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ABSTRACT

A two-layer quasi-geostrophic model is used to study the stability and sensitivity of motions on small-
scale vortices in Jupiter’s atmosphere. Conditional nonlinear optimal perturbations (CNOPs) and linear
singular vectors (LSVs) are both obtained numerically and compared in this paper. The results show that
CNOPs can capture the nonlinear characteristics of motions in small-scale vortices in Jupiter’s atmosphere
and show great difference from LSVs under the condition that the initial constraint condition is large or
the optimization time is not very short or both. Besides, in some basic states, local CNOPs are found.
The pattern of LSV is more similar to local CNOP than global CNOP in some cases. The elementary
application of the method of CNOP to the Jovian atmosphere helps us to explore the stability of various-
scale motions of Jupiter’s atmosphere and to compare the stability of motions in Jupiter’s atmosphere and

Earth’s atmosphere further.
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1. Introduction

The general circulation of the Jovian atmosphere
is dominated by multiple zonal jets associated with
banded structures of clouds (Ingersoll, 1990). This is
a great difference from the Earth’s atmosphere, which
has only one midlatitude westerly jet in each hemi-
sphere. The mechanism of maintaining this basic fea-
ture is not yet resolved. Another fantastic phenomena
is the Great Red Spot (GRS) located on the south-
ern hemisphere, which has persisted for more than 300
years since it was discovered by Cassini in 1665. Even
some small-scale vortices can persist for about 60 days
unless they interact with each other (MacLow and In-
gersoll, 1986). The GRS is a large-scale anticyclone,
which is the rule rather than the exception through-
out the solar system. One may even find analogs of
Jovian vortices in Earth’s oceans and atmosphere, for
example, the Gulf Stream rings and the blocking highs
(Dowling, 1993). The difference among the phenom-
ena is that in Earth’s atmosphere such events generally
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cannot persist for such a long time. So, the question
why some anticyclones, e.g., the GRS and white ovals
in Jupiter’s atmosphere, can persist for such a long
time needs to be answered.

Ingersoll and Cuong (1981) simulated the sta-
ble and unstable vortices with a two-layer quasi-
geostrophic model, and showed that when two stable
vortices collided, they will merge after a short tran-
sient phase to form a larger stable vortex rather than
the non-interaction. They suggested the long-lived Jo-
vian vortices maintain themselves against dissipation
by absorbing the smaller vortices generated by con-
vection. The method of numerical simulation in the
research of stability and sensitivity of the Jovian atmo-
sphere has been popular through the history of this re-
search (Marcus, 1988; Achterberg and Ingersoll, 1994;
Williams, 1996).

One of the useful tools in stability and sensitivity
analysis is the linear singular vectors (LSVs), which
were first applied to the meteorological research field
by Lorenz (1965). The linear approximation is valid
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if the initial perturbation is sufficiently small and the
time period is not too long. But the motions of the
Earth’s atmosphere and Jupiter’s atmosphere are both
dominated by complicated nonlinear systems. In Mu
and Duan (2003) and Mu et al. (2003), the concept of
conditional nonlinear optimal perturbations (CNOPs)
is introduced, and these are the extension of the linear
singular vector into the nonlinear domain. Conditional
nonlinear optimal perturbations are initial perturba-
tions whose nonlinear evolution obtains the maximum
value of the objective function, which is constructed
according to the physical problem that we are inter-
ested in, while the linear singular vectors are the initial
perturbations that have the largest growth rate in the
linear regime at the optimization time.

In this paper, we attempt to study the stabil-
ity and sensitivity of motions on small-scale Jovian
vortices with a two-layer quasi-geostrophic model by
the method of conditional nonlinear optimal perturba-
tions. Section 2 describes the model and the concept
of CNOP. In section 3, CNOPs of three basic states
are obtained. The characteristics of CNOP and the
differences between CNOPs and LSVs are analyzed.
Finally, section 4 gives the conclusions and the impli-
cations of the results.

2. The model and the CNOPs

Dowling and Ingersoll (1988) pointed out that
two-layer models can simulate motions of vortices in
Jupiter’s atmosphere effectively. The upper-layer con-
tains the vortices and all the time-dependent motions.
The lower layer represents the neutrally stratified deep
atmosphere. Any motions in the lower layer are as-
sumed to be zonal and steady. The two-layer system
can be reduced to a one-layer system with meridionally
varying solid bottom topography (Gill, 1982).

We consider the following two-dimensional nondi-
mensional quasi-geostrophic (QG) model for a sin-
gle upper layer supported hydrostatically on a much
deeper lower layer (Dowling and Ingersoll, 1988):

)
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The dependent variable is the upper layer stream-
function ¥ (x,y,t). The model differs from standard
QG models only in the term Fyo, where 12(y) is the
streamfunction of the zonal flow in the lower layer. ¢
is the potential vorticity. F' is the Planetary Froude

number,
)
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where Lg is the Rossby deformation radius, L is
the length scale, Hy the typical characteristic height,
fo Coriolis parameter, and p; and ps are the den-
sity of the upper and lower atmosphere respectively
(p2 > p1). f is the nondimensional Coriolis parameter.
Q= 1[0,2X] x [0,2Y] with a double periodic boundary
condition.

Dimension analysis shows that Fiy ~ f (Dowling
and Ingersoll, 1988). In this paper, for simplicity, the
lower streamfunction 3(y) is defined as:

Ualy) = 5= [sm (2@5’) + 1} . 2)

In our numerical approach, the five-point differ-
ence scheme is employed to discretize the Laplacian
operator. The Arakawa finite difference scheme is
used to discretize the Jacobian operator. The tempo-
ral discretization is carried out by using the Adamas-
Bashforth scheme. The grid spacing is Az = 0.2 and
the time step is At = 0.006. Q = [0,6.4] x [0, 3.2]

For fixed T > 0 and initial condition t|;—g = o,
the propagator M is well-defined; ¢ (x, y,t) = My ()
is the solution of (1) at time 7. The energy norm is
employed in this paper,

lll? = / (IVol? + Flof)dedy 3)

where ¢ is the streamfunction.

In order to consider the influence of nonlinearity
on predictability, Mu and Duan (2003) and Mu et al.
(2003) proposed the concept of conditional nonlinear
optimal perturbation (CNOP), which seeks an initial
perturbation ¢g, that makes the objective function
J(¥},) acquire a maximum value under the initial con-
straint condition ||¢gl| < o,

J(po,) = max J(eo), (4)
lleoll<eo

where

J (o) = [[Mr (o + ¢o) — Mz (b0)]| -

To calculate the conditional nonlinear optimal per-
turbation, the reciprocal of the objective function and
its corresponding gradient with respect to the initial
perturbation are determined. In this process, the vari-
ation method and adjoint technique are used. The de-
duction in detail can be found in the paper by Mu and
Zhang (2006). Because of the large free degrees of the
model, the optimization algorithm of the Spectral Pro-
jected Gradient (SPG) method is employed (Birgin et
al., 2000), which calculates the least value of a function
of several variables subject to box and ball constraints.
In this paper, we just change the squared norm con-
straint into the energy norm constraint. Besides, this
optimization method does not need to calculate the
gradient of the norm of the initial perturbation with
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respect to the initial perturbation itself, which is differ-
ent from SQP (Powell, 1982) used in Mu and Zhang
(2006). At present, the method of CNOP has been
widely used in ocean and atmospheric research fields
(Mu et al., 2003; Duan et al., 2004; Mu et al., 2004).

3. Numerical results

Williams and Yamagata (1984) pointed out that
the primary arbitrary parameter in Jupiter’s atmo-
sphere is the Rossby deformation radius Lg, and
unless the atmosphere is both very deep and very
stable, this value of Lg = 1500 km is reasonable.
Besides, the basic dimensional dynamical parame-
ters for three distinct scales of vortices are given.
For a small vortex, L=2000 km, U=10 m s~ !, and
fo=25x10"*ms™2. Dowling and Ingersoll (1988)
observed that the layer thickness and the Coriolis pa-
rameter both vary substantially across the GRS, and
they estimated that the QG approximation is good
only to about the nearest 30%, while motions on the
small scale observe the rule of the quasi-geostrophic
approximation. So in this paper, the stability and sen-
sitivity of motions in small-scale vortices with the QG
model are studied.

In this section, two steady states and an unsteady
state are taken as basic states to calculate CNOPs and
LSVs for different initial constraint conditions. LSVs
are obtained by maximizing a modified version of the
objective function J(¢g), which is defined in the linear
regime. The optimization algorithm employed is still
the SPG method with the smallest constraint condi-
tion. Due to the linear characteristic of LSVs, multi-
plying an LSV by a constant yields another LSV.

3.1 Experiment 1

In this experiment, the initial basic state is chosen
as

. (27
Yo(y) = a X sin (2;}) +0b,

where a = 4.62 and b = 44.643. This is a steady
state. According to Arnol’d’s nonlinear stability crite-
ria (Mu and Shepherd, 1994), this basic state is non-
linearly stable. The total energy norm of the basic
state is 271.630. The maximum constraint condition
o of the initial perturbation is 2.72, which is approxi-
mately 1.0% of that of the basic state. There are 720
steps, which correspond to 10 days (on Earth), for the
following experiments, and unless indicated otherwise,
10 days are always employed.

Table 1 summarizes the numerical results of Expt.
1. ||¢rL|| and ||¢Ln|| represent the energy norms of the
linear and nonlinear evolution of LSV with the predic-
tion time. ||¢7L|| and ||pTn]|| are the energy norms of
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the linear and nonlinear evolution of CNOPs with the
prediction time. Ar, is the singular value (SVa). For
each o, the corresponding LSV is obtained by multi-
plying the LSV with the smallest ¢ by a constant so
that its energy norm is . CNOPs can be obtained
by the nonlinear optimization method directly, and
we find that they are all located on the boundary of
the constraint. In particular, in some basic states, lo-
cal CNOPs may also be found, which are located on
the boundary too under the condition that the ini-
tial constraint condition o is large. As for some o
values, if there is local CNOP, the upper cell in the
table is the local CNOP and the nether cell is the
global CNOP. From the table, one can see that when
the initial constraint condition ¢ is very small, the
norms of the linear and nonlinear evolutions of LSV
and CNOP are almost the same, which proves that
in the linear regime LSV can represent CNOP well.
When the initial constraint condition becomes larger,
LSV and CNOP show great differences gradually. Fig-
ure 1, which is plotted based on Table 1, also shows
the value differences of energy norms between the lin-
ear and nonlinear evolution of LSV and CNOP respec-
tively. Here, ||¢/x|| is the energy norm of the nonlinear
evolution of the local CNOP with the prediction time.

Figure 2 shows LSV and CNOP and their corre-
sponding linear and nonlinear evolutions under the
small initial constraint condition 0=0.0272. The re-
sults show that whatever the patterns of CNOP and
LSV or their corresponding linear and nonlinear evo-
lutions are, they are almost the same. That is to say,
under this condition, the linear approximation is valid.
Figure 3 gives the local and global CNOP and their
corresponding nonlinear evolutions respectively under
the large initial constraint condition ¢ = 1.0. The re-
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Fig. 1. Linear and nonlinear numerical results of CNOP
and LSV for an integration time of 10 days for Expt. 1.
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Fig. 2. Results of the small constraint condition for an integration time of 10 days for Expt. 1,
in which the z-axis represents the zonal direction, the y-axis represents the meridional direction,
and the value is dimensionless length (Fig. 3, Fig. 6 and Fig. 7 are the same as Fig. 2) (a) LSV
with o = 0.0272 [Contour interval (CI) is 3.0x107*]; (b) CNOP with ¢=0.0272 (CI=3.0x10"*);
(¢) Linear evolution of SV (CI=0.003); (d) Nonlinear evolution of CNOP(CI=0.003).

sults show that the patterns of LSV and its linear
evolution are the same as Figs. 2a and c respectively,
where the only differences between them are the val-
ues. The patterns of CNOPs and LSVs are compared,
and we find that regardless of the local CNOP or global
CNOP, they show differences from LSV. Certainly, the
local CNOP shows more similarity to the LSV than the
global CNOP. That is to say, under such a condition,
the linear approximation is invalid and CNOP may
describe the phenomena exactly.

3.2 Experiment 2

In this experiment, another zonal basic state is cho-
sen, where a = 4.478 and b = 42.685. This is also a
steady state. According to Arnol’d’s nonlinear stabil-
ity criteria, this basic state is more stable than the first
one. The energy norm of the basic state is 259.78. The
maximum constraint condition ¢ of the initial pertur-

bation is 5.2, which is approximately 2.0% of that of
the basic state.

Table 2 summarizes the numerical results of Ex-
periment 2. Figure 4, like Fig. 2, gives the evolution of
CNOPs and LSVs with different initial constraint con-
ditions. Under the very small initial constraint condi-
tion, the linear approximation is valid. The value of
AL can represent the degree of stability. The smaller
the value is, the more stable the basic state is. Under
the large initial constraint condition, we can compare
the CNOP in Expt.2 whose ratio to the basic state
is the same as that in Expt. 1. The smaller the en-
ergy norm of their corresponding nonlinear evolutions
to the basic state is, the more stable the basic state
is. The numerical results prove that this basic state is
certainly more stable than the first one. Considering
the similarity of the basic state between Expt. 1 and
Expt. 2, the patterns of LSVs and CNOPs are omitted.
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Table 1. Nonlinear and linear numerical results of CNOP and LSV for an integration time of 10 days for Expt. 1.

o | orn |l Il o |l Il el Il err |l AL
2.72x1072 8.043x102 8.042x102 8.042x102 8.042x102 2.957
0.60 1.798 1.730 1.774 1.773 —

1.819 1.472
1.0 3.042 2.884 2.941 2.957 -
3.371 2.160
1.2 4.253 2.452 3.511 3.548 —
1.5 5.653 3.013 4.327 4.435 —
2.72 12.652 5.669 6.488 8.042 -

Table 2. Nonlinear and linear numerical results of CNOP and LSV for an integration time of 10 days for Expt. 2.

o Il o |l Il oo |l Il P |l Il e |l AL
2.6x10—2 7.483x10—2 7.482x102 7.482x10—2 7.482x10—2 2.878
0.6 1.752 1.703 1.725 1.727 -
1.0 2.973 2.785 2.860 2.878 -
2.6 10.471 4517 6.079 7.482 -
11.248 5.083
5.2 20.742 9.328 7.541 14.965 -
22.180 10.570
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Fig. 3. Results of large constraint condition for an integration time of 10 days for Expt. 1. (a)
Local CNOP with o = 1.0 (CI=0.015); (b) Global CNOP with ¢ = 1.0 (CI=0.015); (c¢) (CI=0.1)
and (d) (CI=0.2) correspond to the nonlinear evolution of (a) and (b) respectively.
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Fig. 4. Nonlinear and linear numerical results of CNOP

Fig. 5. Nonli d li ical Its of CNOP
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Fig. 6. Results of the small constraint condition for an integration time of 10 days for Expt. 3.
(a) LSV with ¢ = 0.0272 (CI=5.0x10"*); (b) CNOP with ¢ = 0.0272 (CI=5.0x10"%); (c) Linear
evolution of SV (CI=0.005); (d) Nonlinear evolution of CNOP (CI=0.005).
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Table 3. Nonlinear and linear numerical results of CNOP and LSV for an integration time of 10 days for Expt. 3.

o | o |l | ere |l Il oL~ |l |l erw i AL
2.72x1072 0.102 0.101 0.101 0.101 3.725
0.60 3.152 2.000 2.217 2.235 -
1.0 4.736 2.218 3.556 3.725 -
1.5 6.712 3.824 4.703 5.587 -
7.247 3.991
2.72 12.895 5.945 7.744 10.132 —
13.188 6.071
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Fig. 7. Results of the large constraint condition for an integration time of 10 days for Expt.
3. (a) CNOP with the energy norm of 0.6 (CI=0.01). (b) CNOP with the energy norm of 1.0
(CI=0.015); (c) Local CNOP with the energy norm of 2.72 (CI=0.03); (d) Global CNOP with the

energy norm of 2.72 (CI=0.03):

3.3 Experiment 3

In the last experiment, an unsteady basic state is
given. The basic state is obtained by integrating the
following initial field,

. 2w . (27
Yo(z,y) = a X sin (2;/) + b X sin (2;/) +c,

where a = 0.5, b = 4.62 and ¢ = 44.643. This non-

zonal initial field is obtained by adding a weak merid-
ional flow on the basis of Expt. 1. So this basic state
perhaps is an unstable flow according to Arnol’d’s sta-
bility criteria. The energy norm of the initial basic
state is 271.643. The maximum constraint condition
o of the initial perturbation is 2.72, which is approxi-
mately 1.0% of that of the basic state.

Table 3 summarizes the numerical results of Ex-
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periment 3. Figure 5, like Fig. 2, gives the evolution
of CNOPs and LSVs with different initial constraint
conditions. The numerical results prove that this basic
state is certainly less stable than the first one. Figure 6
gives the LSV and CNOP with energy norm 0.0272 for
10 days and their corresponding linear and nonlinear
evolutions. Similar to the above two experiments, the
patterns of CNOP and LSV and their corresponding
nonlinear and linear evolutions are very similar under
the condition that the initial constraint condition is
very small. Figure 7 shows CNOPs with different ini-
tial constraint conditions. With the initial constraint
condition o increasing, the CNOPs show great differ-
ences from the LSV gradually, which is due to the fact
that the CNOPs have begun to display the nonlinear
characteristics of the system. Besides, the results do
not show the difference of the scale between the lo-
cal CNOP and global CNOP, which, in Mu and Zhang
(2006), the scale of the global CNOP is usually smaller
than that of the local CNOP. For a complex model
with large free degrees, the relationship between the
local and global CNOP needs to be explored further.

4. Conclusions and implications

In this paper, the conditional nonlinear optimal
perturbation and singular vector are both obtained nu-
merically with a two-layer quasi-geostrophic model in
a small-scale vortex in Jupiter’s atmosphere. Under
the condition that the initial constraint condition is
very small, LSV and CNOP are very similar for not
too long optimization time interval, and the linear ap-
proximation is valid. With the initial constraint condi-
tion increasing, CNOP and LSV show great differences
regardless of their patterns or their evolutions. In this
case, the linear approximation is invalid and CNOP
can catch the nonlinear characteristics better. Fur-
thermore, for some basic states, local CNOPs can be
obtained except for the global CNOPs.

Because, in this paper, the lower and upper flows
are both simplified, this may not represent the real
status of Jupiter’s atmosphere. But the application of
the CNOP method to the theoretical model of motion
in a small-scale vortex in Jupiter’s atmosphere may
provide the chance for us to continue to compare the
stability of motions of Jupiter’s atmosphere and the
Earth’s atmosphere. Thus we can further understand
the motion of Earth’s atmosphere.

Besides, the problem of stability of flows around a
large-scale vortex, such as the GRS, in Jupiter’s atmo-
sphere is also intriguing. It is known that the reduced-
gravity shallow water model can simulate this phe-
nomenon well (Dowling and Ingersoll, 1989). So, en-
couraged by the numerical results above, the method

VOL. 23

of CNOP can be applied to the reduced-gravity shal-
low water model to study the stability of flows around
a large-scale vortex.
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