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ABSTRACT

This study is aimed at the development of a statistical model for forecasting heavy rain in South
Korea. For the 3-hour weather forecast system, the 10 km×10 km area-mean amount of rainfall at 6 stations
(Seoul, Daejeon, Gangreung, Gwangju, Busan, and Jeju) in South Korea are used. And the corresponding
45 synoptic factors generated by the numerical model are used as potential predictors. Four statistical
forecast models (linear regression model, logistic regression model, neural network model and decision tree
model) for the occurrence of heavy rain are based on the model output statistics (MOS) method. They are
separately estimated by the same training data. The thresholds are considered to forecast the occurrence
of heavy rain because the distribution of estimated values that are generated by each model is too skewed.
The results of four models are compared via Heidke skill scores. As a result, the logistic regression model
is recommended.
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1. Introduction

In recent decades, extreme weather events seem to
be growing in frequency and risk due to water-related
disasters. According to the World Meteorological Or-
ganization report (ISDR and WMO, 2004) on World
Water Day, 22 March 2004, the economic losses caused
by water-related disasters, including floods, droughts
and tropical cyclones, are on an increasing trend as
follows: the yearly mean in the 1970s was about 131
billion US dollars, 204 billion dollars in the 1980s, and
629 billion dollars in the 1990s. Almost two billion
people were affected by natural disasters in the last
decade of the 20th century, 86% of them by floods and
droughts.

In South Korea, economic losses caused by natu-
ral disasters are also increasing as follows: the yearly

mean in the 1970s was about 0.135 billion dollars,
0.363 billion dollars in the 1980s, and 0.530 billion
dollars in 1990s. Table 1 shows that yearly losses
caused by water-related disasters have an increasing
trend during the last 10 years (1993–2002). And the
mean was 0.24 percent GDP. In 2002, economic loss
caused by the super typhoon Rusa was over 5 billion
dollars. At that time, a new record for daily maxi-
mum amount of rainfall, 870.5 mm d−1, was made in
Gangneung city. In 2003, economic loss caused by the
typhoon Maemi was over 4 billion dollars. Table 2
shows that typhoons and heavy rainfall in the summer
season are the main disastrous weather events with a
large loss of life and property.

The improvement of the prediction of heavy rain-
fall is very important in order to reduce its potential
for damage. There are four types of forecasts: (1) the

Table 1. Yearly losses caused by water-related disasters in South Korea (KMA∗).

Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

Property damage (million $) 216 164 614 478 182 1343 1057 548 1049 5096

∗KMA: Korea Meterological Administration.

*E-mail: ktsohn@pusan.ac.kr
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Table 2. Sources of property damage caused by water-related disasters in South Korea from 1999 to 2002 (KMA).

Source Typhoons Heavy rainfall Heavy rainfall and typhoons Heavy snow Storms Other

Percent(%) 46.3 30.7 14.7 7.6 0.3 0.4

dichotomous forecast (whether we will have a heavy
rain or not), (2) the probability of heavy rain (what is
the probability that we will have heavy rain?), (3) the
probabilities of classified precipitation (what are the
probabilities that the amount of rainfall will belong to
the given categories?), and (4) the quantitative pre-
cipitation forecast (QPF). This study focuses on the
dichotomous forecast of the occurrence of heavy rain.
That is, forecasts have binary values: whether we will
have heavy rain or not.

Four statistical models (linear regression model, lo-
gistic regression model, neural network model and de-
cision tree model) are separately applied to predict the
occurrence of heavy rain. And the statistical model-
ing is performed via the model output statistics (MOS)
method. The MOS method, proposed by Glahn and
Lowry (1972), is a physical/statistical modeling tech-
nique for finding the statistical relationship between
numerical model outputs and observations. Many au-
thors have considered the MOS method for the pre-
diction of temperature and precipitation (Lemcke and
Kruizinga, 1988; Ross, 1989; Kok and Kruizinga, 1992;
Sohn and Kim, 2003).

It is well known that the logistic regression model
is useful to the binary response (Myers et al., 2002).
As a decision-making problem, the determination of
the threshold is required for generating forecasts.
That is, a forecaster says that heavy rain will occur
when the estimated value is greater than the thresh-
old which is determined based on the distribution
of estimated probabilities of heavy rain. The 2 × 2
(observations×forecasts) tables and receiver operating
characteristic (ROC) curves are used in order to de-
termine the threshold. The ROC curve is useful to
dichotomous decision-making (Raubertas et al., 1994;
DeNeef and Kent, 1993).

And, the neural network model and the decision
tree model are also considered because of their non-
linearity. Kim et al. (2001) applied a neural network
to the long-range forecast of precipitation in the Seoul
area. The classification and regression tree (CART:
Breiman et al., 1984), is a tree-based method for the
classification and prediction. The CART partitions
the feature space into a set of rectangles and fits a
constant (for instance, mean) in each one. The CART
algorithm consists of the selection of splits, the deter-
mination of terminal nodes and the estimation rule.

The dataset and potential predictors for our study
are presented in section 2. And four models are
separately estimated by the same training data and
checked by the same validation data in section 3. For
our study, the statistical package called SAS, specially
SAS E-miner, is used to estimate the parameters of
the models and to generate the ROC curves and the
frequency tables for training data and validation data.
The comparison of three models is presented via the
Heidke skill scores (HSS, Heidke, 1926) in section 4.
By eliminating the effect of a random forecast, the HSS
can be a useful measure to compare forecast models
that generate categorical forecasts.

2. Data

The 3-hour weather forecast system is now running
at the KMA. For our study, 3-hour-interval data dur-
ing 2000 to 2003 at 6 stations (Seoul, Daejeon, Gan-
greung, Gwangju, Busan, Jeju) in South Korea are
used. The observations are 10 km×10 km area-mean
amounts of rainfall. The predictand, obtained from
observation, has a binary response (whether the heavy
rain occurred or not). In the KMA, it is defined that
heavy rain occurs when the rainfall is over 80 mm d−1

or over 10 mm h−1. It is defined by being over 20 mm
in 3 hours for this study on the 3-hour weather forecast
system.

The 45 synoptic factors at 6 stations are used as
potential predictors. These factors include the wind
direction and speed, relative vorticity, humidity, ther-
mal advection, potential precipitation and tempera-
tures. They can be generated by the numerical model,
called RDAPS (Regional Data Assimilation and Pre-
diction) used in the KMA. And some previous obser-
vations are added. Table 3 summarizes them. Cho
and Choi (1995) used these predictors for the proba-
bility of precipitation and Sohn and Kim (2003) also
used these factors for modeling a statistical prediction
of precipitation in the Seoul area.

According to Cho and Choi (1995), the climatic
characteristics of the warm season (April to October)
are different from those of the cold season (November
to March) in Korea. So we consider only the warm
season. The model training data period is the warm
season during 2000 to 2002. And the model validation
data period is the warm season in 2003. There are
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Table 3. Potential Predictors.

Symbol Predictors

E850, E700, E500 East wind speed at 850 hPa, 700 hPa and 500 hPa

S850, SE700, S500 South wind speed at 850 hPa, 700 hPa and 500 hPa

NW850, NW700, NW500 Northwest wind speed at 850 hPa, 700 hPa and 500 hPa

NE850, NE700, NE500 Northeast wind speed at 850 hPa, 700 hPa and 500 hPa

VV850, VV700, VV500 Wind speed at 850 hPa, 700 hPa and 500 hPa

VOR850, VOR700, VOR500 Relative vorticity at 850 hPa, 700 hPa and 500 hPa

QAD850, QAD700 Advection of specific humidity at 850 hPa and 700 hPa

Q84 Difference between specific humidity at 850 hPa and 700 hPa

Q74 Difference between specific humidity at 700 hPa and 700 hPa

TAD850, TAD700 Thermal advection at 850 hPa and 700 hPa

RH850, RH700, RH500 RH at 850 hPa, 700 hPa and 500 hPa

CCL Convective condensation level

DWL Depth of wet level

PCWT Potential precipitation

CTOP Level of cloud top

CBAS Level of cloud base ’

BBX1 Black box index 1

BBX2 Black box index 2

SSI Showalt stability index

KYID KY index

KIDX K index

LR87 Lapse rate between 850 hPa and 700 hPa

LR85 Lapse rate between 850 hPa and 500 hPa

T850, T700, T500 Temperature at 850 hPa, 700 hPa and 500 hPa

ET850, ET700 Equivalent potential temperature at 850 hPa and 700 hPa

ET87 Difference between equivalent potential temperature at 850 hPa and 700 hPa

Rain3 Drain63 Observed rainfall amount before 3 hours

Drain63 Rain3–Rain6

17928 cases in the training data and 5862 cases in the
validation data.

3. Statistical prediction of heavy rain

3.1 Logistic regression model

It is well known that the logistic regression model
is useful in the binary response case (e.g., “heavy
rain”=1, “no heavy rain”=0). The logistic regres-
sion model as a generalized linear model (Myers et al.,
2002) is defined by the following three components.

(1) The response is a Bernoulli random variable
Y where Y = 0 if no heavy rain, Y = 1 if heavy
rain. Let p be the probability of heavy rian. That
is p = P (Y = 1 |x) where x is a vector of observed
predictors.

(2) The linear predictor is x′β = β0 +β1x1 + · · ·+
βkxk where β = (β0, β1, . . . , βk)′.

(3) The link function is a logit link which is de-
fined by logit(p)=log[p/(1 − p)] = x′β. And then
E(Y ) = p = [1 + exp(−x′β)]−1 has an S-shaped func-

tion like Fig. 1.
The procedure of the logistic regression modeling

is as follows.
(1) Variable selection step: The optimal signifi-

cant predictors are selected by the stepwise regression
method using the training data.

Fig. 1. Shape of the logistic function.
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Fig. 2. Histogram of p, the probability of heavy rain.

Fig. 3. Receiver Operating Characteristic (ROC) curve.

Table 4. 2× 2 table.

Forecast

Observation No heavy rain(0) Heavy rain(1)

No heavy rain(0) A B

Heavy rain(1) C D

Table 5. 2×2 table for the logistic regression model train-
ing.

Forecast

Observation No heavy rain(0) Heavy rain(1)

No heavy rain(17809 cases) 16046(90.10%) 1763(9.90%)

Heavy rain(119 cases) 17(14.29%) 102(85.71%)

Table 6. 2×2 table for the logistic regression model val-
idation.

Forecast

Observation No heavy rain(0) Heavy rain(1)

No heavy rain(5775 cases) 5347(92.59%) 428(7.41%)

Heavy rain(87 cases) 16(18.39%) 71(81.61%)

(2) Estimation step: Parameters in the final logis-
tic regression model are estimated.

(3) Determination of threshold: With the distribu-
tion of p (the probability of heavy rain), the threshold
of p is chosen as the criterion of the occurrence of heavy
rain.

(4) Model validation step: Using the estimated
equation and threshold, the model validation is per-
formed and the results of the model validation are
compared to those of the model training.

Using the above procedure, the estimated logistic
regression model is given by

p̂ =
1

1 + exp(−x′β̂)
, (1)

where

x′β =61.1749 + 0.00171× PCWT + 0.00243× rain3

+ 0.0605 × S500− 0.2844 × T500

+ 0.00431×VOR700 .

A threshold T is needed in order to forecast
whether the heavy rain will happen or not. The
threshold should be determined based on the distribu-
tion of p̂. That is, the weather forecast will be “Heavy
rain will occur” if the estimated value of the predic-
tand is greater than or equal to T . Since the distribu-
tion of p is very right-skewed like Fig. 2, we consider
the 2 × 2 table (Table 4) and the Receiver Operating
Characteristic (ROC) curve.

The ROC curve, varying the value of threshold
from 0 to 1, is a plot of (1 − S1, S2) where S1 =
A/(A + B) and S2 = D/(C + D). That is, (1− S1) is
the misclassification rate when the observation is 0 (no
heavy rain), and S2 is the correction rate when the ob-
servation is 1 (heavy rain). Here, S1 means specificity
and S2 means sensitivity

In Fig. 3, the ROC curve of the estimated logistic
regression model, there is one change point nearby the
point (0.1, 0.6). And then we decided that the thresh-
old T is determined to be 0.01 subject to the following
condition:

1− S1 = P (Forecast = 1|Observation) = 0 ≈ 0.1 .

(2)

That is, the misclassification rate is about 0.1 when
the observation is equal to 0. By varying the value of
threshold T, 2× 2 frequency tables are generated until
the value of (1 − S1) is equal to 0.1. In this case, the
value of T is determined by 0.011. Table 5 and Ta-
ble 6 show the results of model training and validation
based on the determined value of T . It is a reasonable
result that the components of the two tables are simi-
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Fig. 4. Structure of the neural network.

Fig. 5. ROC curves for different numbers of nodes.

Table 7. 2×2 table for the neural network model training.

Forecast

Observation No heavy rain(0) Heavy rain(1)

No heavy rain(17809 cases) 16123(90.53%) 1686(9.47%)

Heavy rain(119 cases) 4(3.36%) 115(96.64%)

Table 8. 2×2 table for the neural network model valida-
tion.

Forecast

Observation No heavy rain(0) Heavy rain(1)

No heavy rain (5775 cases) 5403(93.56%) 372(6.44%)

Heavy rain(87 cases) 45(51.72%) 42(48.28%)

lar to each other.

3.2 Neural network model

A neural network model is applied as a supervised
statistical learning with many components: 47 inputs,

one hidden layer with 4 nodes, and one output (Fig.
4). A linear basis function is used as a combination
function and a logistic function is used as an activation
function. Optimal weights are estimated via the back
propagation algorithm (Haykin, 1999). The ROC can
be used as a criterion of model selection. It is reason-
able that the model which has the smallest values of
(1−S1) and the largest values of Sensitivity may be the
best model. According to the definition of the ROC
curve, we consider the neural network with 4 nodes in
the hidden layer, which has the greatest ROC curve in
Fig. 5.

The distribution of the estimated predictand p̂ is
more right-skewed than that of the logistic regression
model. In the ROC curve of the estimated neural net-
work model, there is also one change point nearby the
point (0.1, 0.9). And then we decided that the thresh-
old T is determined to be 0.00165 subject to the same
condition: 1−S1 ≈ 0.1. Table 7 shows that the results
of model training based on the determined threshold
are very good. Table 8 however says that the results
of the model validation are not good.

3.3 Decision tree model

The decision tree, called the classification and re-
gression tree (CART), is the tree-based method pro-
posed by Breiman et al. (1984). The CART parti-
tions the feature space into a set of rectangles and
fits a constant (for instance, mean) in each one. Let
{(xi, yi)}N

i=1 be the training data where xi is the vector
of predictors at the ith observation and yi is the target
value at the same observation. With the training data,
the CART constructs a binary tree by proceeding as
follows.

(1) Selection of splits: Let a node t denote a sub-
set of the current tree T . Let N(t) denote the total
number of cases in node t.

ȳ(t) =
1

N(t)

∑
xi∈t

yi , E(t) =
1

N(t)

∑
xi∈t

[yi − ȳ(t)]2 ,

and

E(T ) =
∑
t∈T

E(t) . (3)

Given any set of splits S of a current node t in T ,
the best split s∗ is that split in s that most decrease
E(T ). Suppose that for any split s of node t into tL (a
new node to the left of t) and tR (another new node
to the right of t). The best split s∗ is taken to be the
particular split for which we have.

(node t into tL and tR) of a current node t in T ,
the best split s∗ is taken to be the particular one for
which we have

∆E(s∗, t) = max
s∈S

∆E(s, t) , (4)
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Table 9. 2×2 table for the CART model training.

Forecast

Observation No heavy rain(0) Heavy rain(1)

No heavy rain(17809 cases) 15467(86.85%) 2342(13.15%)

Heavy rain(119 cases) 10(8.40%) 109(91.60%)

Table 10. 2×2 table for the CART model validation.

Forecast

Observation No heavy rain(0) Heavy rain(1)

No heavy rain(5775 cases) 5075(87.88%) 700(12.12%)

Heavy rain(87 cases) 8(9.20%) 79(90.80%)

where

∆E(s, t) = E(T )− E(tL)− E(tR) .

(2) Determination of a terminal node: A
node t becomes a terminal node if the condition
maxs∈S∆E(s, t) < β is satisfied where β is a pre-
scribed threshold.

The distribution of p and the ROC curve are very
similar to those of the logistic regression model. The
change point of the ROC curve is nearby the point
(0.1, 0.55). The threshold is also determined to be

0.01 subject to 1 − S1 ≈ 0.1. Table 9 and Table 10
show the results of model training and validation re-
spectively. Figure 6 is the final tree which consists of
Rain3, DWL, PCWT, S850, E850 and RH850.

3.4 Multiple linear regression model

The multiple linear regression model is also ap-
plied. The estimated equation is given by
p̂=0.61074+0.00039113×rain3+0.00708×KYID
+0.00009688×VOR850+0.00010619×drain63
+8.907452×10−7×BBX1−0.00036927×E700
−1.17932×10−7×BBX2−0.00010282×RH850
+0.00007811×VOR700−0.00001967×QAd700
−0.00243×T500−0.00002900×TAd850
−0.00001702×QAd850+0.00029288×NE850
−0.00024344×RH700+0.00001071×PCWT
+0.00228×SSI−0.00000694×CBAS
−0.00037976×VV500−0.00047052×VV850
+0.00027782×KIDX+0.00044022×ET87 .

The distribution of the estimated value p̂ is also
right-skewed. In a similar way, we decide that the
threshold T is 0.0202 subject to the same condition:
1−S1 ≈ 0.1. Table 11 and Table 12 show the results of
the model training and model validation respectively.

Fig. 6. The final CART model.
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Table 11. 2×2 table for the multiple linear regression
model training.

Forecast

Observation No heavy rain(0) Heavy rain(1)

No heavy rain(17809 cases) 16027(89.99%) 1782(10.01%)

Heavy rain(119 cases) 19(15.97%) 100(84.03%)

Table 12. 2×2 table for the multiple linear regression
model validation.

Forecast

Observation No heavy rain(0) Heavy rain(1)

No heavy rain(5775 cases) 4978(86.20%) 797(13.80%)

Heavy rain(87 cases) 8(9.20%) 79(90.80%)

Table 13. Comparison by Heidke skill score.

Model Training Validation

Logistic Regression 0.09149 0.22267

Neurl Network 0.10869 0.14674

CART 0.07309 0.16002

Linear Regression 0.08857 0.14087

4. Discussion

The “no heavy rain” cases (17 809 cases) comprise
99.3% of the total cases (17 928 cases) in Table 4. This
means that the correction rate is 99.3% even if a fore-
caster always says we will not have heavy rain. In
this case, the correction rate is not important. There-
fore any forecast model should be compared against
a reference forecast which is easier to prepare than
the model forecast. The Heidke skill score (HSS) is
useful to compare forecast models that generate cate-
gorical forecasts. The HSS uses the random forecasts
as its reference and removes the effect of the random
forecasts. The random forecast, as a kind of reference
forecast, is a random variable with the same statistical
properties as the predictand. The HSS of Table 2 is
defined by

HSS =
A + D −R

A + B + C + D −R
, (5)

where

R =
(A + B)(A + C) + (B + D)(C + D)

A + B + C + D −R
.

If you want to know about skill scores in detail, see
Von Storch and Zwiers (1999).

The comparison of the four models via the HSS
is summarized in Table 13. Although the neural net-
work model has the best results for the training case,

the logistic regression model has the best results for
the validation case. Based on the 2×2 tables of model
training and validation and the HSS table, the logistic
regression model is recommended. We also checked
another logistic regression model which includes the
main effects and interaction effects of the predictors.
However its results are not good (its HSS is 0.08801
for the model training, and 0.16664 for the model val-
idation). For the neural network models, the analysis
with only the variables used for the logistic regression
model (PCWT, Rain3, S500, T500, VOR700) and the
analysis with only the variables used for the CART
model (Rain3, DWL, PCWT, S850, E850, RH850) are
also performed. For the first one, the HSS is 0.10193
for the model training case, and 0.15064 for the model
validation case. For the second one, the HSS is 0.09486
for the model training case, and 0.18369 for the model
validation case.

As further works, these statistical models will be
applied to the local prediction of climate factors like
rainfall, heavy rainfall and snowfall in order to find the
optimal forecast model.
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