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ABSTRACT

Among the regression-based algorithms for deriving SST from satellite measurements, regionally
optimized algorithms normally perform better than the corresponding global algorithm. In this paper,
three algorithms are considered for SST retrieval over the East Asia region (15◦–55◦N, 105◦–170◦E),
including the multi-channel algorithm (MCSST), the quadratic algorithm (QSST), and the Pathfinder
algorithm (PFSST). All algorithms are derived and validated using collocated buoy and Geostationary
Meteorological Satellite (GMS-5) observations from 1997 to 2001. An important part of the derivation and
validation of the algorithms is the quality control procedure for the buoy SST data and an improved cloud
screening method for the satellite brightness temperature measurements. The regionally optimized MCSST
algorithm shows an overall improvement over the global algorithm, removing the bias of about −0.13◦C
and reducing the root-mean-square difference (rmsd) from 1.36◦C to 1.26◦C. The QSST is only slightly
better than the MCSST. For both algorithms, a seasonal dependence of the remaining error statistics is
still evident. The Pathfinder approach for deriving a season-specific set of coefficients, one for August to
October and one for the rest of the year, provides the smallest rmsd overall that is also stable over time.
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1. Introduction

Satellite estimation of sea surface temperature
(SST) has greatly improved the spatial coverage and
resolution provided by in-situ observations such as
that from ship or buoy. Such estimation must over-
come the interference by the atmosphere between the
ocean surface and satellite, primarily the water va-
por absorption of the upwelling radiation, even in the
relatively “clean” atmospheric window spectrum. Fol-
lowing Saunders’s early experiment (Saunders, 1967),
McClain et al. (1985) introduced the Multi-Channel
SST (MCSST) algorithm that assumes a linear rela-
tionship between the temperature difference at two
window channels (hereafter referred to as DT) and
the total amount of water vapor. Walton (1988) and
Walton et al. (1998) suggested Cross Product SST
(CPSST) and Non-Linear SST (NLSST) to account for
the nonlinearity between DT and water vapor. Wu et
al. (1999) adopted a quadratic formula to account for
the nonlinearity effect in deriving an SST algorithm

(QSST) for the Geostationary Operational Environ-
mental Satellite (GOES).

It has also been found (e.g., Barton, 1995) that
a locally optimized regression algorithm is superior to
the corresponding global algorithm for specific regions.
For example, Shenoi (1999) showed that the use of
regional regression coefficients with the NLSST algo-
rithm for the northern Indian Ocean reduces the root-
mean-square difference (rmsd) by 50% compared to
the global Pathfinder SST (PFSST, Kilpatrick et al.,
2001). A theoretical study (Minnett, 1990) suggested
that the global algorithm had a higher error, up to 1
K, than a regional algorithm in the Greenland-Iceland-
Norwegian area. The improvement is primarily due to
the adaptation of the algorithm to the regional atmo-
spheric conditions.

Most of the space-based SST estimates are de-
rived from polar orbiting satellites such as the National
Oceanic and Atmospheric Administration (NOAA) se-
ries and European Remote Sensing (ERS) satellites.
Compared to the geostationary platform, the polar or-
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biting satellites are much closer to the target. This af-
fords a higher signal to noise ratio and a higher spatial
resolution, which translate into higher radiometric ac-
curacy and better cloud detection and avoidance, both
of which are critical to SST retrieval. Nevertheless,
the geostationary platform offers much more frequent
observations over selected regions, 24 times a day in
the case of the Geostationary Meteorological Satellite
(GMS-5) compared to twice a day by a polar orbiting
satellite. It is therefore much more likely for a geo-
stationary platform to find a clear moment for SST
retrieval (Bates and Smith, 1985; Legeckis and Zhu,
1997). Furthermore, Wu et al. (1999) introduced an
algorithm that makes use of frequent observations by
GOES to help with cloud detection. Their GOES SST
product shows more complete SST maps in cloudy re-
gions and the diurnal variation of SST in clear regions.

A series of GMS satellites has been operated by
the Japan Meteorological Agency (JMA) since 1977,
covering most of the Western Pacific Ocean and part
of the Indian Ocean. The latest one, GMS-5 that was
launched in 1995, has the split window channels (10.5–
11.5 µm and 11.5–12.5 µm) that enable the derivation
of SST. Shirakawa (1996) derived the MCSST regres-
sion coefficients for the full disk coverage of GMS-
5, which has a bias of −0.4 K and an rmsd of 1.5
K. Later, Yasuda and Shirakawa (1999) improved the
cloud screening method using the objectively analyzed
climate SST, which reduced the rmsd by 0.3 K (to 1.2
K). It should be noted that GMS-5 has a relatively
high NEDT (Noise Equivalent Delta Temperature),
0.35 K at 300 K (MSC, 1997), and lacks a shortwave
infrared channel at 3.9 µm.

The main purpose of this paper is to derive a re-
gionally optimized SST retrieval algorithm using the
GMS-5 data over the East Asia region, from 15◦N to
55◦N and from 105◦ E to 170◦E, which covers the
domain of the Korea Meteorological Administration
(KMA) regional weather prediction model. Based on
previous studies, regression coefficients for three algo-
rithms (MCSST, QSST, and PFSST) are derived using
the collocated observations by buoy and the GMS-5
from 1997 to 1999, and these are then validated using
similar data from 2000 to 2001. After this introduc-
tion, section 2 describes the data used in the current
study, including the quality control procedure for the
buoy data and the cloud screening procedure for the
GMS-5 data. The regression coefficients for all algo-
rithms are derived and compared in section 3. Valida-
tion results are presented in section 4, and the paper
concludes in section 5 with a summary.

2. Collection and processing of data

This study is based on the analysis of collocated
buoy and GMS-5 data. It is critical to understand

and document how the data were collected and pro-
cessed, as well as the general characteristics of the final
datasets.

2.1 Data collection and collocation

The buoy data used in this paper are obtained from
the drifting and moored buoys via the Global Telecom-
munication System. The GMS-5 data are acquired
from the Division of Meteorological Satellite of the
KMA. The satellite data are navigated with a coastline
match-up process using the window channel brightness
temperature and topographic data, and by manual ad-
justment when necessary. The navigation accuracy is
better than one pixel (5 km). An array of 3×3 pixels
is collocated with each buoy report within 30 min-
utes. Each collocated dataset consists of date, time,
and location of the buoy report, the buoy SST, the
reflectance and the split-window brightness tempera-
tures (Tb11 at 11 µm, and Tb12 at 12 µm) from the
GMS-5, and the satellite zenith angle of the measure-
ment. All the available buoy and GMS-5 data within
the region (15◦–55◦N, 105◦–170◦E) and time period
(1997–2001) are collected. The total number of the
collocated observations before any quality control and
cloud screening procedures is 143980.

2.2 Quality control of the buoy data

The buoy data are prone to error arising from the
malfunctioning of the buoy itself or in the process
of data communication. The malfunctioning can be
caused by a drained buoy battery, accidental ship trac-
tion, or the grounding of the buoy that exposes the
sensor to the sun. A rigorous quality control proce-
dure is required to reject the erroneous buoy data, and
the procedure must be objective to maintain uniform
criteria for selection while processing large amounts
of data. The procedure adopted for this study tests
short-term and long-term variations of the measured
SST (Hansen and Poulain, 1996). The basic strategy is
to retain only the highly reliable data while sacrificing
a few “good” data points.

Figure 1 shows the overall flowchart of the quality
control procedure for the buoy data. First, a buoy is
disqualified if the total number of data points is less
than 20, which simply removes infrequently reporting
buoy stations. The next test is the short-term varia-
tion, which can be caused by the passage of a thermal
front or an eddy and the diurnal variation due to solar
insolation (Stramma et al., 1986; Webster et al., 1996).
The insolation-induced diurnal variation of SST is nor-
mally less than 3 K per day (Wu et al., 1999; Webster
et al., 1996). The SST variation caused by frontal
passage is larger and can be estimated from its spatial
gradient and movement speed. While the temperature
gradient is typically on the order of 0.1–0.2◦C km−1 in
the East Sea (Park, 1996), a more intensive gradient
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Quality Control Test I
Number of Buoy Data < 20
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∆1day > 9 oC
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Fig. 1. Flow chart for the quality control of the buoy
SST. ∆1day and σ5day represent the temperature gradient
for one day and the standard deviation of a given buoy for
five days, respectively.

(up to 1.5◦C km−1) has been reported for very strong
thermal fronts (Rodon, 1975). The typical speed of
oceanic eddies or fronts is 9 km per day (Gill, 1982).
With all these considerations, we believe that the tem-
perature variation by natural processes is less than 9◦C
d−1; the buoy data with short-term variation larger
than this threshold value are discarded.

The final test is the longer-term variation of the
buoy SST. During a 5-day period and in the absence
of a repeated passage of strong thermal eddies, the
SST fluctuation is mainly caused by its diurnal vari-
ation that ranges from 0.5◦C to 3.5◦C (Legeckis and
Zhu, 1997; Webster et al, 1996; Stramma et al., 1986).
Assuming the maximum SST diurnal variation to be
less than 4◦C, the expected standard deviation of SST
during a 5-day period is less than 1.2◦C. Thus, if the
standard deviation of 5-day SST is more than 1.2◦C,
all data in the period are discarded.

2.3 Cloud screening

Shirakawa (1996) suggested a cloud screening
method for the operational retrieval of the GMS-5
SST, which includes a thermal gross test, thermal spa-
tial coherence test, split window test, albedo test, and
climatology test. Yasuda and Shirakawa (1999) later
modified the threshold values to improve the cloud
screening performance. While it may be appropriate
for operations, Ahn et al. (2001) found that some
cloudy pixels escape the Yasuda and Shirakawa tests,
especially at night due to the lack of the visible and
3.9 µm data.

For this study, we developed a cloud screening pro-
cedure that is similar in concept to that of Yasuda and
Shirakawa (1999) but with more stringent threshold

values, as shown in Fig. 2. The first test removes the
collocated data whose Tb11 is more than 15◦C cooler
than the buoy SST. This threshold value is based on
a model simulation of the water vapor effect on Tb11.
The second test removes the collocated data whose
split window channel difference is too large or nega-
tive. The latter test detects instrument irregularities
and heavy dust loading (Ahn et al., 2003b). The third
test ensures thermal uniformity around the buoy loca-
tion, which is often destroyed by broken cloud. Based
on previous theoretical estimates (Ahn et al., 2003a),
the collocated dataset is assumed to be cloud contam-
inated if the standard deviation of the 3×3 pixel array
of the GMS-5 Tb11 data is more than 0.8◦C. During
the daytime, additional tests are applied to the visible
data. If the averaged albedo of the nine pixels is larger
than 0.05, or the standard deviation is larger than 0.03,
we assume the pixel is contaminated by clouds. This
test is effective for all clouds, thick or thin, uniform or
broken, high or low. Finally, we delete the collocated
data whose estimated SST using the Yasuda and Shi-
rakawa algorithm is more than 4◦C cooler than the
buoy SST. This threshold value is sufficiently larger
than the reported accuracy (1.2◦C) and removes the

Comparison with Buoy
Buoy_SST-Tb11 > 15 K

Yes

Split Window Test
Tb11-Tb12 > 3.0 K
or Tb11-Tb12< 0 K

IR Spatial Uniformity
σTb11 > 0.8 K

Bogus SST Test
|Buoy SST-Bogus SST| >  4o C

VIS Test
Albedo > 5 %

or σAlbedo > 3 %

Clear Cloudy

No

No

No

No

No

Yes

Yes

Yes

Yes

Fig. 2. Flow chart for the cloud screening procedures.
The brightness temperature is given at 11 µm (Tb11) and
12 µm (Tb12), and albedo is the averaged value for 9 pix-
els near the buoy position, while σTb11 and σAlbedo are the
standard deviations of Tb11 and albedo, respectively. The
global SST is obtained from the global MCSST algorithm
(see text).
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Fig. 3. Time series of the buoy SST obtained from GTS for WMO drift buoy number 21612. (a) The
original time series shows the many randomly distributed peaks with the especially high-varied peaks at
the end of series indicating error caused by malfunction. (b) The distribution of the buoy SST after quality
control II, (c) after quality control III, (d) comparison with buoy SST under the cloud screening procedure,
(e) split window test and IR (infrared) spatial uniformity test, and (f) VIS (visible) test and Global SST
test.

remaining erroneous data (especially at night).

2.4 Example

Figure 3 shows the results of the sequence of tests
described above when applied to the observed SST by
drifting buoy number 21612. The early part of the

original time series (Fig. 3a) varies smoothly with oc-
casional anomalies, whereas the later part of the time
series is quite noisy. The first quality control test for
the buoy data does not apply to this particular case,
but the second test that limits the daily SST variation
to less than 9◦C removes virtually all the abnormal
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Fig. 4. Trajectory of drift buoy number 21612, which ran
into an island. The background is the spatial distribution
of the monthly mean SST in January 2000.

Fig. 5. Pie chart of the percentage of data removed by

each buoy Q/C (quality control) and cloud screening pro-

cedure. The largest number of data points is removed by

the simple comparison between Tb11 and the buoy SST

test with a threshold of 15◦C.

data from the early part of the time series (Fig. 3b).
However, most of the noisy data at the end of the time
series remain, which is often indicative of a drifter run-
ning aground or in shallow waters (Hansen, 2001; pri-
vate communication). To confirm this hypothesis, we
examined the buoy trajectory over the monthly mean
SST field (Fig. 4), which shows that the buoy indeed
became stuck near the island of Tokunoshima of Japan
at the end of the time series. The third quality con-
trol test for the buoy data that limits the 5-day SST
variation to less than 1.2◦C removes most of the noisy
data at the end of the time series (Fig. 3c), which is
justified by Fig. 4. About 19% of the collocated data
are removed by the quality control procedure for buoy
data.

The remaining collocated datasets are further sub-
ject to cloud screening tests. Those that survived the
buoy SST and Tb11 comparison test, the spatial uni-
formity test and split window test, and the bogus SST

test are plotted in Figs. 3d, 3e, and 3f, respectively. A
large portion of data, about 45% of the data remaining
after the buoy Q/C procedure, is removed by the sim-
ple comparison between Tb11 and buoy SST. At the
end, about 19% of the original collocated data pass all
the tests and are considered highly reliable data (Fig.
3f).

2.5 Characteristics of the final data

The quality control procedure for the buoy data
and the cloud screening procedure for the GMS-5 data
are applied to all the collocated data. The portion
that was removed by each test is summarized in Fig.
5. Of the original 143980 collocated data points, 25344
(or 21%) pass all the tests and are considered reliable.
There are roughly equal number of collocations during
daytime and nighttime (12917 vs. 12427, each is about
21% of the original daytime and nighttime data), sug-
gesting that the overall data preparation procedures
for nighttime might be as good as those for daytime.

Because the regression coefficients depend strongly
on the latitudinal coverage of the collocated data
(Emery et al., 2001) and on other parameters such
as the observation geometry, the characteristics of the
final data are examined. Figure 6 shows the geograph-
ical distribution of the collocated data from 1997 to
2000. While the data are sparse in some high lati-
tude regions and in the upwelling coastal area of the
East China Sea, and data are dense over the East Sea,
and for the most part the collocated data are fairly
uniformly distributed.

We further examined the data characteristics in
terms of the month of observation, the satellite zenith

Fig. 6. Geographical distribution of the quality-controlled
and cloud-screened collocated data for the East Asia re-
gion during 1997 to 2000.
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Fig. 7. Frequency distribution of the collocated satellite and buoy data as a function of month,

DT (Tb11–Tb12) and SZA (Satellite Zenith Angle), and buoy SST for the period of 1997 to 1999

in the East Asia region.

angle of observation (SZA), the split window channels
brightness DT, and the buoy SST. These are the pa-
rameters later used in the regression equation. The
results are plotted in Fig. 7. The number of collocated
data points is relatively small in winter and summer,
peaking in June and particularly in September and
October (Fig. 7a). The number of collocated data
points is uniformly distributed for DT less than about
1.5◦C, decreasing gradually with increasing DT above
1.5◦C and dropping abruptly when DT is greater than
about 2◦C (Fig. 7b). There are more than 700 col-
located data points for all values of SZA except for
around 40 degrees (Fig. 7c). Finally, the number of
collocated data points demonstrates a profound peak
around 28◦C while it is uniformly distributed for other
values of buoy SST (Fig. 7d). The effect of these ir-
regular distributions of data points is discussed later.

3. Derivation of the regression coefficients

Three types of regression algorithms are tested for
suitability for SST retrieval using the GMS-5 data in
the East Asia region. These include MCSST that as-
sumes a linear relationship between the atmospheric

absorption and the DT (McClain et al., 1985); QSST
that accounts for the non-linear effect of water vapor
absorption with a quadratic term of DT (Wu et al.,
1999); and PFSST (Kilpatrick et al., 2001) that ac-
counts for the different atmospheric conditions.

3.1 Regional MCSST and QSST

When the global MCSST algorithm of Yasuda and
Shirakawa (1999) is applied to our dataset, the bias
and rmsd are −0.13◦C and 1.36◦C, respectively, which
are larger than the reported accuracy when evaluated
over the full disk. The bias and rmsd are defined as:

bias =
1
n

∑
n

(SSTSatellite − SSTBuoy) ,

rmsd =

√
1
n

∑
n

(SSTSatellite − SSTBuoy)2 .

Furthermore, Fig. 8 shows a clear dependence of
the errors on certain parameters. The bias is neg-
ative from August to October while positive for the
rest of the year; negative for DT greater than 0.7◦C
while positive when the atmosphere is dry; negative
for small SZA (< 35◦) while positive when the scene
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Fig. 8. Biases of global MCSST (GMCSST; +), regional MCSST (RMCSST; *), and regional
QSST (RQSST; ♦) algorithms as functions of (a) month, (b) DT, (c) SZA, and (d) buoy SST.

Table 1. Regression coefficients, rmsd, and bias for global MCSST (GMCSST), regional MCSST (RMCSST)
and QSST (RQSST), temporally-varying RMCSST (RTMCSST), and RQSST (RTQSST). For the RTMCSST and
RTQSST, the regression coefficients are shown for the months of August, September, and October (Period 2) and for
the other months (Period 1).

Algorithm A B C D E rmsd (◦C) bias (◦C)

GMCSST 1.07177 2.31327 2.59312 −16.8281 1.36 −0.13

RMCSST 1.0480 3.2672 −0.9151 3.0144 1.26 0.0

RQSST 1.0170 3.5635 −1.5840 −0.2507 3.7818 1.25 0.0

RTMCSST Period 1 1.0336 3.3583 −2.1301 3.0839 1.19 0.0

Period 2 0.9180 3.1452 −1.8803 6.2805

RTQSST Period 1 0.9969 2.9302 −2.7186 −0.008 4.3860 1.16 0.0

Period 2 0.7383 3.9528 −5.1217 −0.7299 10.6243

is farther away from the nadir; and negative for warm
SST (> 27◦C) while positive otherwise. As will be
shown later, similar dependences are also found for
the rmsd. Although the causes are not clear, many of
these dependencies can be reduced empirically.

Regionally optimized MCSST and QSST algo-
rithms are found by deriving regression coefficients for
the following equations using the 1997–1999 data from
our dataset:

MCSST =A× Tb11 + B ×DT+

C ×
[

1
cos(SZA)

− 1
]
×DT + D , (1)

QSST =A× Tb11 + B ×DT+

C ×
[

1
cos(SZA)

− 1
]

+ D ×DT2 + E , (2)

where A, B, C, D, and E are the regression coeffi-
cients. In Eqs. (1) and (2), the first terms on the right
hand sides represent the close relationship between
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Fig. 9. Same as Fig. 8 but for rmsd.

Tb11 and the SST; the second terms account for the
linear relationship between the atmospheric effect and
DT; and the third terms correct for the optical path
difference when viewed at different angles. Addition-
ally, the fourth term in Eq. (2) represents the nonlinear
correction for the atmospheric effect. The results are
summarized in Table 1. The rmsd for the regionally
optimized algorithm RMCSST is 1.26◦C, similar to
that of the RQSST (1.25◦C) but lower than the global
algorithm GMCSST (1.36◦C). This is as expected, as
a regionally optimized algorithm should represent the
regional characteristics better. The noise amplifica-
tion factor (NAF; Barton, 1995; Pearce et al., 1989) is
also smaller in the regional algorithms, which means a
smaller random error in the derived SST.

Analysis of bias characteristics further verifies the
impact of the regionally optimized algorithm in more
detail. Figure 8b shows that the regionally optimized
algorithms have basically eliminated the dependence
of the bias on the brightness temperature difference
of the split window channels (DT). The dependence
of the bias on the satellite zenith angle and on the
buoy SST has also been significantly reduced (Figs. 9c
and 9d), particularly for smaller viewing angles (<40◦)
and warmer SST (>15◦C). Compared to the bias, Fig.
9 shows that, except for the case of a large viewing

angle, the rmsd is generally less dependent on season,
DT, SZA, and SST. And similar to the case of bias,
the regionally optimized algorithms reduce such de-
pendence. However, the dependence of the bias on
season (Fig. 8a), while reduced, largely remains even
when the algorithm has been regionally optimized.

There are several possible reasons for the different
bias characteristics for August to October compared
to the rest of the year. Without rigorous analysis, we
can still reduce this difference empirically by deriving
regression coefficients that are optimal for a specific
period of time, i.e., one set for August to October and
one set for the other months. To smooth the transi-
tion period, we weighted the two derived SST values in
terms of time for the first and last weeks of the begin-
ning and ending of each month. The coefficients and
error statistics for these algorithms, called RTMCSST
and RTQSST, are also shown in Table 1. The rmsds of
the RTMCSST and RTQSST are 1.19◦C and 1.16◦C,
respectively, which is an improvement of about 0.1◦C
over the corresponding algorithms for all seasons. The
first of the regression coefficients for the second time
domain of the RTQSST is much smaller than unity,
which is compensated by the square term. Thus the
expected NAF of the RTQSST algorithm is expected
to be larger than that of the RTMCSST algorithm.
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Fig. 10. Biases of RTMCSST (*), RTQSST (♦), and
RMCSST (+) as functions of time (month).
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Fig. 11. The rmsd values of RTMCSST (�), RTQSST
(∆), and RMCSST(+) as functions of time (month).

Close examination of bias and rmsd as functions of
time further confirms the positive impact of the region-
ally and temporally optimized algorithms. The sea-
sonal dependence of bias, which is clear in RMCSST,
is mostly absent in RTMCSST and RTQSST (Fig. 10).
In addition to the overall improvement, both algo-
rithms seem to perform much better for the August to
October period, and the RTMCSST algorithm seems
slightly better than the RTQSST algorithm. A similar
conclusion can be made for the rmsd (Fig. 11), except
that the RTQSST algorithm seems slightly better than
the RTMCSST algorithm. Though not shown, the in-
dependence of bias and rmsd for the RTMCSST and
RTQSST algorithms on DT, SZA, and SST is similar
or better compared to the RMCSST and RQSST al-
gorithms. In summary, the RTMCSST and RTQSST
are comparable, and both perform better than the ones

without temporal or regional optimization.

4. Validation

During the derivation of regression coefficients, a
question is raised, viz. whether a sufficient number
of collocated data points has been used to derive the
regression coefficients when the original dataset is di-
vided, especially for the August to October period. To
answer that question, we performed the regression re-
peatedly with randomly selected collocated data and
plotted the first regression coefficient and rmsd from
these regression analyses as a function of sample size
in Fig. 12. As expected, the first regression coefficient
and rmsd fluctuate with sample size when the sample
size is small but become stable as the sample size in-
creases. The first regression coefficient varies by less
than 0.01 when the sample size is larger than 2500,
and the rmsd stabilizes when the sample size reaches
about 4500. Since the sample size in all our regres-
sion is larger than 5000, we conclude that the derived
regression coefficients are valid.

For the validation of the derived various SST re-
trieval algorithms, a total of 17431 collocated data

Fig. 12. Variation of rmsd and the first regression coeffi-
cient of MCSST as functions of the number of data points
used for the coefficient derivation.
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Fig. 13. Scatter diagram of the derived SST using the (a) GMCSST, (b) RMCSST, (c) RTMCSST,
and (d) RTQSST algorithms for the time period 2000–2001. The rmsd values are 1.29, 1.22, 1.16,
and 1.14◦C, respectively.

points collected from January 2000 to October 2001
are used. Figure 13 shows the scatter plots of the buoy
SST and GMS-5 SST using the GMCSST, RMCSST,
RTMCSST, and RTQSST algorithms. Respectively,
the biases for these algorithms are 0.18◦C, 0.03◦C,
0.05◦C and 0.05◦C, and the rmsd values are 1.29◦C,
1.22◦C, 1.16◦C, and 1.14◦C. These results are consis-
tent with the error analysis during coefficient deriva-
tion that shows progressive improvement due to re-
gional and temporal optimization.

The monthly mean bias and rmsd values of GMC-
SST, RMCSST, and RTMCSST as functions of the
four different parameters are shown in Fig. 14 and
Fig. 15, respectively. The characteristics for bias and
rmsd are similar to the cases of the coefficient deriva-
tion. The time dependence of bias from RTMCSST
is significantly reduced compared to other algorithms.
The bias varies within about ±0.6◦C for RMCSST and
GMCSST, while it varies only within ±0.3◦C for the
RTMCSST. All algorithms show the similar depen-
dency on DT, buoy SST and SZA to that of the coeffi-
cient derivation. In the case of the DT values, the two
regional algorithms show a range of ±0.3◦C, while the
global algorithm shows values larger than 0.5◦C for a

higher DT value of about 1.5◦C. For the different SZA
and buoy SST, the regional algorithms also reduce the
variability, especially for the lower values of SZA and
buoy SST.

The rmsd of the RTMCSST and RMCSST algo-
rithm is also smaller than that of GMCSST, while
the RTMCSST shows the smallest rmsd of almost
all cases, especially for the months of August and
September and for different DT values. During Au-
gust and September, rmsd shows an improvement of
about 0.4◦C in RTMCSST compared to the GMCSST
algorithm. Also, there is significant improvement, by
about 0.2◦C to 0.3◦C, in rmsd for the higher DT values
for both RTMCSST and RMCSST.

5. Summary and conclusions

Algorithms exist to derive sea surface temperature
from GMS-5 satellite measurements (Shirakawa, 1996;
Yasuda and Shirakawa, 1999). When applied to the
domain of the KMA regional weather prediction model
in East Asia (15◦–55◦N, 105◦–170◦E), however, the re-
trieval algorithm was found to have a negative bias
that also seems to be dependent on season, atmosph-
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Fig. 14. Biases of GMCSST (+), RMCSST (*), and RTMCSST (♦) for the time period 2000–
2001 as functions of (a) time, (b) DT, (c) SZA, and (d) SST.
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Fig. 15. Same as Fig. 14 but for rmsd.
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eric moisture, viewing angle, and SST. It was believed
that a regionally optimized algorithm would alleviate
most of these problems.

To carry out this investigation, ocean buoy data
are collocated with GMS-5 measurements from 1997 to
2001. A quality control procedure is developed for the
buoy data to limit the daily and 5-day variations of the
reported SST. This procedure removes about 19% of
the erroneous buoy reports. A stringent cloud screen-
ing procedure is developed for the satellite data that
includes the use of a global SST value. About 20% of
the original collocated data survive all the quality con-
trol tests, and the percentage of reliable data is about
equal between daytime and nighttime. This suggests
that the nighttime procedures are as effective as the
daytime procedures.

The data from 1997 to 1999 are used for the deriva-
tion of the regression coefficients while the remaining
data are used for validation. All of the regionally opti-
mized algorithms eliminate the overall bias and reduce
the rmsd by 0.1◦C. More remarkably, the regionally
optimized algorithms change the characteristics of the
residual error. For the global algorithm, for example,
the bias tends to be positive when the atmosphere is
humid, when the target is close to the nadir, when the
sea is warm, or from August to October. All these
dependencies are removed or significantly reduced by
the regionally optimized algorithms, except that the
seasonal dependence largely remains.

The seasonal dependence is mitigated by further
optimization of the algorithm based on season, deriv-
ing one set of regression coefficients for August to Oc-
tober and one for the other months. The final algo-
rithm, called RTMCSST for Regionally and Tempo-
rally optimized Multi-Channel SST algorithm, further
reduces the rmsd by 0.1◦C and basically removes the
seasonal dependence of bias. A sensitivity study con-
firms that the sample size is sufficient and the derived
regression coefficients are valid.

The current study is expected to be applicable
for upcoming new satellites in the East Asia region
such as Japan’s MTSAT-1R and China’s FY-2 series
which measures radiances at the split window chan-
nels. For a better operational SST derivation, the com-
bination of infrared and microwave data is highly re-
quired, especially when dealing with the East Asia re-
gion where monsoon fronts linger for usually more than
a week at a certain latitude band. Although the spa-
tial resolution of microwave radiometers such as TMI
(TRMM Microwave Imager) and AMSR-E (Advanced
Microwave Scanning Radiometer) is limited, these can
provide SST for most of the cloudy area associated
with the monsoon front. Thus the combination of in-
frared and microwave data is highly recommended.
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