
g(v) and curve h(v). For straight lines are given (1)–(4) for
different values of the parameters. the intersection points
are labeled as P, Q, R, S, T, U , and V .
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Fig. 3. The cusp catastrophe of the nonlinear coupled
system represented by Eq. (22).

namely,

p

(
1 + α− v

v0

)
=

v

1 + v2
,− p

v0
=

1− v2

(1 + v2)2
. (21)

Hence the parametric equations of the catastrophe
point are given by

(1 + α)p =
2v3

(1 + v2)2
, αv0 =

2v3

v2 − 1
. (22)

In the parameter plane (v0, p), Eq. (22) represents
two critical curves which divide the plane into two re-
gions where there is one or three steady states. The
two curves meet at a cusp where p and v0 no longer
vary with v, that is,

dp

dv
=

dv0

dv
= 0

at

v =
√

3

and

(v0, p) = (3
√

3,
3
√

3
8

)

is the location of catastrophe point T which is shown
in Fig. 3. This is known as a cusp catastrophe.

In Fig. 3, one steady state lies below the curve TT ′,
where v is smaller, just as point P in Fig. 2, which cor-
responds to a state of aridness; one steady state lies
above the curve TT ′′, where v is larger, just as point
V in Fig. 2, which corresponds to a state of wetness.
Thus, along the arrowed path in Fig. 3, there is a jump
from the arid state up to the wet state as p increases;
otherwise, there is a jump from the wet state down to
the arid state as p decreases.

6. The analytic solution of the vegetation equa-
tion for a constant consumption rate

In this section, if we consider a constant consump-
tion rate, then Eq. (10) can be rewritten as

dm

dt
= −a1m + b1v , (23a)

dv

dt
= a2v

(
1− v

v0

)
+ b2m− C , (23b)

where the consumption rate of vegetation is the con-
stant C. By elimination, we obtain

d2v

dt2
=

[
(a2 − a1)−

2a2

v0
v

]
dv

dt

+ (a1a2 + b1b2)v −
a1a2

v0
v2 − a1C . (24)

In Eq. (24), dv/dt and d2v/dt2 can be seen as the
velocity and acceleration of vegetation growth, respec-
tively. But, in view of the differential equation, the
term including dv/dt represents a damping. Disre-
garding the damping term, then Eq. (24) reduces to

d2v

dt2
= (a1a2 + b1b2)v −

a1a2

v0
v2 − a1C . (25)

Multiplying Eq. (25) by dv/dt and integrating once
yields(

dv

dt

)2

=− a1a2

3v0

[
v3 − 3v0(a1a2 + b1b2)

a1a2
v2

+
6v0

a2
Cv + C1

]
, (26)

where C1 is an integration constant.
Assuming that the cubic polynomial of v in the

square bracket on the right hand of Eq. (26) has three
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real zeroes, v(1), v(2) and v(3)(v(1) > v(2) > v(3)), then
the solution of Eq. (26) is (Liu and Liu, 2000)

v =v(2) + (v(1) − v(2))

× cn2

√
a1a2(v(1) − v(3))

12v0
t, k

 , (27)

where cn(x, k) is the Jacobi elliptic cosine function
(Liu and Liu, 2000) with the modulus k defined as

k =

√
v(1) − v(2)

v(1) − v(3)
(28)

Eq. (27) means that when the consumption rate of
vegetation is a constant C, then the vegetation cover,
whose values imply the state of climatic aridness or
wetness, is a periodic variation, whose period depends
on v0, a1, a2 and so on.

7. Conclusion and discussion

In a nonlinear coupled soil moisture-vegetation sys-
tem, we have demonstrated the effect of precipita-
tion on climate catastrophe points which represent the
transition between the arid state the aridness and the
wet state to a great extent. The results show that
the catastrophe points of steady states of vegetation
are determined mainly by the rainfall P and saturated
value v0, which keeps the balance between the growth
and decay of vegetation. In addition, if the consump-
tion rate of vegetation remains constant, then a peri-
odic solution which represents the climate change with
a certain period is obtained for the vegetation cover.

In fact, similar to other nonlinear systems ( Zeng
and Neelin, 1999, 2000; Zeng et al., 2002; Eagleson,
1978a–f, 1982; Rodrguez-Iturbe, 2001; Guswa et al.,
2002; Fernandez-Illescas and Rodriguez-Iturbe, 2004)
in which the vegetation cover is also included, this non-
linear coupled soil moisture-vegetation-precipitation
model has demonstrated the role of the vegetation
feedback on climate variability. A positive vegetation
feedback, which implies that the rainfall is heavy, will
lead to a humid or semi-humid climate state; while a
negative vegetation feedback, which denotes that the
rainfall is scarce, will result in an arid or semi-arid cli-
mate state. And the catastrophe point between thses
two climate states can happen with an increasing or
decreasing rainfall. As a result, a good climate model
must take the vegetation into account. Of course, the
variation of the vegetation with time should be accu-
rate, though the present observational evidence is not
sufficient to give us a more precise constraint on the
vegetation. In addition, in order to investigate the in-
fluence of different factors on the vegetation, the non-

linear equation on the vegetation should also be solved
more accurately.

Our model used in this study is simple, especially
the physical analysis and model of the vegetation. So
the interaction between vegetation and climate as well
as a good climate model with the vegetation need to
be investigated further.
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