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ABSTRACT

The paper investigates the ability to retrieve the true soil moisture profile by assimilating near-surface
soil moisture into a soil moisture model with an ensemble Kalman filter (EnKF) assimilation scheme,
including the effect of ensemble size, update interval and nonlinearities in the profile retrieval, the required
time for full retrieval of the soil moisture profiles, and the possible influence of the depth of the soil
moisture observation. These questions are addressed by a desktop study using synthetic data. The “true”
soil moisture profiles are generated from the soil moisture model under the boundary condition of 0.5 cm
d−1 evaporation. To test the assimilation schemes, the model is initialized with a poor initial guess of
the soil moisture profile, and different ensemble sizes are tested showing that an ensemble of 40 members
is enough to represent the covariance of the model forecasts. Also compared are the results with those
from the direct insertion assimilation scheme, showing that the EnKF is superior to the direct insertion
assimilation scheme, for hourly observations, with retrieval of the soil moisture profile being achieved in
16 h as compared to 12 days or more. For daily observations, the true soil moisture profile is achieved in
about 15 days with the EnKF, but it is impossible to approximate the true moisture within 18 days by
using direct insertion. It is also found that observation depth does not have a significant effect on profile
retrieval time for the EnKF. The nonlinearities have some negative influence on the optimal estimates of
soil moisture profile but not very seriously.
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1. Introduction

The role of soil moisture in the root zone is widely
recognized as a key parameter in meteorology, hy-
drology and agriculture (Yeh et al., 1984; Koster et
al., 2000). Adequate knowledge of the soil moisture
is necessary to the understanding and prediction of
the reciprocal influences between climate, weather and
land surface process (Ma et al., 2000; Guo and Wang,
2003). Soil moisture can be obtained from point mea-
surements, hydrological models and remote sensing
techniques, with each having its own advantages and
disadvantages (Schmugge et al., 1980; Zhang et al.,

2004). The point measurement method is accurate
but the representativeness of the spatial distribution is
very poor due to the large spatial and temporal vari-
ability of soil moisture. A hydrological model may
calculate the spatial distribution and temporal evo-
lution of soil moisture but the results generally devi-
ate from the true soil moisture distribution with the
time integrations because of uncertainties in the forc-
ing atmospheric data, the nonlinear nature of land-
atmosphere interactions, and the high inhomogeniety
of soil properties, vegetation and precipitation. As for
remote sensing methods, microwave techniques have
been widely used to infer soil moisture because the
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atmosphere and clouds are relatively transparent to
radiation in the low microwave frequencies. In re-
cent years, some different bands of passive microwave
radiometry have been put into orbit (for example,
SSM/I, TMI and AMSR-E) and can frequently pro-
vide information on the soil moisture over a large scale.
One drawback of microwave sensors is that they only
provide soil moisture information in the top few cen-
timeters (Njoku and Entekhabi, 1995). As we know,
the top soil moisture changes very quickly because of
evaporation and rainfall while the land-atmosphere in-
teraction processes generally depend on the soil mois-
ture profile to depths considerably larger than a few
centimeters. How to fully use the information from
the different channels and give accurate estimates of
the soil moisture profile is a difficult inverse problem.
Modern data assimilation theory provides a possible
solution for the problems by merging the above three
methods (Errico, 1999; Errico et al., 2000). Different
assimilation algorithms have been used for retrieval of
the soil moisture profile based on the near-surface soil
moisture observations (Houser et al., 1998; Reichle et
al., 2001; Crow and Wood, 2003). Among them, En-
tekhabi et al. (1994) first used the extended Kalman
filter (EKF) technique to retrieve a 1-m soil moisture
profile with simulated data and compared the results
with both the true profile and those from the open
loop. Walker et al. (2001) compared two assimilation
schemes, viz. the direct insertion and EKF, in the
context of retrieval rates. For nonlinear dynamics, the
EKF requires the linearizations of the models and mea-
surement operators, which may result in the failure of
the EKF scheme. The ensemble Kalman filter (EnKF)
(Evensen, 1994) is an alternative to the EKF and can
directly calculate the state error covariance matrix by
propagating an ensemble of states from which the re-
quired covariance information is obtained at the time
of the update. Thus, it relatively easy to cope with
models and measurement equations including thresh-
olds and other nonlinearities. Because of these, it has
been widely applied to oceanographic and meteorologi-
cal problems (Houtekamer and Mitchel, 1998). On the
contrary, in the field of land process, only a few studies
have been carried out. Because the land surface mod-
els typically have different characteristics (e.g. dissipa-
tive in nature) with the atmospheric movements, we
need to further investigate the soil moisture ensem-
ble Kalman filtering problem. Reichle et al. (2002a)
first applied the EnKF to the retrieval problem of
soil moisture distributions by assimilating synthetic
surface brightness temperatures into a land surface
model. Later, Crow and Wood (2003) extended the
EnKF methodology to a real-data case based on the
electronically scanned thinned array radiometer (ES-
TAR) measurements during the 1997 Southern Great
Plains Hydrology Experiment (SGP97).

To assess the performance of the EKF and EnKF
for soil moisture estimation, Reichle et al. (2002b)
conducted a twin experiment with their results show-
ing that the EnKF is a robust and promising approach
due to its flexibility in covariance modeling, so the
EnKF is slightly superior to the EKF in the context of
performance. In terms of accuracy, the ensemble filter
may be more accurate than the EKF since covariances
are calculated by propagating model states with a fully
nonlinear model rather than using the assumption of
linearity (Hamill and Whitaker, 2001). After compar-
ing the performance of the EnKF to a weak-constraint
variational algorithm (a kind of optimal smoother),
Reichle et al. (2002a) indicated that the EnKF is a
flexible and robust data assimilation option with no
need to compute adjoint models or derivatives that
can handle a wide range of model errors, but it is too
early to make a definitive comparison between the two
methods. Anderson (2001) has also done some pre-
liminary experiments that suggest that an ensemble-
based approach may also be better than 4DVAR (Four
dimensional variational analysis). Based on the above
considerations, this paper continues to use the EnKF
to investigate the ability to retrieve the 1-dimensional
soil moisture profile by assimilating near-surface soil
moisture into the soil moisture model with focus on
the required time for full retrieval of the soil moisture
profiles, the effect of the update interval, ensemble size
and nonlinearities on the profile retrieval, and the pos-
sible influence of the depth of the soil moisture obser-
vations.

Since we mainly focus on methodology, the algo-
rithm is tested in a desktop study using synthetic data.
Synthetic datasets are generated using the same soil
moisture model used to retrieve the soil moisture pro-
file from surface observations. As explained by Walker
et al. (2001), using synthetic datasets can eliminate
experimental errors in measuring the soil moisture pro-
file, as well as in estimating the soil properties. Fur-
thermore, using the same model for the generation and
retrieval of profile data can eliminate model errors due
to the neglect of thermally induced moisture transport.
Beginning with an intentionally poor initial guess of
the soil moisture profile, the data assimilation schemes
are used to retrieve the full profiles with hourly and
daily updates, respectively. In order to demonstrate
the ability of the EnKF data assimilation scheme to
extract the information content of the observations,
the retrieved profile is compared not only with the
true profile but also with that from the direct inser-
tion assimilation scheme because of its simplicity and
easy implementation.

2. Soil moisture equation

The flow of soil moisture in a vertical soil column
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is a very complicated process. For simplicity, almost
all land surface models ignore the effect of thermal va-
por movement so the water flux is only driven by hy-
draulic gradient, thus the resulting equation is a one-
dimensional Richards’ equation. If we retrieve both
the soil moisture and soil temperature profile at the
same time based on observed surface radiobrightness
(or surface soil moisture) and surface temperature (or
infrared surface temperature) (Entekhabi et al., 1994;
Walker et al., 2001), or based only on observed ra-
diobrightness (or surface soil moisture) (Galantowitz
et al., 1999; Li and Islam, 1999), we should consider
the coupled flow of heat and moisture. However, if
we directly assimilate the surface moisture observa-
tion and at the same time specify the evaporation at
the surface, the heat transfer processes will have no
influence on the soil moisture flux in the simplified
land surface models. As explained in the introduc-
tion, we mainly concentrate on the assimilation algo-
rithm so, for simplicity, we choose not to include the
soil heat transfer equation for extracting the soil tem-
perature profile in our test. As we know, Richards’
equation has three forms: the soil water matric poten-
tial based or ψ-based form, the moisture content based
or θ-based form, and the mixed form. No exact solu-
tions of Richards’ equation for general boundary and
initial conditions are known so numerical methods are
used. According to the study of Celia et al. (1990),
we adopt the mixed form of Richards’ equation which
has the following form:

∂θ

∂t
=

∂

∂z

[
k(ψ)

∂ψ

∂z

]
+
∂k(ψ)
∂z

, (1)

where θ is the volumetric moisture content, ψ is the
soil water matric potential, k(ψ) is the unsaturated
hydraulic conductivity and z is the vertical coordinate
(distance from the surface, positive downward). The
Clapp and Hornberger relationships are used to ex-
press the dependences of k(ψ) and ψ on θ:

k = ksat

(
θ

θsat

)2b+3

, (2)

ψ = ψsat

(
θ

θsat

)−b

. (3)

Here, θsat and ψsat are the values at saturation of soil
water content and matric potential, respectively, and
b is a non-dimensional exponent.

The numerical solution of Eq. (1) is based on
the finite volume method (Versteeg and Malalasekera,
1998). Each node is surrounded by a control volume
whose boundaries are located in the middle of two ad-
jacent nodal points. The soil moisture at each node
represents the averaged value over its control volume
and the water fluxes are at the boundaries of the con-
trol volume. Accordingly, the soil moisture equation

(1) is discretized into the following form:
∆zi

∆t
∆θi = qi−1,n+1 − qi,n+1 , (4)

where ∆zi is the thickness of layer i,∆t is the con-
stant time step of integration, ∆θi = θi,n+1 − θi,n, the
suffix n identifies variables at time n∆t, and qi is the
flux of water at the interface between layer i and i+ 1
(positive downward), defined as

qi = −ki+1/2

(
ψi+1 − ψi

zi+1 − zi
− 1

)
. (5)

The boundary conditions are q0 = −qseva evapora-
tion for the first layer and qm=0 for the bottom soil
layer m.ψ and k are nonlinear functions of θ so that
q = f(θi, θi+1). With qi,n+1 approximated as

qi,n+1 = qi,n +
∂qi,n
∂θi

∆θi +
∂qi,n
∂θi+1

∆θi+1 . (6)

The water balance for the i-th layer is

− ∂qi−1,n

∂θi−1
∆θi−1 +

[
∆zi

∆t
− ∂qi−1,n

∂θi
+
∂qi,n
∂θi

]
∆θi

+
∂qi,n
∂θi+1

∆θi+1 = qi−1,n − qi,n , (7)

which is a tridiagonal system of equations for ∆θ (Bo-
nan, 1996). The water balance for the first soil layer
(i=1) is(

∆z1
∆t

− ∂q0,n

∂θ1
+
∂q1,n

∂θ1

)
∆θ1+

∂q1,n

∂θ1
∆θ2 =q0,n − q1,n .

(8)

For the bottom layer (i = m), the water balance is

− ∂qm−1,n

∂θm−1
∆θm−1+

(
∆zm

∆t
− ∂qm−1,n

∂θm
+
∂qm,n

∂θm

)
∆θm

= qm−1,n − qm,n . (9)
Denote by θn,f the predicted vector composed of soil
moistures from all m layers at t = n∆t. When the
analysis of the soil moisture profile at the previous
time t = (n− 1)∆t, denoted by θn,a, is known, based
on Eqs. (7), (8) and (9), θn,f is calculated in the fol-
lowing vector form:

θn,f = F n(θn,a) + qn , (10)
where F n is the model operator and qn the summa-
tion of errors in the model formulation and the forcing
data.

3. Retrieval algorithms

3.1 The Ensemble Kalman filter

The Kalman filter (KF) is a statistical assimila-
tion method that updates all the predicted variables
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at the same time based on the relative magnitudes
of the covariances of both the predicted model vari-
ables and the observations. For nonlinear applications,
a linearized model operator, known as the extended
Kalman filter (EKF), is needed to calculate the evo-
lution of the uncertainties in the state estimates. The
EnKF is an alternative to the EKF and can circumvent
the expensive integration of the state error covariance
matrix in the EKF. It is also easy to implement even if
the models and measurement operator include thresh-
olds and nonlinearities in contrast to the adjoint-based
4DVAR.

The EnKF needs to be initialized with the input
of an ensemble of initial condition fields θ0,i,a(i =
1, . . . , N) with mean θ0,a and covariance P 0,a, and
then each ensemble member is integrated by using a
corresponding ensemble of N random realizations of
error fields qn,i:

θn,i,f = F n(θn,i,a) + qn,i , i = 1, . . . , N (11)
where θn,i,f and θn,i,a refer to the state estimates of
the i-th ensemble member before and after the update,
respectively. The error covariance matrix for the fore-
cast estimate, P n,f , is approximated by

P n,f = (θn,i,f − θn,f )(θn,i,f − θn,f )T (12)
where the overbar denotes an expectation value and
θn,f is the ensemble mean:

θn,f =
1
N

N∑
i=1

θn,i,f . (13)

If we assemble all observations taken at time t = n∆t
into the measurement vector dn, the measurement pro-
cess can be written as

dn = Hnθn,i,f + εn,i , (14)
where a linear relationship is assumed and εn,i is an en-
semble of perturbed observations with a mean equal to
zero and a covariance equal to the covariance for mea-
surements, Rn (Burgers et al., 1998). If observations
are available at time t = n∆t, we update each ensem-
ble member by using a linear combination of forecast
model states and the observation:

θn,i,a = θn,i,f + Kn(dn − Hnθn,i,f − εn,i) ,

i = 1, . . . , N (15)
where the Kalman gain is equal to

Kn = P n,fHT
n (HnP n,fHT

n + Rn)−1 . (16)
In the EnKF, the state error covariance is never ex-
plicitly needed, but parts or all of it can be estimated
at any time from the ensemble.

3.2 Direct insertion

The direct insertion data assimilation is the sim-
plest method in which the predicted soil moisture is di-

rectly substituted, i.e. a hard update, by the observed
moistures at the same point without consideration of
observational errors whenever the observation is avail-
able (Li and Islam, 1999; Walker et al., 2001), so it
is very easy to implement. Only through the physical
infiltration and exfiltration processes can this surface
information be transferred into the deeper layers, thus
it will take a relatively long time for the deeper soil to
“feel” the variation of soil moisture at the top layer.

4. Test and application

In order to explore the relative merits of the data
assimilation methods, a case study is presented. The
same soil moisture equation is used to generate and
retrieve the profile data. The initial soil moisture con-
dition is assumed to be 0.40 cm3 cm−3 throughout the
1 m deep soil. The boundary condition is 0.5 cm d−1

evaporation at the surface and no water flux at the
bottom. To test the assimilation schemes, we initial-
ize the soil moisture model with an intentionally poor
initial guess of 0.35 cm3 cm−3 throughout the profile.
A value of 5% variation in the system state is added
into the model forecasts to represent the model errors
(Walker et al., 2001). More details on the simulation
environment are given in Table 1.

We know that the microwave observation data are
not a predicted variable of the near-surface soil mois-
ture but the brightness temperature, while the bright-
ness temperature generally is a complicated function
of the soil moisture, soil temperature, observation fre-
quency, soil texture and soil bulk density (Njoku and
Entekhabi, 1995; Owe et al., 2001). For simplicity
and concentration on the retrieval algorithm, we do
not adopt the radiobrightness estimation model but
directly use the “true” soil moisture as observations for
that time and depth. Because the thermally induced
moisture transport is neglected and the evaporation at
the surface is a fixed value, the heat transfer equation
is not needed in our assimilation scheme. In general,
microwave measurements of soil moisture are limited
to the top few centimeters (less than 10 cm) of the soil
column, but actual sensing depth will depend on the
magnitude of the surface moisture and its shape. To
investigate whether different observation depths have
an influence on the profile retrieval or not, three rep-
resentative observation depths (2, 6, and 10 cm) of soil
moisture observation are chosen.

To initiate the assimilation scheme, an initial en-
semble needs to be specified. Under ideal conditions
for applications of the EnKF, the initial ensemble
should be chosen to properly represent the error statis-
tics of the initial guesses for the model state. However,
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Table 1. Parameters and conditions used in the profile retrieval.

Soil parameters Retrieval conditions

Soil type Clay loam Depth 100 cm

Soil moisture at saturation 0.476 cm3 cm−3 Number of nodes 50

Hydraulic conductivity at saturation 25 cm d−1 Boundary condition 0.5 cm d−1

Exponent b 8.52 Initial condition 0.40 cm3 cm−3

Matric potential at saturation −63.0 cm Bad initial guess 0.35 cm3 cm−3

 
 
 
 
 
 
              
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. RMS errors in EnKF soil moisture predictions for 

various ensemble size. 
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Fig. 1. RMS errors in EnKF soil moisture predictions for
various ensemble sizes.

a modest mis-specification of the initial ensemble nor-
mally does not influence the results very much over a
long time (Evensen, 2003). In this study, the gener-
ated initial ensemble of perturbed soil moisture sat-
isfies a normally-distributed random field with mean
zero and variance 0.052, and the spatial correlation
function has a exponential form with a decorrelation
length of 1 m. To prevent an updated ensemble with a
variance that is too low, one should add perturbations
with the correct statistics to the observations and gen-
erate an ensemble of observations that then is used in
updating the ensemble of model states (Burgers et al.,
1998). The added ensemble of perturbed observations
is a normally-distributed random field with mean zero
and variance 0.022.

In the EnKF, the required covariance information
is calculated from an ensemble of states at the time
of the update, so it is necessary to introduce enough
ensemble members to obtain satisfactory estimates.
From the theoretical viewpoint, the greater the num-
ber of members, the more accurate the estimated state
error covariance, but in the real application of the
method, it is impossible to use a very large ensemble
size, so an appropriate size should be chosen. Figure 1
shows the time evolution of the actual rms errors for 8,
40, and 200 ensemble members by using the updates
once a day. The time evolutions of the errors for 40 and
200 ensemble members are quite similar so an ensem-
ble of 40 members should be large enough to estimate
the state error covariance with reasonable accuracy.

Based on the above consideration, the ensemble with
40 members is adopted in this study.

4.1 Updating once every hour

The EnKF assimilation scheme updates instanta-
neously the entire profile every hour, based on the rel-
ative magnitudes of the covariances of the model fore-
casts and the observations, because it is able to add
or subtract mass from the system from more than just
the node at the observational depth. Full retrieval of
the soil moisture profile using the EnKF algorithm is
shown in Fig. 2. As the observation depth increases,
profile retrieval becomes relatively slow, but the differ-
ences between using different observation depths are
very small. A similar result has been reported by
Walker et al. (2001). Full soil moisture profile re-
trieval approximately requires about 16 hours of wall
clock time.

For comparison, we plot the results from the direct
insertion assimilation scheme in Fig. 3. The direct in-
sertion assimilation scheme performs an instantaneous
replacement of the model prediction and with the true
soil moisture only at the observational position. For
the different observation depths, the required times for
the full retrieval of soil moisture profile are almost the
same at about 12 days; that is to say, the observation
depth has almost no effect on the profile time for the
direct insertion assimilation scheme. In comparison
with the EnKF assimilation algorithm in Fig. 2, full
retrieval of the soil moisture profile using the direct
insertion assimilation scheme is very slow.

4.2 Updating once every day

It is unrealistic that the soil moisture observation
is taken once every hour for any practical application
of profile retrieval. At best we may expect a repeat
coverage of once a day. Thus, we continue to evaluate
the ability of estimating the soil moisture profile but
with a daily update. Figure 4 indicates that full re-
trieval of the soil moisture profile takes about 16, 15,
and 14 days with the EnKF assimilation methods for
the respective observation depths of 2 cm, 6 cm, and
10 cm. Because the direct insertion data assimilation
is not able to track the true soil moisture profile within
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Fig. 2. Comparison of simulated soil moisture profiles using the EnKF for observation depths of 2 (×), 6 (+), 

and 10 cm (O) with the true values (♦) for hourly observations. 
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Fig. 2. Comparison of simulated soil moisture profiles using the EnKF for observation depths of
2(×), 6(+), and 10 cm (◦) with the true values (�) for hourly observations.

20 days when the predicted moisture is updated once
a day, the retrieval results are not shown. It is obvious
that the EnKF assimilation scheme is superior to the
direct insertion assimilation scheme, however, it also
takes a relatively long time to approximate the true
soil moisture profile.

One interesting result is that the required update
times for full retrieval of soil moisture profile are al-
most equal to those for updating once an hour, al-
though the profile retrieval time length is completely
different, i.e. one is achieved in about 15 days while
the other is achieved in about 15 hours. Therefore,

if we want to approximate the true soil moisture pro-
file in a short time based solely on surface soil moisture
conditions, the frequency of observation is very impor-
tant and should not be too small. On the other hand,
we should revise our method to accelerate the conver-
gence speed for the retrieval of soil moisture profile.

4.3 Nonlinearities and deviations from Gaus-
sian distributions

We know that the application of the EnKF does
not explicitly require model linearity or Gaussian er-
ror statistics, but the Kalman filterwill cease to be an
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Fig. 3. Comparison of simulated soil moisture profiles using the direct insertion for observation depths of 2 

(×), 6 (+), and 10 cm (O) with the true values (♦) for hourly observations. 
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Fig. 3. Comparison of simulated soil moisture profiles using the direct insertion for observation
depths of 2(×), 6(+), and 10 cm (◦) with the true values (�) for hourly observations.

optimal data assimilation if either condition is not met.
Nonlinearities, whether differential or not, are likely to
induce asymmetries in the sample distribution of the
ensemble members (Reichle et al., 2002a). In order to
test the asymmetries, we use the skewness coefficient
defined as

s = E{[θ − E(θ)]3}/σ3
θ , (17)

where E(·) is the expectation operation and σθ is the
standard deviation of soil moisture members. In order

to reduce the possible consequence of sampling error
we use a large ensemble whose size is 200. Figure 5
shows the curves of skewness coefficient with time at
three representative depths of 10, 50, and 100 cm by
using the updating of the observation at the depth of
2 cm once a day. All initially guessed soil moistures
have been set as Gaussian distributions, but with the
updates the ensemble tends to be a little wetter so the
sknewness coefficients at the three depths are slightly
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Fig. 4. Comparison of simulated soil moisture profiles using the EnKF for observation depths of 2 (×), 6 (+), 
and 10 cm (O) with the true values (♦) for daily observations. 
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Fig. 4. Comparison of simulated soil moisture profiles using the EnKF for observation depths of
2(×), 6(+), and 10 cm (◦) with the true values (�) for daily observations.

increased. Fortunately, the skewness coefficients do
not deviate from zero too much within the assimila-
tion period so the EnKF can still extract spatial and
temporal trends in the root-zone (with in 1-m depth)
soil water content, however, it takes a relatively long
time to acquire the true soil moisture profile. Besides
the nonlinearities, the lower bound of soil moisture is
another likely reason causing the non-Gaussian condi-
tional probability distribution functions (PDFs).

Further insight on the significance of non-Gaussian

behavior can be gained by looking at the distribution
of soil moisture across the ensemble at three selected
locations just before each update. Figure 6 shows the
ensemble distribution of the soil moisture for three
representative depths 10 cm, 50 cm, and 100 cm. In
general, the figures appear to be reasonably symmet-
ric, however, small differences between the ensemble
median and ensemble mean at the three depths can be
observed, which inform us of the existence of ensemble
skewness as in Fig. 5.
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Fig. 5. Filter-derived the skewness coefficients of 200 
ensemble members for three different depths. 
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Fig. 5. Filter-derived skewness coefficients of 200 ensem-
ble members for the three different depths.

5. Summary and Discussion

The results demonstrate that the EnKF is an ef-
fective hydrological data assimilation scheme for the
estimation of soil moisture profile from the surface soil
moisture observations with a very easy implementa-
tion. We also compare the performance of the EnKF to
the direct insertion assimilation scheme and find that
the EnKF is superior to the direct insertion assimila-
tion scheme. The superiority of the ensemble Kalman
filter lies in its ability to update the entire profile, while
the direct insertion assimilation scheme only directly
substitutes the measurement for the corresponding soil
moisture. More ensemble members might be better,
but in this study we find that an ensemble with 40
members is enough to represent the error covariance.
If the update is carried out once a day, the direct in-
sertion assimilation scheme is not able to realize full
retrieval while the EnKF assimilation scheme can still
track the true soil moisture profile. However, it will
take a long time to acquire the true soil moisture pro-
file, so we need to further revise the EnKF data assim-
ilation scheme for its future application. This problem
is under our consideration and the results from a new
EnKF data assimilation scheme are promising. The
observation depth does not have an obvious influence
on the profile retrieval time in contrast to the great im-
portance of repeat coverage frequency. Owing to non-
linearities in the soil moisture model and the bound
ary of soil moisture, the required Gaussian distribu-
tions cannot be exactly met, but the influence is not
very serious in this study because the skewness coeffi-
cients do not deviate from zero very seriously.

This synthetic study has shown that the soil mois-
ture data at the near surface is very useful for correct-
ing errors in the model forecast of soil moisture profile

 
 

Fig. 6. Distribution of the ensemble members with time 

(a) at the observational depth of 10 cm, (b) at the depth 

of 50 cm and (c) at the depth of 100 cm. 
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Fig. 6. Distribution of the ensemble members with up-
dates (a) at the observational depth of 10 cm, (b) at the
depth of 50 cm, and (c) at the depth of 100 cm.

resulting from poor initialization. The results show the
feasibility of using the EnKF data assimilation scheme
to solve the inverse problem associated with soil mois-
ture profile retrieval based on the near-surface obser-
vations, however, more research is needed to better
understand the role of nonlinearities and the asym-
metries in the conditional forecast probability density
function. For example, when the soil is very wet or
dry, the soil moisture PDF presents obvious skewness.
In practical application, it will be difficult to select the
proper ensemble size with good spatial and temporal
correlation functions for expressing the model error
fields also. All of these questions should be properly
answered before the EnKF can be applied to the re-
trieval of a field soil moisture profile.

Finally, if we directly assimilate the microwave
brightness observations, the coupled heat and mois-
ture transport models should be adopted. Moreover,
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the surface boundary condition is a complicated func-
tion of precipitation, wind speed, temperature, and
specific humidity, and soil temperature and moisture
etc. and it often contains large uncertainties, so we
should also investigate the possible influence of the er-
rors in the forcing data that have been ignored in this
test.
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