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ABSTRACT

A back-propagation neural network (BPNN) was used to establish relationships between the short-
range (0-3-h) rainfall and the predictors ranging from extrapolative forecasts of radar reflectivity, satellite-
estimated cloud-top temperature, lightning strike rates, and Nested Grid Model (NGM) outputs. Quan-
titative precipitation forecasts (QPF) and the probabilities of categorical precipitation were obtained.
Results of the BPNN algorithm were compared to the results obtained from the multiple linear regression
algorithm for an independent dataset from the 1999 warm season over the continental United States. A
sample forecast was made over the southeastern United States. Results showed that the BPNN categorical
rainfall forecasts agreed well with Stage III observations in terms of the size and shape of the area of rain-
fall. The BPNN tended to over-forecast the spatial extent of heavier rainfall amounts, but the positioning
of the areas with rainfall >25.4 mm was still generally accurate. It appeared that the BPNN and linear
regression approaches produce forecasts of very similar quality, although in some respects BPNN slightly
outperformed the regression.
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1. Introduction

In the past decade, many new unconventional ob-
servations from Doppler radars, surface automated
meteorological observing systems, lightning detec-
tion devices, and satellite measurement systems have
proved to be an effective way for field weather fore-
casters and forecast system developers to capture the
signals of thunderstorm weather phenomena such as
strong hail, damaging wind gusts, tornadoes and flash
floods.

The 0–3-h quantitative precipitation forecast
(QPF) is thought to be important, because in the
rainy season, heavy rainfall accompanying a convec-
tive weather system often takes place in a very short
period of time during a day and causes great dam-
age to property, disruption to traffic or even loss
of life. Aiming at solving the short-range precipi-
tation problem, the U.S. National Oceanic and At-
mospheric Administration (NOAA) National Weather

Service (NWS) has developed an operational short-
range (0–3-h) QPF (Kitzmiller et al., 2001) under the
framework of the System for Convective Analysis and
Nowcasting (SCAN, Smith et al., 1998). This auto-
mated ADvective STATistical system (ADSTAT) uti-
lizes data from remote sensor observations (radar re-
flectivity, lightning strike rate, and satellite infrared
imagery) and from operational numerical weather pre-
diction model forecasts to produce rainfall probabili-
ties and rainfall amount forecasts for areas of interest.
The probabilities are for rainfall exceeding approxi-
mately 2.5, 12.5, 25.0, and 50.0 mm during the 3-h pe-
riod immediately following the observation time. The
rainfall amount forecasts are for five categories: <2.54,
2.54–12.60, 12.70–25.30, 25.40–50.70, and >50.70 mm.
These values represent the highest amount at any place
within boxes of a 40-km forecast grid, as estimated
from an operational radar or gauge observations.

The ADSTAT probabilities are produced from
equations derived through forward-selection linear
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screening regression within a set of 34 candidate pre-
dictors. Some of the predictors are presented to the
procedure in both original and transformed versions,
the transformation being based on the subjective se-
lection of predictors and sometimes the truncation of
their statistical range, depending on those predictors’
relationships with the various predictands (Kitzmiller
et al., 2001; Charba, 1979). Presently, the rainfall
amount forecasts are derived by comparing the proba-
bilities to pre-determined thresholds (25%, 23%, 18%,
and 9% for each category, respectively). The thresh-
olds were selected such that they yield forecasts that
detect most rain events without undue overprediction.

Recently, neural network (NN) techniques have
been applied to many meteorological problems, such
as predicting tornadoes (Marzban and Stumpf, 1996),
damaging winds (Marzban and Stumpf, 1998), thun-
derstorms (McCann, 1992), quantitative precipita-
tion (Hall et al., 1999; Kuligowski and Barros, 1998;
Koizumi, 1999), and even long-range monsoon precip-
itation (Wu et al., 2001).

Although linear regression seems to be a common-
ly-used approach in many forecast algorithms, we
chose a back-propagation neural network (BPNN)
method (Bishop, 1995) to develop a short-range (0–3-
h) QPF algorithm. The BPNN approach considers the
nonlinear effect of all candidate predictors as a whole,
while the linear regression only selects a limited set of
predictors. It is possible to incorporate some nonlinear
effects and predictor interactions in a linear regression
approach by deriving new predictors from the original
set. However, this procedure is time consuming, not
necessarily comprehensive, and subjective.

In this experimental study, the BPNN approach
used 30 candidate predictors that were utilized in the
ADSTAT system. This BPNN approach, which still
requires some manual intervention, does not require
subjective choices regarding individual predictors, as
was done in the ADSTAT system , and it is more eco-
nomical and guides the developer through the error re-
duction process. Our aim was to test the potential for
simplification of the forecast algorithm derivation pro-
cedure and to determine whether the BPNN method
could yield better results than linear regression when
applied to the 0–3-h QPF problem. Both probabilis-
tic and categorical forecasts from the BPNN approach
were compared to those from a multiple linear screen-
ing regression approach by evaluating the forecasts’
performance on a set of cases not used in developing
either system.

2. Neural network architecture

A three-layer BPNN was used in this study. The
network architecture includes 30 input nodes, 10
hidden-layer nodes and 2 output nodes. The number
of input nodes (predictors) and the number of output

nodes (the predictands) are generally determined by
the prediction problem itself. The number of nodes in
the hidden layer is usually selected based on the num-
ber of input and output nodes (Aviolat et al., 1998;
Kuligowski and Barros, 1998). We chose to use 10
hidden nodes. Aviolat et al. (1998) pointed out that
if there are too few hidden-layer nodes, the NN will not
be able to solve the learning problem, while if there are
too many, the convergence of the learning process will
be slowed and the output could be unreliable when ap-
plied to independent data. In the course of our study,
some tests on the optimum number of hidden nodes
(ranging up to 21) were carried out. The use of more
than 10 nodes led to no consistent improvement in the
forecasts. The three-layer BPNN consists of two ma-
trices of multiplication weights. If there are N input
nodes, M hidden layer nodes, and K output nodes,
then the first matrix has M × N elements, and the
second has K × M elements. The set of values in the
hidden layer H is determined from the values in the
input layer by:

HT = F (W ·XT + QT) , (1)

where W is an M × N weight matrix that logically
maps N input nodes to M hidden-layer nodes, X is a
vector of length N containing input predictor values,
and Q is a vector of length M containing activation
threshold values. T denotes the transpose of a matrix.
F (C) is a function vector whose components are sig-
moid functions of each component c in vector C. The
sigmoid function itself is defined by:

f(c) =
1

1 + e−c
. (2)

Similarly, the vector of output values Y is deter-
mined from values in the hidden layer by:

Y T = F (V ·HT + OT) , (3)

where V is a K×M weight matrix that logically maps
M hidden-layer nodes to K output nodes, and O is a
vector of length K containing activation threshold val-
ues.

The training portion of BPNN development in-
volves minimizing the squared error E of the BPNN
output for a training sample consisting of n cases, as
expressed by

E =
n∑

i=1

‖Y i − P i‖2
, (4)

where ‖ ‖ is the Euclidean distance between the BPNN
output vector Y (forecasted rainfall category vector)
and the observed rainfall category vector P .

To minimize the error function E, an iterative gra-
dient descent algorithm (Oh and Lee, 1999) was ap-
plied to adjust the weight matrices W and V (also
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the activation threshold vectors Q and O) toward op-
timum values, as represented by

W τ = W τ−1 − ε1Dτ−1 , (5)

V τ = V τ−1 − ε2Dτ−1 , (6)
where τ denotes a step of iteration. ε1 and ε2 repre-
sent two small positive numbers. D indicates a matrix
whose entries are the partial derivatives of error E with
respect to the corresponding entries in weight matrices
W or V .

3. Training dataset

The training sample was created from data col-
lected during the warm seasons (May-September) of
1996–1998 over the eastern two-thirds of the continen-
tal United States (CONUS). Predictor variables were
chosen from among the set utilized in the operational
ADSTAT algorithms. These included predictors based
on initial-time and advected radar reflectivity, light-
ning, and satellite observations, and others derived
from forecasts of the Nested Grid Model (NGM; Hoke
et al., 1989), including humidity, stability, moisture
divergence, and precipitation. The remote-sensor pre-
dictors were all interpolated to a polar stereographic
grid with approximately 10-km mesh length over the
CONUS; this grid has precisely four times the resolu-
tion of the 40-km forecast grid, which basically meets
the requirements of operational forecasts of flash floods
for strong, warm season, thunderstorm precipitation.
The initial time of the NGM runs was 1200 UTC for
predictors valid between 1500 and 0259 UTC, and 0000
UTC for predictors valid between 0300 and 1459 UTC.
This accounts for the operational lag time in the prepa-
ration and dissemination of the model runs. The 6-h
precipitation amounts were those whose valid period
included the 3-h valid period of the extrapolative fore-
casts. The nominal spatial resolution of the NGM vari-
ables was 80 km.

A total of eight “initial times” of the extrapola-
tive forecasts were considered, starting at 0230 UTC
and continuing at 3-hour intervals through 2330 UTC;
the corresponding valid periods were 0300–0600 UTC
through 0000–0300 UTC.

Forecasts of precipitation based on the remotely-
sensed fields (reflectivity, cloud-top temperature, and
lightning strike rate) were made by an advection algo-
rithm through which the initial-time fields were ad-
vected with the NGM-predicted 700–500 hPa mean
wind vector, which proved to be a robust estimator
of radar echo motion over the United States during
the warm season. The advection procedure was per-
formed at 15-minute intervals and carried out on the
10-km polar stereographic radar analysis grid.

A rainfall amount forecast was made by con-
verting the forecasted reflectivity to rainfall rate via

the Weather Surveillance Radar-1988 Doppler (WSR-
88D) default Z −R relationship:

R = (Z/300)0.7142 , (7)

where R is rainrate in mm h−1 and Z is reflectivity in
mm6 m−3. Though this forecast has a large positive
bias relative to observed rainfall amounts, it has still
proved to be useful as a statistical predictor.

Radar- and lightning-based predictors were derived
from either the largest value or the time-averaged value
of reflectivity or lightning strike rate within the 40-
km forecast grid boxes; satellite-based predictors were
based on the minimum forecasted cloud-top tempera-
ture by finding the maximum difference between the
700-hPa temperature and the satellite-observed tem-
perature.

One useful radar-based predictor was derived by
summing up the number of 10-km grid boxes within a
3×3 region of 40-km grid boxes (120 km×120 km) that
were forecasted to have a particular echo level dur-
ing the three-hour period. Such predictors account for
both the presence of intense precipitations and their
areal coverage near a given forecast grid box. One of
these, called NLVL456, was calculated by summing up
the number of boxes with level 4 or higher echoes, the
number with level 5 or higher echoes, and the number
with level 6 echoes.

Information on large-scale atmospheric conditions
(e.g., low level jet, lower layer convergence, and he-
licity) is important to the evolution of strong convec-
tive thunderstorm systems (Xu et al., 2000; Fei and
Tan, 2001). Thus the environmental conditions were
derived from NGM model forecasts of several vari-
ables, interpolated to the forecast grid. These predic-
tors included surface-to-500-hPa mean relative humid-
ity, precipitable water, K index, lifted index, model-
generated rainfall, and moisture divergence.

A total of 30 predictor variables were used (refer to
Table 1). Prior to being used in the training process,
all predictors were normalized to the range 0.01–0.99,
rather than the range 0–1, which can lead to singu-
larity problems. Predictors were derived from data at
the initial time, during each 1-h interval within the
forecast period, and over the entire 3-h forecast pe-
riod. Additional predictors were derived by finding
the largest value within a square region of 120 × 120
km2 centered on the 40 km grid of concern. These
predictors reflect the influence of convective features
expected to pass near the grid box.

The statistical rainfall predictands were derived
from WSR-88D Stage III precipitation estimates pro-
duced operationally by the National Weather Service
River Forecast Centers (Breidenbach et al., 1998).
These 1-h analyses are based on a combination of radar
estimates and gauge observations. The data represent
average rainfall over 4-km grid boxes. Predictands
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were derived from the highest 3-h rainfall value ob-
served within contiguous 10×10 grid box subsections.
These contiguous subsections comprise the Manually-
Digitized Radar (MDR) 40-km grid. The four predic-
tands which stand for the four rainfall categories are
binary, being zero when the threshold rainfall amount
was not met, and unity when the threshold was met or
exceeded. A “case” is thus defined as the predictor and
predictand values for one 40-km grid box during one
3-h period on one day. Individual cases were extracted
from a subset of the available grid boxes.

It is necessary to deal with missing radar data in
the reflectivity imageries, since radar observation cov-
erage gaps always exist. Forecasts derived from other
data such as satellite, NGM, and lightning data must
be used to fill such gaps. Therefore, an algorithm con-
taining no radar-based predictors provides forecasts
for areas where radar data are lacking at the initial
time or for areas downstream of the coverage gaps.

First-guess probability fields are derived under the
assumption that missing grid boxes contain reflectivity
that is 15 dBZ, which is the most likely value. Then,
another radar forecast is created by extrapolation, in
which missing indicators are tracked in the same man-
ner as radar echoes. Two missing-indicator fields are
derived from this forecast. One contains the percent-
age of each 40-km grid box that is covered by missing
indicators at the initial time. The other field contains
the percentage of the space-time domain over each 40-
km box that is occupied by missing indicators during
the forecast period.

The reflectivity is quality-controlled by comparison
with satellite data, to identify and remove anomalous
propagation and ground clutter. Within any grid box,
the analysis contains the highest observed reflectivity,
expressed as one of 7 categories (levels):

Category 0 1 2 3 4 5 6

Reflectivity <15 15–29 30–39 40–44 45–49 50–54 >54

(dBZ)

The training dataset had 89556 cases. The rela-
tive frequencies of events in each rainfall category were
85.2%, 8.4%, 3.4%, 2.3%, and 0.7%, which decreased
from lowest to highest dramatically.

4. Training process

We originally attempted to develop a five-output-
node NN to be applied to the five-category categorical
precipitation forecast problem. However, the results
were unsatisfactory in that almost all forecasts were
in the lowest two amount categories.

This was apparently due to the rarity of higher
rainfall events in the training sample. From the rel-
ative frequencies of occurrence of each rainfall cate-
gory, we can see that non- or low-precipitation events

dominate the sample. The high precipitation events
(>25.40 mm) are very rare, comprising only 3% of
all cases. Thus the error minimization process se-
lected weights that best differentiated between only
the lower-amount categories.

We therefore transformed the five-category fore-
casting problem into a set of binary decisions by train-
ing four sets of two-output-node NNs as follows:

NN1: <2.54 and >2.54 mm;
NN2: 2.54–12.60 and >12.70 mm;
NN3: 12.70–25.30 and >25.40 mm;
NN4: 25.40–50.70 and >50.80 mm.
To train neural network NN1, all 89556 cases were

divided into two parts, 76311 cases with rainfall <0.1
and 13245 cases with rainfall >2.54 mm. The train-
ing sample for NN2 was taken by dividing all 13245
cases with observed rainfall >2.54 mm into two groups,
namely 7499 cases with rainfall of 2.54–12.60 mm and
5746 with rainfall >12.70 mm. Training samples for
NN3 and NN4 were constructed in the same manner,
by extracting those cases with rainfall exceeding the
lower of the two thresholds and dividing the sample
into those that did and did not reach the upper thresh-
old.

Thus each training data sample contains a popula-
tion in which higher and lower categories are both well
represented. As will be shown, this approach worked
well when applied to independent data.

We refer to the output of the two NN nodes as
Plow and Phigh. If the output of the NN is such that
Plow > Phigh, then the lower rainfall category is fore-
casted. If the converse holds, then the higher category
is selected. To produce a categorical forecast from
these NNs, the output of NN1 is first evaluated. If
the output indicates that at least 2.54 mm should be
forecasted, then the output of NN2 is evaluated. If
NN2 indicates that at least 12.70 mm should be fore-
casted, then NN3 is evaluated, and so on.

Of course, the NN approach is also applicable to
rainfall probability forecasting. For example, the prob-
ability of rainfall in excess of 2.54 mm is given by the
value of Phigh in NN1.

The performance of each NN in the training phases
was measured by scores derived from a contingency
table based on the four possible outcomes. Here,
“higher” and “lower” refer to the two rainfall cate-
gories:

x: Higher forecasted, higher observed (correct fore-
cast for higher)

y: Lower forecasted, higherobserved (missedevent)
z: Higher forecasted, lower observed (false alarm)
w: Lower forecasted, lower observed (correct fore-

cast for lower)
Three standard scores and a new index were used

to determine the effects of the back-propagation train-
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Table 1. The input predictors in the neural network’s training processes.

Abbreviation Description

INITIAL MAX REFL Maximum reflectivity at initial time

HR1 MAX REFL Maximum reflectivity at 1st hour extrapolation

HR2 MAX REFL Maximum reflectivity at 2nd hour extrapolation

HR3 MAX REFL Maximum reflectivity at 3rd hour extrapolation

HR0-3 MAX REFL Maximum reflectivity over 3-h extrapolation

HR0-3 NLVL456 Number of 10-km meshes in a 40-km grid with echo levels 4, 5 and 6

HR0-3 NLVL456 3X3 Number of 10-km meshes in a 120 km×120 km area with echo levels > 4, > 5, > 6

HR1 MAX RAINFALL Maximum radar-derived rainfall at 1st hour extrapolation

HR2 MAX RAINFALL Maximum radar-derived rainfall at 2nd hour extrapolation

HR3 MAX RAINFALL Maximum radar-derived rainfall at 3rd hour extrapolation

HR0-3 MAX RAINFALL Maximum radar-derived rainfall within 3 hour extrapolation

PCT MSG RADR INIT Percentage of missing radar data in a 40-km grid at initial time

CT MISSING RADR Percentage of occupied missing data over a 40-km grid in 3 h forecast period

INIT MX LTG STRIKE RT Maximum lightning strike rate at initial time

HR1 MX STRIKE RATE Maximum lightning strike rate at 1st hour extrapolation

HR2 MX STRIKE RATE Maximum lightning strike rate at 2nd hour extrapolation

HR3 MX STRIKE RATE Maximum lightning strike rate at 3rd hour extrapolation

HR0-3 MX STRIKE RATE Maximum lightning strike rate over 3-h extrapolation

INIT MIN SAT TEMP Minimum satellite temperature at initial time

INIT MAX T700-TSAT Maximum temperature difference between 700-hPa and cloud top (initial time)

0-1H MAX T700-TSAT Maximum temperature difference between 700-hPa and cloud top (1 hour)

0-3H MAX T700-TSAT Maximum temperature difference between 700-hPa and cloud top (3 hour)

K INDEX NGM model-predicted K index

PW NGM model-predicted precipitable water

MEAN RH % NGM model-predicted surface–500-hPa mean relative humidity

PRECIP EFFICIENCY NGM generated precipitation efficiency

NGM 6-h RAINFCST NGM 6-h rainfall forecast

MDIV850 NGM moisture divergence at 850 hPa

850-500 LI NGM predicted/analyzed lifted index between 850 and 500 hPa

INITIAL MX REFL 3× 3 Maximum reflectivity within a 3× 3 40-km grid

ing. The standard scores were probability of detection
(POD):

POD =
x

x + y
, (8)

false alarm ratio (FAR):

FAR =
z

x + z
, (9)

and critical success index (CSI):

CSI =
x

x + y + z
(10)

A fourth index, called π, was developed in the
course of this work to facilitate monitoring the
progress of the BPNN training process. The value of π
indicates the prevalence of errors relative to successes
in the BPNN output. It is defined as follows.

The value of π approaches 0 for perfect forecasts
(no errors) and increases as errors begin to predomi-
nate. This quantity proved useful in determining when

to terminate training iterations.

π =0.125
(

y + z

x
+

y + z

w
+

z

w + z
+

y

w + y
+

z

x + z
+

y

x + y

)
. (11)

In training neural networks, it is common to termi-
nate iterations when it is apparent that further train-
ing is leading to only limited gains in forecast skill.
The forecast skill as a function of the number of train-
ing iterations is shown by the performance scores in
Fig. 1. Each iteration corresponds to one adjustment
to the weight matrices W and V and to the activa-
tion vectors Q and O. The ratio E/E0 indicates the
squared error of the NN output relative to its initial
error. This ratio decreases slowly after the first 50
training iterations. The π index decreases sharply in
the beginning and reaches a minimum at the 50th iter-
ation, and, after some perturbations, decreases slowly
with training time. Higher POD and CSI scores corre-
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Fig. 1. The performance of NN1 during 240 training cy-
cles.

spond to smaller values of π. We believe that π could
therefore serve as a useful termination criterion for the
training process.

5. Sample forecasts

On 3 May 2001, a westerly trough at 500 hPa
affected the southern part of the country, causing
widespread heavy rainfall over the southeastern part
of the country. The categorical rainfall forecast and
corresponding observations for this convective precip-
itation event appear in Fig. 2 and Fig. 3. The BPNN
categorical rainfall amount forecasts agree well with
Stage III observations (Fig. 3) in terms of size and
shape of the area with rainfall >2.54 mm. The BPNN
tended to over-forecast the spatial extent of heavier
rainfall amounts, but the positioning of the areas with
rainfall >25.40 mm is still generally accurate. Output
from NN1 is shown in Fig. 4. As has been mentioned

Fig. 2. Rainfall amount forecasts from BPNN output, valid for 2100–0000
UTC 2–3 May 2000.

above, this output is equivalent to the probability of
rainfall >2.54 mm.

The size and shape of the area with a probability
of 30% agree well with those of the area of observed
rain >2.54 mm. Outputs from NN2-NN4 denote the
likelihood to produce >12.70 mm, >25.40 mm, and
>50.80 mm rainfalls respectively. As is shown in Fig.
5, the colored areas indicate the areas in which rain-
fall >50.80 mm are possible to occur. Larger values
indicate that the areas are more likely to experience
heavy rainfalls within 3 hours.

6. Comparative verification

To objectively assess the quality of the trained NNs
when applied to independent data, we evaluated them
for a set of cases from the 1999 warm season. There
were a total of 43884 cases. The relative frequency of
events in each rainfall category was (from lowest to
highest) 85.3%, 7.9%, 3.6%, 2.3%, and 0.9%, respec-
tively. The verification results were compared with
those from the regression procedure. A verification
contingency table for the BPNN output for the 1999
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Fig. 3. Stage III radar/gauge rainfall estimates, for the period 2100–0000
UTC 2–3 May 2000.

Fig. 4. Probabillty of rainfall >2.54 mm, based on output of NN1, valid for
2100–0000 UTC 2–3 May 2000.

cases appears in Table 2. The forecasts define the
columns, and the verifying observations, the rows.
Thus correct forecasts are counted in the diagonal from
upper left to lower right.

For comparison, results from the linear regression
system are shown in Table 3. These forecasts were
derived from the set of regression-based probabilities,
i.e., equations listed in Table 4, hereafter referred to as
Y1, Y2, Y3, and Y4. Categorical forecasts were derived

from the probabilities by comparing each probability
to threshold values of 25%, 22%, 18%, and 9%, re-
spectively. The forecasted category corresponded to
the highest rain amount for which the threshold prob-
ability was exceeded, subject to the condition that the
probabilities for all lower amounts also exceeded their
thresholds.

One of the simplest measures for assessing differ-
ences between the BPNN and regression forecasting
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Fig. 5. Output from NN4, for rainfall >50.80 mm, valid for 2100–0000 UTC
2–3 May 2000.

Table 2. Verification of categorical rainfall forecasts based on BPNN, 1999 warm season (mm).

Observation
BPNN Forecasts

>50.80 25.40−50.70 12.70−25.30 2.54−12.60 <2.54

>50.80 39 144 62 71 93

25.40−50.70 76 322 174 227 227

12.70−25.30 59 318 217 479 492

2.54−12.60 66 364 337 1202 1474

<2.54 72 343 257 1893 34876

Table 3. As in Table 2, except forecasts based on linear regression (mm).

Observation
Regression forecasts

>50.80 25.40−50.70 12.70−25.30 2.54−12.60 <2.54

>50.80 46 120 98 92 53

25.40−50.70 90 288 239 268 141

12.70−25.30 78 330 356 489 312

2.54−12.60 74 419 615 1298 1037

<2.54 44 293 738 2968 33398

systems is the percentage of all forecasts that are ver-
ified in the correct category. The percentage correct
is derived from the total number of cases on the as-
cending diagonal divided by the total number of cases
(83.5% for the BPNN and 81% for the regression ap-
proach). However, these percentages are dominated
by the large number of minimal-skill cases in which
the <2.54 mm category was both forecasted and ob-
served. A potentially more useful indication of the
skill is the percentage of forecasts correct within the

subset of cases where 2.54-mm rain was forecasted or
observed. In these tables, this is the set of cases ex-
cluding the box at the extreme lower right; the per-
centage correct is based on the total number of cases
on the diagonal, divided by the total number of cases
minus those for which <2.54 mm was both forecasted
and observed. This percentage reduces to the standard
CSI if the contingency table has only two categories.
The values for Tables 2–3 are 20% for the BPNN and
19% for the regression procedure. Finally, the percen-
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Table 4. Probabilistic rainfall forecast equations based on linear regression.

Rainfall categories Probabilistic equations

>50.80 mm Y4=−0.00889+6.570(HR0-3 MX STRK RATE)+ 8.409(NGM 6-h RAINFCST)

+6.311(INITIAL MX REFL)+4.892(HR3 MX STRIKE RATE)

−5.754(0-1H MAX T700-TSAT)+4.027(INIT MAX T700-TSAT)

>25.40 mm Y3=−0.02477+14.493(INITIAL MAX REFL)+12.470(HR0-3 MX STRK RATE)

+10.886(NGM 6-h RAINFCST)+7.279(HR3 MX STRIKE RATE)

−6.945(0-1H MAX T700-TSAT)+ 5.58( INIT MAX T700-TSAT)

>12.70 mm Y2=−0.02476+26.043(INITIAL MAX REFL)+12.594(HR0-3 MX STRK RATE)

+11.640(NGM 6-h RAINFCST)+ 7.626(HR0-3 MX STRIKE RATE)

>2.54 mm Y1=−0.03299+12.017(INITIAL MAX REFL)+11.541(HR0-3 MX STRIKE RATE)

+14.895(NGM 6-h RAINFCST)+8.450(HR0-3 MX REFL)

+4.937(HR0-3 MX STRK RATE)

Fig. 6. Percentages of categorical forecasts verified in the
correct category, for all cases, for all cases involving >2.54-
mm rainfall, and for all cases involving >25.4-mm rainfall.

tage correct among the 25.4-mm cases was derived
by similar logic. These scores were again rather low
(13.5% for the BPNN, 12.5% for regression). The re-
sults of all three comparisons appear in Fig. 6.

Thus it is apparent that there are minimal differ-
ences between the two sets of categorical forecasts.
Moreover, the forecasts are not highly accurate. How-
ever, we noted that for many of the forecasts the ver-
ifying observations were within one category of the
forecasted one. These cases are those falling on the
diagonal or boxes immediately above or below the di-
agonal in Tables 2–3. For all cases involving rainfall
>2.54 mm, 53% of BPNN and 65% of regression fore-
casts had observed rainfall within one category of the
forecasted one. For all cases involving forecasts or ob-
servations >25.4 mm, these percentages were 34% for
the BPNN and 33% for the regression forecasts.

7. Summary

A BPNN was applied to establish relationships

between the 0-3-h rainfall and the predictors rang-
ing from extrapolative forecasts of radar reflectivity,
satellite-estimated cloud-top temperature, lightning
strike rates, and NGM model outputs. Quantitative
precipitation forecasts and the probabilities of categor-
ical precipitation were obtained. Results of the BPNN
algorithm were compared to the results obtained from
the multiple linear regression algorithm for an inde-
pendent dataset from the 1999 warm season. It ap-
pears that the two approaches produce forecasts of
very similar quality, although in some respects BPNN
slightly outperformed the regression.

Though generally the BPNN algorithm could cap-
ture the basic spatial pattern of the precipitation
>2.54 mm, the location and spatial extent of heavier
categorical rainfall forecasts still lacked precise. Fu-
ture improvement should include the evolution fea-
tures in the convective rain cells. Predictors describ-
ing the growth and dissipation processes of the con-
vective echoes should be tactically considered in the
algorithm.

In addition, a π index was developed in this ef-
fort to facilitate monitoring the progress of the BPNN
training process. This π index indicated the preva-
lence of errors relative to successes in the BPNN out-
put. It proved to be a useful termination criterion for
the training process.

A plan to develop an operational 0–3-h QPF fore-
casting system using similar techniques is under con-
sideration at the Guangdong Provincial Meteorologi-
cal Observatory of China. This future work will focus
on interpreting China’s new generation Doppler radar
(CINRAD) observations, Guangzhou mesoscale nu-
meric weather prediction model products, surface au-
tomatic meteorological observations and China’s geo-
stationary meteorological satellite FY2C information.
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