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ABSTRACT

The semi-Lagrangian advection scheme is implemented on a new quasi-uniform overset (Yin-Yang)
grid on the sphere. The Yin-Yang grid is a newly developed grid system in spherical geometry with
two perpendicularly-oriented latitude-longitude grid components (called Yin and Yang respectively) that
overlapp each other, and this effectively avoids the coordinate singularity and the grid convergence near the
poles. In this overset grid, the way of transferring data between the Yin and Yang components is the key to
maintaining the accuracy and robustness in numerical solutions. A numerical interpolation for boundary
data exchange, which maintains the accuracy of the original advection scheme and is computationally
efficient, is given in this paper. A standard test of the solid-body advection proposed by Williamson is
carried out on the Yin-Yang grid. Numerical results show that the quasi-uniform Yin-Yang grid can get
around the problems near the poles, and the numerical accuracy in the original semi-Lagrangian scheme
is effectively maintained in the Yin-Yang grid.
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1. Introduction

An advection transport plays one of the most im-
portant roles in atmospheric dynamics. As a matter of
fact, the properties of an advection scheme are key for
the proper representation of fluid dynamical phenom-
ena in atmospheric numerical models. At the same
time, most atmospheric numerical models are devel-
oped based on spherical geometry and adopt the finite
difference scheme or spectral method to compute ad-
vection. The models suffer from the rigid limitation
of the Courant-Friedrich-Lev (CFL) number and large
computational errors due to the polar singularity in
the latitude-longitude (LAT/LON) grid, which is es-
pecially serious when the grid resolution is refined. For
instance, this is the case for the high resolution global
mesoscale simulation with a 10-km grid (Ohfuchi et
al., 2004). So far, two attempts, namely the applica-

tion of the semi-Lagrangian advection scheme and the
adoption of a uniform grid system, have been made to
eliminate the pole singularity in the LAT/LON grid,
and they have been found to be practical in improving
the numerical accuracy and computational efficiency.

Since the publication of the pioneering work of
Wiin-Nielsen (1959), the semi-Lagrangian scheme has
received much attention for its superiority in compu-
tational stability and efficiency for large time steps.
With this approach, Robert (1981, 1982) obtained
stable integrations of both the divergent and non-
divergent shallow water equations with a time step
of up to 2 hours, using a semi-Lagrangian, semi-
implicit grid-point model. Since then, Ritchie (1985,
1987), Rood (1987), McDonald (1984§1986), McDon-
ald and Bates (1987§1989) have shown the numerical
accuracy, computational stability and efficiency of the
semi-Lagrangian scheme. Staniforth and Côté (1991)
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gave a detailed review of this method and its appli-
cations to numerical models for atmospheric dynam-
ics. Compared with the Eulerian scheme, the time
step of the semi-Lagrangian scheme can be free of the
constraint of the CFL condition due to the compu-
tational stability. Robert (1981, 1982) showed that
the time step could be four to six times as large as
the maximum permitted for an equivalent Eulerian
semi-implicit model. It has been also observed that
semi-Lagrangian schemes are very accurate in numer-
ical dispersion. Williamson and Rasch (1989) carried
out a series of two-dimensional, shape-preserving semi-
Lagrangian schemes with cubic and rational Hermite
interpolations. We adopt the cubic Lagrange method
to interpolate the physical values at the departure
point since it gives a good trade-off between numer-
ical accuracy and computational efficency.

The singularity and the convergence of meridians
in the polar regions of the LAT/LON grid system still
remain major obstacles to obtain more accurate and
more efficient computations. The coordinate singu-
larity, however, is not an actual physical singularity.
As one of the circumventions, special measures of the
departure points on the poles are developed, such as
the way of McDonald and Bates (1989) to diagnose
the polar wind using a minimization principle. The
problem of the grid convergence is more serious. The
convergence of meridians in the polar regions of the
LAT/LON grid brings about real problems in com-
putational stability and numerical accuracy. Making
use of uniformly spaced grids is one of the solutions
to this issue, for example, the icosahedral geodesic
grid (Tomita et al., 2001) and the conformal-cubic grid
(Rancic et al., 1996). These grids are generated in a
manner more sophisticated than the LAT/LON grid.

Another approach is known as the “Yin-Yang”
grid, which was suggested by Kageyama and Sato
(2004) as a quasi-uniform overset grid without a singu-
lar point. A Yin-Yang grid is constructed by overlap-
ping two perpendicularly oriented latitude-longitude
grid components. Thus, existing numerical frame-
works developed in the LAT/LON grid can be trans-
planted to the Yin-Yang grid in a more straightfor-
ward way. However, data exchange between the Yin
and Yang zones on the boundaries is necessary in the
Yin-Yang system, and this substantially affects the nu-
merical solutions. Peng et al. (2006) developed a
conservative constraint for the Yin-Yang grid by us-
ing the Eulerian time integration and the CIP-CSLR
(Constrained Interpolation Profile-Conservative Semi-
Lagrangian scheme with Rational function) advection
algorithm (Xiao et al., 2002) to ensure the conserva-
tiveness across the Yin/Yang boundaries.

In this paper, a semi-Lagrangian advection scheme
is developed in the Yin-Yang grid. The data exchange

on the boundaries and the effect on the computa-
tional accuracy are investigated. The semi-Lagrangian
advection scheme (Ritchie and Beaudoin, 1994) is
adapted to the Yin-Yang grid and is implemented for
a two-dimensional advection discretizing on the C-grid
(Arakawa and Lamb, 1977). A standard test case
of solid-body advection (Williamson et al., 1992) is
also illustrated to show the accuracy of a numerical
algorithm that uses the cubic Lagrange interpolation
method.

This paper is organized as follows. A brief descrip-
tion of the Yin-Yang grid will be presented in the next
section. Section 3 gives a detailed discussion of the
semi-Lagrangian advection scheme. In section 4, a de-
tailed description on the boundary data exchange will
be given. The two-dimensional advection test is given
in section 5 to evaluate the presented semi-Lagrangian
scheme and the numerical method to transfer data
across the Yin-Yang boundaries. Section 6 gives a
standard test of the solid body advection proposed by
Williamson et al. (1992). Finally, some remarks end
the paper in section 7.

2. The Yin-Yang grid

The Yin-Yang grid (Kageyama and Sato, 2004) is
an overset grid in spherical geometry, which consists
of two notched latitude-longitude grids that are nor-
mal to each other (Fig. 1). The component (Yin- or
Yang-) grid is selected to be the low latitude part of the
LAT/LON grid. The composition of the two compo-
nent grids, with one of the components being perpen-
dicular to the other, covers the globe by overlapping.
A component grid, say the Yang grid, is defined in
spherical coordinates by{

ϕ : ϕmin = −π/4 6 ϕ 6 ϕmin = π/4 ,

λ : λmin = π/4 6 λ 6 λmin = 7π/4 ,
(2.1)

where ϕ is the latitude and λ the longitude.
The relationship between the Yin coordinate and

the Yang coordinate is denoted in Cartesian coordi-
nates by

(xn, yn, zn) = (−xe, ze, ye) , (2.2)

where the subscript e denotes the Yin grid and n de-
notes the Yang grid.

From Eq. (2.2), we have the following relationships
in spherical coordinates,

rn = re ,

cos ϕn cos λn = − cos ϕe cos λe ,

cos ϕn sinλn = sinϕe ,

sinϕn = cos ϕe sinλe , (2.3)

where and (re, ϕe, λe) and (rn, ϕn, λn) are the coordi-
nates of Yin and Yang, respectively.
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Fig. 1. Schematic diagram of the Yin-Yang grid. The Yin grid is shown on the left, the Yang
grid in the middle and their composition on the right.

For spatial discretization, we have an expression of
the Yin-Yang grid,{

ϕΓj = ϕmin + j∆ϕ , (j = 0, Nϕ − 1) ,

λΓi = λmin + i∆λ , (i = 0, Nλ − 1) ,
(2.4)

and {
∆ϕ = (ϕmax − ϕmin)/(Nϕ − 1) ,

∆λ = (λmax − λmin)/(Nλ − 1) ,
(2.5)

where Nϕ and Nλ denote the mesh point numbers of
the longitude and latitude, respectively. Γ =n is the
Yang grid, and Γ =e is the Yin grid.

An important feature of the Yin-Yang grid as an
overset grid is that the two component grids are iden-
tical and orthogonal, which may be beneficially used
with many mature numerical techniques developed
for a structured grid. The grid spacing of the Yin-
Yang grid is quasi-uniform, and the ratio of the mini-
mum/maximum grid spacings is approximately 0.707.
Furthermore, there are no longer singularities in the
Yin-Yang grid. Another advantage of the Yin-Yang
grid is that the component grid is nothing but a part
of the ordinary LAT/LON grid. We can make use of
the existing numerical codes including parallel codes
and tools developed for the LAT/LON grid. All of
these properties make the numerical computation in
the Yin-Yang grid more efficient and accurate in com-
parison with that on the LAT/LON grid.

3. Semi-Lagrangian advection scheme

3.1 Semi-Lagrangian method

The Lagrange-type transport equation for the
scalar F (x, t) can be written as

DF

Dt
= 0 , (3.1)

where D/Dt is the substantial derivative, x the posi-
tion vector and t the time.

The solution of (3.1) is generally expressed as

Fτ+1(x, t + ∆t) = Fd,τ (x − α, t) (3.2)

where ∆t is the time step, and the subscript “d”
denotes the departure point of the foot trajectory.
The subscripts “τ” and “τ + 1” denote the current
and the next time steps respectively. The value of
α = x(t + ∆t) − x(t) can be obtained from

Dx

Dt
= u(x, t) (3.3)

or in the integration form

xa − xd =
∫ (τ+1)∆t

∆t

udt = u∆t (3.4)

where u(x, t) denotes the wind field and the subscript
“a” denotes the arrival point of the trajectory.

3.2 The algorithms of the departure-point
calculation in spherical geometry

3.2.1 Ritchie and Beaudoin’s algorithm

The spherical departure-point calculation in
the HPE (hydrostatic primitive equation) shallow-
atmosphere case was proposed by Ritchie (1987) and
then extended to the non-hydrostatic primitive equa-
tion by Ritchie and Beaudoin (1994), where efforts
were made to reduce the computational cost of the
trigonometric functions. We summarize the numeri-
cal procedure of Ritchie and Beaudoin’s algorithm as
follows:

(1) Solve (u0, v0) with

λ0 = λa −
u0∆t

2ra cos ϕ2

[
1 +

∆t2

24r2
a

(u2
0 tan2 ϕa − v2

0)
]

,

(3.5)

and

ϕ0 = ϕa −
v0∆t

2ra
+

(
u0∆t

2ra

)2 tanϕa

2
, (3.6)

iteratively for (λ0, ϕ0), (u0, v0);
(2) Calculate λd and ϕd with

λd = λa −
u0∆t

a cos ϕa

[
1 −

(
v0∆t

2ra

)
tanϕa

]
, (3.7)
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and

ϕd = ϕa −
v0∆t

ra
+

(
sec2 ϕa −

2
3

) (
u0∆t

2ra

)2
v0∆t

2ra
,

(3.8)

where u0, v0, λ0, ϕ0, λa, ϕa, λd, ϕd denote the mid-
point velocity components, the mid-point longitude
and latitude, the longitude and latitude of the depar-
ture and arrival point C, respectively, and ra is the
earth radius.

We use the simplified version of (3.5)–(3.8) to de-
fine all arrival points. Only the linear terms of ∆t are
retained in this paper because the curvature terms for
the chosen latitude and longitude are quite small.

3.2.2 McDonald and Bates’ algorithm

From equations (3.5)–(3.8), we observe that the
procedure of the Ritchie and Beaudoin (1994) algo-
rithm breaks down near the poles. Terms with tanϕa

and secϕa reach infinity at the poles. For efficient com-
putation, we use the rotated grid method of McDonald
and Bates (1989) to locate the departure points for lat-
itudes over 80 degrees. The essence of the method is to
use local orthogonal great circles at each arrival point
to define a new coordinate system in which the depar-
ture point calculation is performed. Let primes denote
quantities evaluated in the rotated latitude/longitude
system having its origin at λ′ = 0, ϕ′ = 0. The Mc-
Donald and Bates (1989) algorithm can be described
as follows:

(1) The coordinates of the departure point in the
rotated system can be obtained from

λ′d = − u′0∆t

ra cos ϕ′0
, (3.9)

ϕ′d = −v′0∆t

ra
, (3.10)

where a is the earth radius.
(2) The latitude ϕ′0 and the velocity components

u′0, v
′
0 are evaluated at the midpoint of the great circle

arc between the departure point and the arrival point.

λ′0 = λ′d/2 , (3.11)

ϕ′0 = ϕ′d/2 , (3.12)

(3) It is easy to use (3.11) and (3.12) with (3.9)
and (3.10) to determine λ′d, ϕ′d iteratively in the ro-
tated coordinates. The departure point in the original
coordinates is found by transformations expressed in
(3.13) and (3.14):

λd =λa+

tan−1

(
cos ϕ′d sinλ′d

cos ϕ′d cos λ′d cos ϕa − sinϕ′d sinϕa

)
,

(3.13)

ϕd = arcsin(cos ϕ′d cos λ′d sinϕa + sinϕ′d cos ϕa) .

(3.14)

Because the data we need to interpolate the midpoint
λ′0, ϕ

′
0 are in the original coordinates, it is necessary to

transform both coordinates and velocity components
between the grids at each iteration as follows,

u′0 = Gu0 − Sv0 , (3.15)

v′0 = Su0 + Gv0 , (3.16)

G = [cos ϕ cos ϕa + sinϕ cos(λ − λa) sinϕa]/ cos ϕ′ ,

(3.17)

S = [sin ϕa sin(λ − λa)]/ cos ϕ′ , (3.18)

where ϕ and λ is the midpoint latitude and longitude
in the original system, ϕ′ is the midpoint latitude in
the rotated system, and ϕa is the departure-point lat-
itude. Equations (3.11) and (3.12) are sufficiently ac-
curate because the rotated system causes all computa-
tions to be carried out in the vicinity of the equator.

4. Cubic Lagrange interpolation and boundary
data exchange in the Yin-Yang grid

4.1 Cubic Lagrange interpolation

We need to interpolate the departure-point values
after finding the departure points. The widely used
interpolation methods are cubic spline interploation
and cubic Lagrange interpolation. We adopt the cubic
Lagrange method to interpolate the departure-point
values since it provides adequate numerical accuracy
for most applications and is computationally efficient.

Let x0, x1, . . . , xn be n + 1 distinct points in one
dimension, where a real function f(x) is defined; we
consider a one-dimensional polynomial interpolation
function q(x) of nth-order. With the collocation con-
ditions

f(xk) = q(xk), for each k = 0, 1, . . . , n,

one may uniquely find the interpolation polynomial as

qn(x) = a0 + a1x + · · · + anxn . (4.1)

Using the Lagrange interpolation, we define the base
function li(x) as

li(x) =
n∏

j=0
j 6=i

x − xj

xi − xj
, (i = 0, 1, · · · , n) . (4.2)

The corresponding bases for one-dimensional cubic La-
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grange interpolation are

l0(x) =
(x − x1)(x − x2)(x − x3)

(x0 − x1)(x0 − x2)(x0 − x3)
, (4.3)

l1(x) =
(x − x0)(x − x2)(x − x3)

(x1 − x0)(x1 − x2)(x1 − x3)
, (4.4)

l2(x) =
(x − x1)(x − x0)(x − x3)

(x2 − x1)(x2 − x0)(x2 − x3)
, (4.5)

l3(x) =
(x − x1)(x − x2)(x − x0)

(x3 − x1)(x3 − x2)(x3 − x0)
, (4.6)

Then, the one-dimensional cubic Lagrange interpola-
tion polynomial is

q3(x) = l0y0 + l1y1 + l2y2 + l3y3 , (4.7)

where yi (i = 0, 1, 2, 3) are the values of f(x) at the
corresponding points.

For a two-dimensional bi-cubic Lagrange interpo-
lation, as shown in Fig. 2a, 16 points are required for
the interpolation. Suppose q(x, y) is the interpolated
point; we first obtain the values at the cross points a,
b, c, d along the x direction by using one-dimensional
cubic Lagrange interpolation, then we interpolate the
q(x, y) values along the y direction by using the com-
puted values at a, b, c, d. The detailed formulae are

qa(xa, ya) =la0q(i − 1, j − 1) + la1q(i, j − 1)+

la2q(i + 1, j − 1) + la3q(i + 2, j − 1) ,

(4.8)

qb(xb, yb) =lb0q(i − 1, j) + lb1q(i, j)+

lb2q(i + 1, j) + lb3q(i + 2, j) , (4.9)

qc(xc, yc) =lc0q(i − 1, j + 1) + lc1q(i, j + 1)+

lc2q(i + 1, j + 1) + lc3q(i + 2, j + 1) ,

(4.10)

qd(xd, yd) =ld0q(i − 1, j + 2) + ld1q(i, j + 2)+

ld2q(i + 1, j + 2) + ld3q(i + 2, j + 2) ,

(4.11)

q(x, y) =lq0q(xa, ya) + lq1q(xb, yb)+

lq2q(xc, yc) + lq3q(xd, yd) , (4.12)

where lak, lbk, lck, ldk, lqk (k = 0, 1, 2, 3) are the base
functions corresponding to the a, b, c d points.

4.2 Boundary data exchange of the Yin-Yang-
grid

As an overset grid system, the Yin-Yang grid needs
to exchange the boundary data on the overlapping bor-
ders. For the convenience of discussion, we divide the
points of one component grid into the interior points
and the boundary points on the overlapping borders.

For a semi-Lagrangian advection scheme, the depar-
ture points on the boundary grid points may be traced
into another component grid. The values of the de-
parture points can be interpolated with the values at
the points of another component grid. The departure
points of interior points on each component grid gen-
erally are located within the same component grid.
We can adopt the conventional method similar to the
LAT/LON grid to compute the value of the departure-
point.

In section 2, the scope of the Yin-Yang grid is de-
fined to be from 45◦S (−π/4) to 45◦N (π/4) in the
latitudinal direction and from 45◦E (π/4) to 45◦W
(7π/4) in the longitudinal direction, which minimizes
the overlapping region at the Yin-Yang borders. How-
ever, in order to carry out the semi-Lagrangian com-
putation for each component grid, one needs to extend
the scope of each component to cover the region where
the departure points of the boundary point from the
same component grid may reach. As shown in Fig.
2b, the dashed lines indicate the extended boundary
region of the Yin grid. The departure point of the
boundary point A in the Yin grid, for example, should
be covered by the extended scope. So, the value at
the departure point of A can be found from an inter-
polation constructed in the same way as other interior
points of the Yin grid. The values in the extended re-
gion for each component have to be interpolated from
the values at the interior points of another compo-
nent. We describe the detailed computational proce-
dure that transfers the data from the Yang grid to the
Yin grid as follows.

(1) Find the positions of all the boundary points
of the Yin grid in the Yang grid.

(2) According to the positions of boundary points
in the Yin grid with respect to the Yang grid, shown
as dashed lines in Fig. 2b, decide the extended over-
lapping region.

(3) For each grid point P (the dark square in Fig.
2b, for example) in the extended Yin grid, the value is
interpolated from the surrounding points of another
component (the Yang) grid by using the cubic La-
grange method.

(4) For each boundary point A of the Yin grid, its
departure point B is located in the extended region
of the same Yin grid. We can interpolate the value
at point B in the Yin grid through the conventional
method similar to the LAT/LON grid.

The above procedures are carried out every time
step so as to keep a minimal overlapping situation.

4.3 Calculation of the mid-point wind for a
boundary departure point

Following the above procedure, interpolations are
applied to each component grid to set the boundary
values. When one is dealing with a vector field, special
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Fig. 2  Schematic diagram of two-dimensional cubic Lagrange interpolation (a) and boundary 
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Fig. 2. Schematic diagram of (a) the two-dimensional cubic Lagrange interpolation and (b) the
boundary interpolation diagram of the Yin-Yang grid.

care is needed for vector components because a vec-
tor has a different representation in the Yin or Yang
coordinates. The calculation of the departure point in-
volves the vector transformation between the Yin and
Yang grids while one uses the semi-Lagrangian scheme,
such as Ritchie and Beaudoin (1994) or McDonald and
Bates (1989).

As shown in Fig. 2b, we compute the departure-
point B based on the arrival grid point A and the ve-
locity of the midpoint C at the half-time level in the
spherical coordinates, using the algorithm of Ritchie
and Beaudoin (1994). The detailed procedure is listed
as follows.

(1) Compute the position of the middle point C at
the half-time level in the spherical coordinates using
the algorithm of Ritchie and Beaudoin (1994).

(2) If point C is located in the Yang grid, interpo-
late the velocity component value in the Yang grid.

(3) Transform the velocity at point C from the
Yang grid to the Yin grid.

(4) Compute the departure point with (3.7) and
(3.8) or (3.13) and (3.14).

With these steps, we have exchanged the boundary
data between the Yin and Yang grids. The correspond-
ing numerical tests are found in section 6.

5. Order-preserving test of the Yin-Yang grid

Shown above, the data transfer across the
Yin/Yang boundaries is involved in the Yin-Yang grid.
The interpolation procedure used in the data exchange
may substantially affect the numerical accuracy. Thus,
in this section, we evaluate the presented method with
idealized advection experiments.

5.1 Setup of the test

We consider the pure advection equation in two
dimensions:

dq

dt
= 0 , (5.1)

with the initial condition defined by

q(ϕ, λ) = q0 cos2 ϕ sin(kλ) , (5.2)

where q0 is a constant and k is the wave number.
In the latitude-longitude system, the wind is de-

fined as

u = u0(cos ϕ cos α + sinϕ cos λ sinα) , (5.3)

v = −u0 sinλ sinϕ , (5.4)

where the factor α is the angle between the direction
of rotation and the polar axis of the spherical coordi-
nate system. The test presented in this paper was run
with α = 0 and u0 = 2πra/(12 d).

The numerical advection with different resolutions
is conducted to examine the numerical errors and the
convergence rate in terms of grid refinement. Resolu-
tions of 0.625◦ × 0.625◦, 1.25◦ × 1.25◦, and 2.5◦ × 2.5◦
and the corresponding time steps of 2400 s§4800
s§and 9600 s are used. Numerical results after one,
two and four revolutions are given to show the errors
in phase and amplitude. For comparison, we carried
out the numerical integrations on both the Yin-Yang
grid and the conventional LAT/LON grid separately.
The Ritchie and Beaudoin (1994) algorithm is used
for advection in the Yin-Yang grid and for the low lati-
tude region (between 80◦S and 80◦N) in the LAT/LON
grid, while the McDonald and Bates scheme (1989) is
adopted for the high latitude region in the LAT/LON
grid to locate the departure points. The cubic La-
grange interpolation and Arakawa-C spatial discretiza-
tion are used on the two grid systems.

5.2 Results of the order-preserving test

Following Takacs (1984) and Bermejo and Stani-
forth (1992), a measure of the total error based on an
`1 norm is given as

E`1 =
1
N

∑
N

|q(ϕ, λ) − qT(ϕ, λ)| , (5.5)

and the convergence rate ε due to the grid refinement
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Table 1. E`1 errors on the Yin-Yang grid and LAT/LON grid.

Resolution 0.625◦ × 0.625◦ 1.25◦ × 1.25◦ 2.5◦ × 2.5◦

Yin-Yang grid 0.9761×10−4 0.8350×10−3 0.6921×10−2

LAT/LON grid 0.2644×10−4 0.2168×10−3 0.1778×10−2

Table 2. Convergence rate ε on the Yin-Yang grid and
LAT/LON grid.

Resolution ε (2.5/0.625) ε (2.5/1.25)

Yin-Yang grid 3.07390 3.05111

LAT/LON grid 3.03585 3.03579

is defined as
ε(∆x2/∆x1)=ln[E`1(∆x2)/E`1(∆x1)]/ln(∆x2/∆x1) ,

(5.6)

where N is the total number of grid points and qT is
the true value.

Shown in Table 2, a 3rd-order accuracy is achieved
on both the Yin-Yang grid and LAT/LON grid with
the cubic Lagrange interpolation method. It is ob-
served that the data transfer over the Yin-Yang bound-
aries does not degrade the convergence rate of the
semi-Lagrangian scheme. It should also be noted that
the numerical errors on the Yin-Yang grid are larger
than those on the LAT/LON grid with the same reso-
lution as shown in Table 1. Although this is a case in
favor of the LAT/LON grid where the “solid body” is
transported along the equator and the numerical er-
ror due to the meridional convergence is minimized, it
reveals that the boundary interpolation involves extra
numerical errors and is worthy of further investigation
for all applications in the Yin-Yang grid.

6. Two-dimensional advection of a solid body

A two-dimensional advection test of a solid body
with divergence-free current has been suggested by
Williamson et al. (1992). It is also tested here on
both the Yin-Yang grid and the LAT/LON grid.

6.1 Design of the two-dimensional solid-body
advection

Similar to section 5, we consider the advection

equation (5.1) with the wind field the same as (5.3)
and (5.4). The solid body is defined as

q(λ, ϕ) =
{

0.5[1 + cos(πr/R)] , if r < R = ra/3
0, if r > R = ra/3 ,

(6.1)

where r = ra cos−1[sinϕ0 sinϕ + cos ϕ0 cos ϕ cos(λ −
λ0)], ra = 6.37122×106 is the radius of the Earth, and
(λ0, ϕ0) is the center of the solid body here, initially
taken as λ0 = π/2 and ϕ0 = 0.

Equatorial and polar advections with different res-
olutions are tested here for comparison between the
two grids. The resolutions are selected to be 0.625◦ ×
0.625◦§1.25◦ × 1.25◦§and 2.5◦ × 2.5◦. The corre-
sponding time steps are 2400 s§4800 s§and 9600 s.
Only one revolution is kept in all the tests. The semi-
Lagrangian algorithm, polar treatment, interpolation
method and spatial discretization are the same as in
section 5.

6.2 Results of the solid-body advection test

Similar to Williamson et al. (1992), we define

IYin-Yang(q) =
1
4π

∫ 7π
4

π
4

∫ π
4

−π
4

qYang(λ, ϕ) cos ϕdϕdλ+

1
4π

∫ 7π
4

π
4

∫ π
4

−π
4

qYin(λ, ϕ) cos ϕdϕdλ ,

(6.2)

where qYin and qYang are the densities of the trans-
ported material in the Yin and Yang grids, respec-
tively. IYin-Yang(q) denotes the total global mass inte-
gration. Numerical errors in the LON/LAT grid are
evaluated by using two kinds of norms the same as in
Williamson et al. (1992):

`2(q) =
{IYin-Yang[(q(λ, ϕ) − qT(λ, ϕ))2]} 1

2

{IYin-Yang[qT(λ, ϕ)2]} 1
2

, (6.3)

`∞(q) =
max[|qYang(λ, ϕ) − qYang, T(λ, ϕ)|, |qYin(λ, ϕ) − qYin, T(λ, ϕ)|]

max[|qYang, T(λ, ϕ)|, |qYin, T(λ, ϕ)|]
, (6.4)

where qYin and qYang, T are the initial mass values of
the Yin grid and Yang grid, respectively.

In Fig. 3, we can observe that the `2 and `∞ errors
of the two grid systems increase with integration time.
In the Yin-Yang grid, the `2 and `∞ errors experience
four pulse-like jumps when the solid body passes across

the overlapping border, which is due to the numerical
errors associated with the data transfer over the Yin-
Yang boundaries. We find that the `2 and `∞ errors
grow smoothly in the LAT/LON grid in the pole-ward
advection, and decrease at day 3 and day 9, when the
McDonald and Bates (1989) transformation is employ-
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where yangTq  and yinTq  are the initial mass value of Yin grid and Yang grid, respectively.  

   

Fig. 3 Time series of the 2l (solid) and ∞l (dashed) errors in the pole-ward advection after one 

revolution around the globe with 1.250x1.250 revolution by the Yin-Yang grid (left) and the 

LAT/LON grid (right). 
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Mcdonald and Bates (1989) transformation is employed. The computational time in the Yin-Yang 

grid, on the other hand, increases due to the additional interpolation and data transfer. Similar 

results are observed in case of equatorial advection (Fig.4). 

Fig. 3. Time series of the `2 (solid) and `∞ (dashed) errors in the poleward advection after
one revolution around the globe with a 1.25◦ × 1.25◦ resolution by the Yin-Yang grid (left)
and the LAT/LON grid (right).
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Fig. 4 Same as Fig.4, but for the equatorial advection. 

 

   

   

Fig. 5 Comparison of 2l  errors on Yin-Yang (solid) and LAT/LON (dashed) in different 

resolution and transported direction. Left panels show the equatorial transport, and right ones are 

the polar-ward case. Top panels correspond to 0.6250x0.6250 resolution and bottom the 

1.250x1.250 resolution. 

  As illustrated in Fig.5, the 2l  norms in different resolutions and different transport angles are 

Fig. 4. Same as Fig. 3, but for equatorial advection.
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  As illustrated in Fig.5, the 2l  norms in different resolutions and different transport angles are 

Fig. 5. Comparison of `2 errors on the Yin-Yang grid (solid) and LAT/LON grid (dashed)
in different resolutions and transportation directions. Left panels show equatorial transport
and the right ones are the poleward case. Top panels correspond to 0.625◦×0.625◦ resolution
and the bottom correspond to 1.25◦ × 1.25◦ resolution.
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ed. The computational time in the Yin-Yang grid, on
the other hand, increases due to the additional inter-
polation and data transfer required. Similar results
are observed in the case of equatorial advection (Fig.
4).

In Fig. 5, the `2 norms in different resolutions and
different transport angles are given for the 12-day pe-
riod on both the Yin-Yang and LAT/LON grids. No
distinct difference is found between the two grid sys-
tems except for some local, small fluctuations in the er-
rors. We noticed that the error norms decrease rapidly
as the resolution increases. When the resolution is in-
creased from 1.25◦ × 1.25◦ to 0.625◦ × 0.625◦, the `2
norm errors decreased to one-sixth of their original
values. Under the cubic boundary interpolation, the
errors in both grid systems are at the same level. In
the case of equatorial transport, smaller error is ob-

served in the LAT/LON grid. In the poleward trans-
port, however, the `2 norm errors show that the Yin-
Yang grid is more accurate than the LAT/LON grid
even if the McDonald and Bates (1989) method is used
in the polar region. Without the large-circle transfor-
mation (McDonald and Bates, 1989), the effects of the
meridional convergence error and the polar singular-
ity are more serious in the LAT/LON system. The
experiment indicates that the Yin-Yang grid is more
favorable than the LAT/LON grid in the case of high-
resolution simulations, which can be verified from the
illustrations in Fig. 5. On the other hand, the nu-
merical solution is obviously sensitive to the boundary
interpolation scheme. A higher order scheme is worth
exploring to get more accurate results.

The results of the “solid body” during the pole-
ward transport on the Yin-Yang grid are given in
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Fig. 6. Contour plots of the “solid body” during the advection with a resolution of
2.5◦× 2.5◦. The initial concentration passes across the overlapping border four times
in the Yin-Yang system. The contours are plotted from 0.1 to 0.9 with an interval of
0.2. The mesh nodes indicate the grid point in the Yang grid, and the triangles mark
the grid points in the Yin grid.

21 

Fig. 6 Contour plots of the “solid body” during the advection with resolution of 2.50x2.50. The 

initial concentration passes across the overlapping border four times in the Yin-Yang system. The 

contours are plotted from 0.1 to 0.9 with a interval of 0.2. The mesh nodes indicate the grid point 

in the Yang grid, and the triangle marks the grid points in the Yin grid. 

 

 

Fig. 7 The contour plots of the “solid body” after one revolution on the Yin-Yang grid with a 

resolution of 2.50x2.50. The contour is plotted from 0.1 to 0.9 at an interval of 0.1.  
 

  The results of the “solid body” during the pole-ward transport on the Yin-Yang grid are given in 

Fig. 6, where B, C, D, E and F are numerical solutions at different instances and A is the initial 

(exact) distribution. The “solid body”, starting from A, travels across the overlapping borders at B, 

C, D, E and F, and finally arrives back to its initial position after 12 days. From Fig.7, we observed 

that the “solid body” adequately keeps its initial shape even after one pole-ward revolution. The 

singularity in the conventional LAT/LON grid is completely eliminated and the numerical 

advection is accurately computed. 

Fig. 7. The contour plots of the “solid body” after one revolution on the Yin-Yang
grid with a resolution of 2.5◦ × 2.5◦. The contours are plotted from 0.1 to 0.9 at an
interval of 0.1.
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Fig. 6, where B, C, D, E and F are numerical solutions
at different instances and A is the initial (exact) dis-
tribution. The “solid body”, starting from A, travels
across the overlapping borders at B, C, D, E and F,
and finally arrives back to its initial position after 12
days. From Fig. 7, we observe that the “solid body”
adequately keeps its initial shape even after one pole-
ward revolution. The singularity in the conventional
LAT/LON grid is completely eliminated and the nu-
merical advection is accurately computed.

7. Conclusion and remarks

The semi-Lagrangian advection scheme is devel-
oped for a new quasi-uniform and singularity-free Yin-
Yang grid. A method for the boundary data exchange
in the Yin-Yang grid is given and tested by idealized
experiments in this paper. We use the cubic Lagrange
interpolations for both the semi-Lagrangian scheme
and the boundary data transfer computation. We
show, with numerical experiments, that the resulting
advection scheme on the Yin-Yang grid has 3rd-order
accuracy. Another test with the “solid body” advec-
tion shows that the Yin-Yang grid is superior to the
ordinary LAT/LON grid in the case of poleward ad-
vection. The Yin-Yang grid has a quasi-uniform grid
spacing and does not include any singular region—like
the polar zone in the LAT/LON grid—thus it can be
one of the promising candidate grid systems for high
resolution GCM simulations. Although the data ex-
change procedure is presented only for the pure advec-
tion in this paper, it also applies to other dynamical
processes in the GCMs, and this will be reported in
other papers.
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