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ABSTRACT

In atmospheric data assimilation systems, the forecast error covariance model is an important compo-
nent. However, the parameters required by a forecast error covariance model are difficult to obtain due to
the absence of the truth. This study applies an error statistics estimation method to the Physical-space
Statistical Analysis System (PSAS) height-wind forecast error covariance model. This method consists of
two components: the first component computes the error statistics by using the National Meteorological
Center (NMC) method, which is a lagged-forecast difference approach, within the framework of the PSAS
height-wind forecast error covariance model; the second obtains a calibration formula to rescale the error
standard deviations provided by the NMC method. The calibration is against the error statistics estimated
by using a maximum-likelihood estimation (MLE) with rawindsonde height observed-minus-forecast resid-
uals. A complete set of formulas for estimating the error statistics and for the calibration is applied to a
one-month-long dataset generated by a general circulation model of the Global Model and Assimilation
Office (GMAO), NASA. There is a clear constant relationship between the error statistics estimates of the
NMC-method and MLE. The final product provides a full set of 6-hour error statistics required by the
PSAS height-wind forecast error covariance model over the globe. The features of these error statistics are
examined and discussed.
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1. Introduction

In atmospheric data assimilation systems, it is
important to represent appropriate height-wind fore-
cast error covariance. This error covariance gov-
erns the filtering of the observations and the spatial
multivariate interpolation of the filtered observations
(Hollingsworth, 1989). However, the error statistics
required by a forecast error covariance model is dif-
ficult to obtain due to the absence of the truth. A
number of different methods are widely used to pro-
vide the estimates.

Recently, Ingleby reviewed three ways of estimat-
ing forecast errors (Ingleby, 2001) and pointed out
the strengths and the weakness of each method. The
first method is to compare the forecast with observa-
tions, such as the outstanding studies of Hollingsworth
and Lönnberg (1986) and Lönnberg and Hollingsworth
(1986). In their studies, they found the basic statis-

tical features of height and wind forecast error and a
geostrophic-like balance between the errors of height
and wind by comparing the forecast with verified ra-
diosonde data over North America. However, the ob-
servation method is limited by data sparsity and by
the situation when the analysis variables are not the
same as the observed.

The second method is the Kalman filter type that
provides a temporal evolution of forecast error statis-
tics. However, due to its computational cost and
requirements for an estimation of model error, this
method has not been used in operational systems yet.

The third method, called the National Meteorologi-
cal Center (NMC) method (Parrish and Derber, 1992),
provides global multivariate correlations valid for the
full horizontal and vertical extent of the model domain,
and has been adopted by several weather forecast oper-
ational centers recently. The basic assumption behind
the method is that differences between two forecasts
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Fig. 1. Schematic of the components and procedures of the method employed in this
study. Upper part outlines the computation in the NMC-method, and the bottom
part is for MLE. See the text for the meanings of the symbols.
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Fig. 2. Left: regional mean standard deviation derived from forecast
height difference using the NMC-method (sight NMC) over the five
regions; right: similar to the left panel, but for the results of MLE
(sight OMF).

at different ranges valid at the same time can be used
as proxies for actual forecast errors. Such lagged-
forecast differences are easy to obtain, and it is easy

to generate the various required statistics from them.
In the practice of the NMC-method, two common

questions are raised: how to justify the basic assump-
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Fig. 3. Ratio of the forecast height standard deviation
derived from MLE (sig OMF) to that derived from the
NMC-method (sig NMC) over the six regions.

tion; and how to rescale the estimated error statis-
tics to represent the 6-hour forecast errors. The latter
typically needs to use some form of independent infor-
mation.

In this study, we employ a method (Guo, 2005)
aimed at the second question: to rescale the forecast
error statistics of the NMC-method by using indepen-
dent observation data. The method consists of two
components: the first one is to derive error statis-
tics using the NMC-method within the framework of
a given height-wind covariance model; the second is
to calibrate those statistics against the 6-hour forecast
error estimates obtained by a maximum-likelihood es-
timation (MLE, Dee and Da Silva, 1999) with raw-
insonde observed-minus-forecast residuals or innova-
tions. The method is used to estimate the statis-
tics required by the height-wind forecast error covari-
ance model implemented in the Physical-space Sta-
tistical Analysis System (PSAS), developed at the
Data Assimilation Office (DAO, now the Global Mod-
eling and Assimilation Office, National Aeronautics
and Space Administration/Godard Space Flight Cen-
ter (NASA/GSFC). The final product provides a full
set of global error statistics with the pattern dynami-
cally constrained by the model, an NMC-method fea-
ture, and with the magnitude of the 6-hour forecast
error variance obtained from MLE.

This paper is organized as follows. Section 2
presents the height-wind error relationship prescribed
in PSAS and a brief overview of the NMC-method
and MLE. Section 3 exhibits the regional means of
the forecast error statistics obtained by MLE and the
comparison with the results of the NMC-method. It
also describes the considerations leading to the choice
of a calibration formula, the calibration procedures,
and the experiment with these rescaled error statistics
as the input of the PSAS error covariance model. In
section 4, the components of the wind error variance
produced by the PSAS covariance model are examined
to verify the consistency between the method and the
model. The impact of the error horizontal correlation
length on the results is shown also. The final section
is devoted to the summary of the main results and the
merits of this method.

2. Height-wind error relationship, NMC-me-
thod, and MLE

2.1 Height-wind error relationship in PSAS

In the PSAS algorithm, a multivariate height-wind
error covariance is applied to wind and height analy-
sis. The algorithm can, at least in principle, accom-
modate a flexible three-dimensional error specification
since the analysis equation is solved in observation and
physical space. The wind error is given as the sum of
two components: one is coupled to the geopotential
height error through a basic mass-wind balance rela-
tion (geostrophy), while the other is uncoupled from
the errors in the mass field (Guo et al., 1998). The
mass-coupled wind errors (uc, vc) are modeled in terms
of the height error h by assuming the following linear
relationship:(

uc

vc

)
≡ g

2Ωa

(
αum αul

αvm αvl

) (
hm

hl

)
. (1)

The height-decoupled wind errors (ud, vd) are specified
as: (

ud

vd

)
≡ g

2Ωa

(
−ψm + χl

ψl + χm

)
. (2)

Here, αum, αul, αvm and αvl are coefficients coupling
the height error gradient in the latitudinal (merid-
ional, m) or longitudinal (l) direction to the error in
the u and v components, respectively. The accelera-
tion due to gravity is denoted by g, Ω is the angular
velocity of the Earth rotation, and a is the radius of
the Earth. The streamfunction and velocity-potential
of the height-decoupled wind errors are denoted by ψ
and χ, respectively, and hm ≡ ∂mh;hl ≡ ∂lh;ψm ≡
∂mψ;ψl ≡ ∂lψ;χm ≡ ∂mχ; and χl ≡ ∂lχ. Symbols ∂m

and ∂l denote differentiation operators, defined as
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Fig. 4. Zonal mean standard deviation of total wind error: the output from the PSAS height-wind
covariance model (top panel); calculated directly from the difference ensemble scaled by the global
scaling constant (bottom panel).

∂m(·) ≡ ∂(·)
∂ϕ

, (3)

∂l(·) ≡
∂(·)

cosϕ∂λ
. (4)

The height-wind forecast error covariance is mod-
eled based on Equations (1) and (2), detailed in Guo
et al. (1998).

2.2 Computation in the NMC-method

Figure 1 schematically depicts the components and
procedures of the method employed in this study. The
upper part outlines the computations in the NMC-

method, starting the collection of a time series, or an
ensemble, of lagged-forecast difference in height and
wind fields between 24- and 48-hour forecasts valid at
the same verification time. These differences are de-
noted by {δp}. The variances, i.e., the diagonals of the
covariance matrix 〈δp, δTp 〉, derived from the ensemble,
are considered as the approximation of forecast error
variances, where δTp denotes the transpose of δp. The
differences in the height and wind fields are treated as
surrogates of the forecast errors. In the following de-
scription of the NMC-method, the term error is used
in general, though it may refer to the differences.

The data used in the computation are the output
of the 5-day height and wind component forecast laun-
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Fig. 5. Similar to Fig. 4, but for the zonal mean standard deviation of the coupled wind forecast
error.

ched every day along with the assimilation of GMAO
data assimilation system (DAS) (DAO, 1996) for the
month of August 2002. Nineteen pressure levels are
selected in the computation. The four coupling co-
efficients of Eq. (1) are derived, for each time record
at each selected vertical pressure level, by least-square
estimation with the one-month-long time series of the
height and wind difference fields. The coupling coef-
ficients are approximated as functions of latitude and
are calculated within 4◦-latitude bins. Note that the
coupling coefficients are near zero over the Tropics;
gradually increase with latitude; and reach high val-
ues in the mid latitudes. The monthly mean coupling
coefficients are then calculated for each bin and substi-
tuted back into Eq. (1) to get the coupled wind error

at each grid point for each time record. Subsequently,
the decoupled wind errors are calculated as the resid-
ual of the coupled wind error from the total wind er-
ror. The stream function and velocity potential are
derived from the decoupled wind error as described by
Equations (2), (3), and (4) for each grid and each time
record.

The final step is to calculate the error variances
for height, streamfunction, and velocity potential:
〈h2〉, 〈ψ2〉, and 〈χ2〉, respectively. Similarly, the er-
ror variances of the coupled and decoupled wind are
computed. We use an angle bracket to denote the vari-
ances obtained by using the NMC-method and Greek
letters to denote the variances obtained by using MLE,
or truth, hereafter. In addition to the variances, the
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Fig. 6. Zonal mean standard deviation of forecast height
error directly derived by using the NMC-method scaled by
the scaling constant.

globally averaged error horizontal correlation lengths,
Lh, Lψ, and Lχ, are derived for height, streamfunc-
tion, and velocity potential, respectively. The deriva-
tion is not straight-forward. It starts from the calcu-
lation of normalization factors of differentiated corre-
lation functions evaluated on constant pressure levels.
Once a normalization factor on a given pressure level
is known, the horizontal length of a given correlation
function model can be uniquely determined, either an-
alytically or iteratively. Note that the NMC-method
is able to provide the 2-dimensional normalization fac-
tors of the differentiated correlation function for the
latitudinal direction and for the vertical levels. These
values are averaged globally. All the computation for-
mulas used here are documented in Guo (2005).

The vertical correlation lengths are also required
by the error covariance model. However, in this study,
we only consider the adjustment of horizontal correla-
tion length and leave the vertical correlation lengths as
they are in the previous operational system. This sim-
plifies the tuning of the horizontal correlation length.
The error variances along with the correlation lengths
are the input of the height-wind forecast error covari-
ance model of PSAS. Note that in the current version
of the model, the variances are prescribed as functions
of latitude and vertical level only. So zonal averaging is
applied to these statistics to fit the form as prescribed
in the covariance model.
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Fig. 7. Zonal mean coupling ratio, defined as the error
variance ratio of the coupled wind to the total wind. Top:
computed from the output of the PSAS covariance model,
bottom: computed from the NMC-method.

2.3 Maximum-likelihood estimation

Dee and Da Silva (1999) derived the relationship
between an error covariance model and the observed-
minus-forecast residuals. They applied the maximum-
likelihood method to the parameter estimation of ob-
servation and forecast error covariance models. As
described in the paper, the actual sequence of the
residuals vk is considered as a realization of a multi-
variate stochastic process Vk, whose joint probability
density function (pdf) is p(vk;α). If the functional
form of the pdf is known, then its value for a fixed
dataset vk, k = 1, ...,K depends on α only: the func-
tion of α thus defined is called the likelihood func-
tion. The maximum-likelihood estimate α̂ is obtained
by finding the maximum of the likelihood function. In
their application, they postulate the stochastic pro-
cess is white and Gaussian, and consider rawinsonde
observation unbiased measurements of the true atmo-
spheric state. The important issues are discussed and
addressed along with the evidence of the advantage of
the method in Dee and Da Silva (1999) and Dee et
al. (1999). Recently, Dee extended the method to a
height-wind forecast error covariance model to obtain
height and wind error standard deviations, σh,ML, and
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Fig. 8. Horizontal correlation length for height (top), velocity potential (middle),
and streamfunction (bottom). Dashed line with open circle: values used in a pre-
vious system; solid line with diamonds: derived using the NMC-method within the
framework of PSAS error covariance model.

σu,ML, σv,ML, (personal communication). This recent
version of MLE is used in this study.

3. Calibration procedure

As shown in Fig. 1, maximum-likelihood estima-

tion (Dee and Da Silva, 1999 ) is applied to ra-
diosonde observed-minus-forecast residuals generated
by the same version of GMAO DAS is used in the
NMC-method. The forecast errors are estimated with
the observations over six selected regions: the Eastern
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Fig. 9. Results of the experiment with the modified horizontal correlation length derived from the
NMC-method (left column). Results of the experiment without the modification (right column).
Top panels: standard deviation of coupled wind error; bottom panels: standard deviation of total
wind error.

U.S., Arctic region Eastern Europe, Eastern China,
Australia, and India. For the NMC-method the re-
gional means of the error standard deviations are cal-
culated using all the grid points in the same six re-
gions and at the same vertical levels as in the MLE.
Note that the NMC method in this case has a larger
sample size than in the MLE. Figure 2 contrasts the
standard deviation of height error

√
〈h2〉 derived from

the NMC-method (left panel) with that derived from
MLE (right panel), exhibiting clear differences in the
vertical profiles.

The NMC-method generates a clean pattern with
a maximum around the upper tropospheric jet region
and a minimum around 100 hPa uniformly over all six
regions, whereas the results of the MLE do not resem-
ble this pattern well (the Indian region is not plotted
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here). It is hard to tell whether the values between
the left and right panels are proportional. However, in
Fig. 3, the ratios of σh,ML to

√
〈h2〉 are quite consis-

tent over the five regions. It is encouraging that the
ratios are fairly consistent within the range of 0.5−1.0
below 300 hPa over all regions, except India. There-
fore, using a global scaling constant in the rescaling
is feasible, except for the levels above 300 hPa where
the ratios are divergent. We notice that the minimum
at about 100 hPa is erroneously small compared with
the previous findings, such as in Hollingsworth and
Lönnberg (1986).

The calibration procedure requires a choice of cali-
bration variable. We choose the standard deviation of
forecast height error, σh,ML, as the truth, since the
height forecast errors are small in general, and the
model errors occur predominantly at large scales. The
calibration formula is then set up as shown in Fig.
1. The global scaling constant γ̄ is obtained by aver-
aging the γ of the five regions with an equal weight.
The Indian region is treated as an outlier and not in-
cluded (solid line in Fig. 3). This γ̄ is multiplied by
the zonal mean error standard deviation, SD, of the
height, stream function, and velocity potential. These
rescaled SDs, along with the four coupling coefficients
and the correlation lengths, enter into the covariance
model of PSAS to generate the forecast covariance ma-
trix (rescaling process in Fig. 1). PSAS computes the
components of the wind error statistics, including to-
tal wind σu,tot, coupled wind σc,u, decoupled divergent
wind σu,d-div, and decoupled rotational wind σu,d-rot.
The v components are specified the same as the u.

4. Results

4.1 Consistency of the method

We first evaluate the consistency of the method by
comparing the output of the PSAS covariance model
with the SD directly derived from the forecast differ-
ence ensemble scaled by γ̄. Figure 4 shows the zonal
mean of the SD of the total forecast wind error gener-
ated from PSAS (top) and the one directly calculated
from the ensemble of the difference scaled by γ̄ (bot-
tom). In general, the pattern and magnitudes are quite
similar. This agreement indicates that the height-wind
forecast error covariance model of PSAS is able to re-
produce the forecast error statistics derived directly
from the ensemble, even if several simplifications are
taken in the implementation of the error covariance
model.

However, over the middle latitudes of the Southern
Hemisphere (SH), the magnitudes in the top panel are
slightly larger than those in the bottom panel. We will
see more discrepancies over the SH below.

Figure 5 shows the zonal mean coupled wind error
SD from the output of the PSAS (top) and from the

calculation using Eq. (1) with the coupling coefficients
derived from the regression (bottom). Similarly, like
in Fig. 4, the patterns and magnitude are compara-
ble in the Northern Hemisphere. Over the SH, large
differences exist in both shape and magnitude. Ob-
viously, these differences contribute to the differences
in the total wind error. The asymmetry of the wind
forecast error in the two hemispheres is clearly due to
that of the height error SD as shown by Fig. 6. It is
clear that, by comparing Figs. 4 and 5 with Fig. 6, the
large height error SD over the SH is responsible for the
large coupled wind error, and therefore, the large total
wind error.

Figure 7 shows the coupling ratio, which is defined
as the error variance ratio of the coupling wind to
the total wind. There is great similarity between the
two panels over the NH. Over the SH, the results of
the NMC-method (bottom) exhibit small structures,
whereas the output of the covariance model is more
smooth and uniform (top). One possible explanation
for this discrepancy is the use of a global constant
correlation length, which is one of the simplifications
taken in the implementation of the forecast error co-
variance model in the PSAS. Previous studies have
pointed out that the correlation lengths vary with lat-
itude (e.g., Ingleby, 2001)

4.2 Impact of horizontal correlation length

The horizontal correlation function is an impor-
tant component in a forecast covariance model. The
differences in horizontal correlation lengths are signif-
icant between a previous system used for comparison
in this study and the NMC-method, particularly above
the levels of the middle troposphere. Fig. 8 shows the
horizontal correlation length for height (top), veloc-
ity potential (middle), and streamfunction (bottom),
where the dashed line with open circles denotes the
values used in the previous system (“reference”) and
the solid line with diamonds denotes the values de-
rived using the NMC-method (“this work”). In the
previous system, a constant correlation length is used
for both stream-function and velocity potential. Note
that the curves from the NMC-method demonstrate
clear transitions from the levels below 300 hPa to the
levels above 100 hPa in all three cases.

In order to demonstrate the impact of the hori-
zontal correlation length, one additional experiment
is carried out with the same parameters as the previ-
ous experiment except using the unmodified horizontal
correlation length. Figure 9 shows the result of this ex-
periment (right column) and the comparison with the
previous experiment (left column, same figures as the
top panels in Figs. 4 and 5). The top panels are the
standard deviation of the coupled wind error and the
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Fig. 10. Similar to Fig. 9 but for the coupling ratio (top panels) and the standard deviation of
decoupled wind (bottom panels).

bottom are the standard deviation of total wind er-
ror. The impact of correlation length on the wind
error components is obvious. In the experiment with
unmodified correlation length, the patterns are signifi-
cantly different, in particular, the misplacement of the
tropospheric maximum center and the increased mag-
nitudes around 100 hPa. Figure 10 shows a compar-
ison of the coupling ratio (top panel) and the decou-
pled wind field (bottom). The experiment without the
adjustment produces significant changes in both error

pattern and values, departing from the fields obtained
from the NMC-method. The coupling ratio is sig-
nificantly reduced over the NH middle-high latitudes.
This experiment indicates the importance of deriving
and using parameters in a consistent way.

5. Summary and discussion

In this study, we apply an error statistics estima-
tion method to the PSAS height-wind forecast error



NO. 1 YANG ET AL. 43

������ ��� ���� .�
 	���� ���(�� ���� �	����� "���� ��� 
���
 ����� �������
��"����� �"������ �"�� 
� &"� �������� ���� .�
 �;���� ���(�� 
� ���� ��

� .��� ����� ������� ��"����� ������� �� ��� � 
� ����"�� ���� 
�
������
�� �"������ �"�� 
� ���� &"� ������� �� ��� 
���
�

Fig. 11. Crosses: mean scaling value for the height error
standard deviation averaged over the five regions. Squares:
the ratio of the wind error standard deviation estimated
by MLE to that derived from the NMC-method, averaged
over the same five regions as used in MLE.

covariance model. The error statistics, estimated from
one-month-long radiosonde height observed-minus-
forecast residuals, are considered as the truth and used
to rescale the error statistics obtained from the NMC-
method. In general, a constant value for the globe
is a good approximation for rescaling. The output
of the PSAS error covariance model is examined and
compared with the results of the NMC-method. The
comparison exhibits great similarities indicating the
consistency between the method and the error covari-
ance model.The final product provides a full set of er-
ror statistics with a global pattern intrinsically con-
strained by the GCM model and with the magnitude
of the 6-hour forecast error derived from the observa-
tion data.

This method provides a tool to tune a simple cali-
bration variable γ̄. Any available a priori information
about forecast error may be incorporated into the cal-
ibration formula. With an appropriate calibration for-
mula, all other parameters computed from the NMC-
method are able to be rescaled in a consistent way.

Note that the height error SD here carries an aus-
tral winter (August) feature in the SH, a strong cir-
culation within the jet region as shown in Fig. 6. For
static forecast error statistics, the seasonal dependency
should be removed by taking different season samples.

The height forecast error estimation from the
NMC-method has a large uncertainty over the SH. In

our MLE application, there is no information over this
region. Although we expect the large error standard
deviation there produced by the active dynamics and
the large initial condition error due to less observation
information, the magnitudes directly derived from the
NMC-method are far too large relative to those over
the NH.

Another uncertainty in the height error estimation
appears just above the top of the tropopause as shown
by Fig. 2 (left panel) in section 3. The results from the
NMC-method underestimate the forecast error vari-
ance right above the tropopause compared with the
findings of Lönnberg and Hollingsworth (1986) and
others. One of the possible reasons is the large GCM
error there. Further examination is needed to under-
stand the problem.

The method can be further improved by using a
second scaling constant in the calibration of the wind
error statistics. The rational is that the model error,
which is excluded in the NMC-method, is larger in the
wind forecast than in the height forecast. The statis-
tics of an ensemble of lagged-forecast difference mainly
represents the error due to the initial condition differ-
ence, whereas the estimate from MLE includes both
model error and initial error. Therefore the wind er-
ror derived by using the NMC-method is underesti-
mated more than the height error estimation. Using
the same one-month dataset, we computed the ratio
of the wind error SD derived from MLE to that of the
NMC-method in the same way as we did for height.
In Fig. 11, the line with crosses is the γ̄ for height,
whereas the line with squares is that for wind calcu-
lated in the same way as that for height. It is clear
that the ratio of the wind error statistics is larger than
the γ̄ of the height error statistics. A fine-calibration
procedure could be applied with one additional scaling
constant for the decoupled wind function.

This method inherits the limitations of the NMC-
method, specifically, the limitations due to sparse ob-
servations and due to the timely small variation of a
field. Moreover, the approach does not have the abil-
ity to include a flow-dependence in the forecast error
statistics.

More recently, the traditional NMC-method has
tended to be replaced by statistics on ensembles of
forecasts. The ensemble method is more expensive
than the lagged-forecast difference approach, though
it might be easier to justify theoretically. This method
is used at ECMWF and Meteo-France nowadays, and
is believed to give better results (F. Bouttier, personal
communication).

Acknowledgments. We thank Dr. Steve Bloom

for his insightful discussion and encouragement through-

out the course of this study. We are grateful to our col-

leagues Drs. Guang-Ping Luo and J. Jusem for providing



44 APPLICATION OF AN ERROR STATISTICS ESTIMATION METHOD VOL. 23

the computation programs and Dr. Fran Verter for provid-

ing the MLE computation. We thank Mr. Thomas Owens

at GMAO for his help in processing the FVDAS data. A

special thanks goes to our anonymous reviewers for their

careful review and insightful comments.

REFERENCES

Dee, D., and A. M. da Silva, 1999a: Maximum-likelihood
estimation of forecast and observation error covari-
ance parameters. Part I: Methodology. Mon. Wea.
Rev., 127, 1822–1834.

Dee, D., G. Gaspari, C. Redder, L. Rukhovets, and A.
M. da Silva, 1999: Maximum-likelihood estimation of
forecast and observation error covariance parameters.
Part II: Applications. Mon. Wea. Rev., 127, 1835–
1849.

DAO, 1996: Algorithm Theoretical Basis Document.
Part D: Next Generation. [Available online at
http://polar.gsfc.nasa.gov/sci research/atbd.php.]

Guo, J., J. W. Larson, G. Gaspari, A. da Silva, and
P. M. Lyster, 1998: Documentation of the physical-
space statistical analysis system (PSAS). Part II: The

factored-operator formulation of error covariances.
DAO Office Note, 1998–04, 1–27.

Guo, J., 2005: NMC-method based computational forecast
error covariance estimation and its implementation for
the PSAS. Manuscript under preparation, available
from GMAO, NASA/GSFC, MD 20771 USA.

Hollingsworth, A., 1989: The verification of objective anal-
ysis: Diagnostics of analysis system performance. Me-
teorology and Atmospheric Physics, 40, 3–27.
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