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On Nonlinear Stability Theorems of 3D Quasi-geostrophic Flow
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ABSTRACT

Nonlinear stability criteria for quasi-geostrophic zonally symmetric flow are improved by establishing an
optimal Poincaré inequality. The inequality is derived by a variational calculation considering the additional
invariant of zonal momentum. When applied to the Eady model in a periodic channel with finite zonal
length, the improved nonlinear stability criterion is identical to the linear normal-mode stability criterion
provided the channel meridional width is no greater than 0.8605· · · times its channel length (which is the
geophysically relevant case).
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1. Introduction

The energy-Casimir method has been used to ob-
tain nonlinear stability of multilayer two-dimensional
quasi-geostrophic flow (c.f., Liu and Mu 1992, 1994),
and of three-dimensional quasi-geostrophic in spher-
ical geometry (c.f., Li and Mu, 1996), and even of
a two-layer shallow water semi-geostrophic model by
Ren (2005), where the Poincaré inequalities play an
important role.

Although McIntyre and Shepherd (1987), Mu and
Wang (1992), and Mu and Simon (1993) established
Arnold’s second type of nonlinear stability for contin-
uously stratified quasi-geostrophic motions under ho-
mogeneous and inhomogeneous boundary conditions,
their results cannot be applied to the Eady model,
since the basic state of the Eady model is not a sta-
tionary point of the functional constructed by the con-
servation of energy and zonal momentum. Mu and
Shepherd (1994) overcame this difficulty by using con-
servation of the perturbed potential enstrophy in the
Eady model and established a nonlinear stability cri-
terion. Liu and Mu (1996) improved this result by a
variational calculation. Then Liu et al. (1996) (re-
ferred to hereafter as LMS) recovered the result of Liu
and Mu (1996) as a special application of a general
nonlinear stability theorem for continuously stratified

quasi-geostrophic flow, and also established Liapunov
stability. When the zonal length is infinite, the non-
linear stability criterion is the same as the linear cri-
terion. However the LMS criterion is independent of
channel length and differs from the linear criterion for
a finite channel.

Generally speaking, linear stability does not always
imply a nonlinear one. And the extension of the lin-
ear result to a nonlinear one is difficult. For two-
dimensional quasi-geostrophic flow in a channel, by
considering the invariant of zonal momentum (Shep-
herd, 1989), the nonlinear stability criteria for multi-
layer flow are improved (c.f., Liu, 1999), and the non-
linear stability criterion for one layer flow is proved to
be identical to the linear one provided the zonal length
of the channel is no less than 2/

√
3(≈ 1.1547) times

its meridional width (c.f., Liu and Li, 2003).
For three-dimensional flow, we consider a mini-

mizational problem in three-dimensional space rather
than a minimization problem in two lower dimensional
spaces as in LMS. Considering the invariant of zonal
momentum, the technique of LMS is developed and
the Poincaré inequality of LMS (4.16) is improved to
an optimal one for quasi-geostrophic parallel flow in
a periodic channel with finite zonal length. Following
LMS, two nonlinear stability criteria are established.
When applied to the Eady model (c.f., LMS or Liu and
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Mu, 1996), the improved nonlinear stability criterion is
exactly the linear normal-mode stability criterion pro-
vided the channel meridional width is no greater than
0.8605· · · times its zonal length (which is the geophys-
ically relevant case).

2. The model

We consider the standard three-dimensional, con-
tinuously stratified quasi-geostrophic flow on a beta-
plane (e.g., Pedlosky, 1987). The governing equations
are

DP

Dt
≡ Pt + ∂(Φ, P ) = 0 ,

P ≡ ∇2Φ +
1
ρ
(rΦz)z + f + βy , (1)

where P = P (t, x, y, z) is the potential vorticity, Φ =
Φ(t, x, y, z) is the stream function, ∂(F,G) ≡ FxGy −
FyGx is the horizontal Jacobian operator, x and y are
zonal and meridional coordinates, respectively, t and
is the time, and ∇ = (∂x, ∂y). Here ρ = ρ(z) > 0
is the prescribed reference-state density; f is the con-
stant Coriolis parameter; β is the constant planetary
vorticity gradient; r = r(z) ≡ ρ/S, where S is the
prescribed reference-state static stability.

The boundary conditions on the lower and upper
horizontal surfaces z = z1, z2 are

DΛi

Dt
≡Λit+∂(Φi,Λi)=0, on z=zi (i=1, 2) , (2)

where Λi ≡ Φzi + fSiηi, and ηi is the topography, if
there is any (normally η2 = 0). Here the subscript
i = 1, 2 denotes the value on z = zi.

In the following we need only derive the improve-
ment of Eq. (4.16) in LMS for the zonally symmetric
case of the standard quasi-geostrophic model.

3. Improvements of the nonlinear stability cri-
teria

Suppose that (P,Φ,Λ1,Λ2) = (Q,Ψ,Θ1,Θ2) is
the basic steady state, and define the disturbance by
(q, ψ, θ1, θ2) = (P − Q,Φ − Ψ,Λ1 − Θ1,Λ2 − Θ2).
In the derivation of the nonlinear stability criteria
[LMS (5.24), (6.11)] for continuously stratified quasi-
geostrophic flow, the key PoincarWinequality [LMS
(4.16)] is the following:

E [ψ′] > [λ0 + µ0(K)]
∫∫∫

Ω

ρ

2
(ψ′)2dxdydz+

2∑
i=1

K

Ci

∫∫
D

ρi

2Si
(ψ′i)

2dxdy , (3)

where ψ′ ≡ ψ − ψ(0, x, y, z), E [ψ′], is defined by

E [ψ′] =
∫∫∫

Ω

ρ

2

{
|∇ψ′|2 +

1
S
ψ′2z

}
(ψ′)2dxdydz;

the domain Ω ≡ D× [z1, z2], the horizontal domain D
is bounded by J smooth simple closed curves ∂Dj ; j =
1, . . . , J ; the positive constants C1 and C2 are defined
by LMS, (3.2b); the subscript i = 1, 2 denotes the
value on z = zi;∇ ≡ (∂x, ∂y);K is an arbitrary pos-
itive constant. We see that ψ′ satisfies the following
conditions [LMS (4.4), (4.5)]:

ψ′s =0 and
∮

∂Dj

ψ′nds=0 on ∂Dj (j=1, . . . , J) , (4)

∫∫
D

ψ′dxdy = 0 ∀z ∈ [z1, z2] , (5)

where the subscripts s and n refer respectively to the
tangential and normal derivatives on the curves ∂Dj .
Finally, λ0 is the lowest non-trivial eigenvalue of the
problem.

∇2u+ λ0u = 0 in D (6)

with the same boundary conditions (4) as applied to
ψ′; and µ0(K) is the lowest eigenvalue of the Sturm-
Liouville eigenvalue problem [cf. LMS (4.13), (4.14),
where is now denoted by λ0]( ρ

S
vz

)
z

+ µ(K)ρ(z)v = 0 ,

Civz(zi) = (−1)iKv(zi) (i = 1, 2) . (7)

In fact, λ0 + µ0(K) is exactly the minimum of the
minimization problem

λ(K) ≡ min

E [ψ′]−
2∑

i−1

K

Ci

∫∫
D

ρi

2Si
(ψ′i)

2dxdy

∫∫∫
Ω

ρ

2
(ψ′)2dxdydz

≡ min
E [ψ′]
E [ψ′]

, (8)

subject to the constraints (4)–(5).
When the problem is not zonally symmetric, the

inequality (3) is optimal since the equality holds when
we take ψ′ = u1(x, y)v0(z), where u1(x, y) is the sec-
ond eigenfunction of (6) (the first eigenfunction is a
non-zero constant corresponding to the trivial eigen-
value zero) and v0(z) the first eigenfunction of (7).
Therefore, the result of LMS cannot be improved in
nonzonal geometry by the energy-Casimir method.

But in the zonally symmetric case, λ(K) is larger
since in (7) ψ′ has an additional constraint derived by
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the conservation of zonal impulse [c.f. LMS (2.8)]:

M [Φ] =
∫∫∫

Ω

ρyPdxdydz −
∫∫
D

riyΛidxdy

∣∣∣∣∣∣
i=2

i=1

.

That is

M [Φ]−M [Φ0] =
∫∫∫

Ω

ρyq′dxdydz−

∫∫
D

riyψ
′
zdxdyi

∣∣∣∣∣∣
i=2

i=1

= 0 .

Note that

q′ = ∇2ψ′ +
1
ρ
(rψ′z)z ,

then integration by parts gives

M [Φ]−M [Φ0] =
∫∫∫

Ω

ρy∇2ψdxdydz = 0 .

Using Green’s formula with condition (4), we have the
additional constraint of ψ′:∫∫∫

Ω

ρψ′ydxdydz = 0 . (9)

So, now we redefine λ(K) by (7) with constraints (4),
(5) and (9). Notice that this newly defined λ(K) is
also a continuous decreasing function of K for K > 1.

If λ(1) > 1/C3, then there exists a unique K > 1
such that λ(K) = a > 0 which is similar to LMS
(4.17), and the nonlinear stability follows similar to
LMS. If λ(1) > 0, then by the continuity of λ(K),
there exist constants K > 1 and a > 0 such that
λ(K) = a > 0, which is similar to LMS (6.3), and
the nonlinear stability follows similar to LMS. Thus
we can write the two new distinct nonlinear stability
criteria in the forms

λ(1) >
1
C3

and λ(1) > 0 , (10)

respectively, where λ(1) is now calculated by taking
K = 1 in (8) with the constraints (4), (5) and (9); the
constant C3 is defined by LMS (3.2a). The latter crite-
rion can be applied to a flow with horizontally uniform
potential vorticity, and the criterion is better because
λ(1) is larger when more constraints are imposed on
the minimization problem (8).

4. Application to the Eady model

Using the approach of LMS, Liu and Mu (2001)
established both linear and nonlinear stability theo-
rems for the generalized Eady model in a finite peri-
odic channel, and found that the nonlinear and linear
stability criteria differ by a term involving the channel
length. By using the latter nonlinear stability criterion

of (10), the result of Liu and Mu (2001) can be im-
proved. But for simplicity, we discuss the Eady model
only. The discusson of any particular generalized Eady
model is similar.

The Eady problem of baroclinic instability is a clas-
sical one in geophysical fluid dynamics (e.g. Pedlosky,
1987, §7.7). For the Eady model: ρ = 1, β = 0, S > 0
is constant. The Eady basic state is Ψ = −syz, Q=
f, Θi =−sy, which represents a basic flow with ver-
tical shear s. We consider the horizontal domain
D = {(x, y)|x ∈ [−X,X], y ∈ [−Y, Y ]}, namely a pe-
riodic channel with finite zonal length 2X, width 2Y
and height 2H = z2 − z1; without loss of generality,
we may let z1 = −H, z2 = H. Then C1 = C2 = H,
µ0(1) = −w2

0/(H
2S), where w0 ≈ 1.19967864 is the

positive root of w tanh w = 1. The linear stability
criterion for the generalized Eady model has been de-
rived by Liu and Mu (2001), and the linear stability
criterion for the Eady model is a special case:

π2

4Y 2
+
π2

X2
− w2

0

H2S
> 0 . (11)

The linear stability criterion (11) is derived by lin-
earizing the governing equations, and taking solutions
in the normal mode form:

ψ =v(z) cos[(j + 1/2)π/Y ]×

exp(niπ[x− s(c−H)t]/X) ,

j = 0, 1, 2 . . . ;n = 1, 2, . . .

(for the details, see Liu and Mu, 2001). The nonlinear
stability criterion in LMS is

λ0 + µ0(1) =
π2

4Y 2
− w2

0

H2S
> 0 .

And our new nonlinear stability criterion (to be proved
in Appendix A) is:

min
(
π2

4Y 2
+
π2

X2
,

0.990 . . . π2

Y 2

)
− w2

0

H2S
> 0 . (12)

Thus, for a finite channel, our criterion is stronger than
that of LMS; and if Y/X 6 0.8605 . . . (which is the
geophysically relevant case), then the nonlinear sta-
bility criterion (10) is the same as the linear stability
criterion (11).

5. Discussion

Based on the work of Liu et al. (1996), we re-
examined the nonlinear stability for standard conti-
nously stratified quasi-geostrophic flow, and we pre-
sented the nonlinear stability criteria (10) in the in-
equalities of eigenvalues for certain problems. And for
the zonally symmetric flow, we improved the result of
Liu et al. (1996) by imposing zonal momentum invari-
ance in the variational calculation. The new result is
better because the eigenvalue in (10) is larger if more
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constraints are imposed. Though we only take the
Eady model as an example of application, the methods
used in the Appendixes A and B can be also applied
to other models, such as the generalied Eady model
(c.f. Liu and Mu, 2001).
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APPENDIX A

Proof of (12)

Let

η(y, z) =
1

2X

∫ X

−X

ψ′dx, ξ(x, y, z) = ψ′ − η(y, z) .

(A1)

Then by (A1), we have

G[ψ′] = G[ξ] + G[η], F [ψ′] = F [ξ] + F [η] , (A2)
where G and F are defined by (8). By (4)–(5), (A1)
and (9), we have the following constraints on ξ and η:∫ X

−X

ξdx=0, ξ is periodic in x with period 2X ,

ξ(x,±Y, z)=0 , (A3)

ηy(±Y, z) = 0,
∫ Y

−Y

ηdy = 0 , (A4)

∫ z2

z1

ρ(z)
2

[η(Y, z)− η(−Y, z)]dz = 0 , (A5)

where (A5) is the constraint derived from (9).
For the Eady model, within a constant normal-

ization factor, the eigenfunction ϕj = ϕj(z) of (7)
with K = 1 corresponding to eigenvalue µ0(1) =
−w2

0/(H
2S), µj(1) = w2

j/(H
2S), j > 0 is:

ϕ0 =
cosh

(w0z

H

)
cosh(w0)

, w0 tanh w0 = 1 , (A6)

ϕ1 =

√
3
2
z

H
, µ1(1) = 0 . (A7)

ϕ2j =
cos
(w2jz

H

)
cos(w2j)

,

− cotw2j = w2j ∈
[(
j − 1

2

)
π, jπ

]
, (A8)

ϕ2j =
sin
(w2j+1z

H

)
sin(w2j+1)

,

tan w2j+1 = w2j+1 ∈
[
jπ,

(
j +

1
2

)
π

]
. (A9)

Then by (A3), ξ(x, y, z) can be expanded by a se-
ries of orthogonal functions:

exp
(
imπx

X

)
sin
(
n(y − Y )π

2Y

)
ϕk(z) ,

m, n = 1, 2, . . . ; k = 0, 1, 2, . . . .
Therefore we have an optimal inequality:

F [ξ] >

(
π2

4Y 2
+
π2

X2
− w2

0

H2S

)
G[ξ] . (A10)

In the same way, by (A4), we have the orthonormal-
function expansion of η:

η(y, z)=
∞∑

k=0

∞∑
n=1

ck,n cos
(
n(y − Y )π

2Y

)
ϕk(z) , (A11)

and the constraint (A5) on η can be written as:
∞∑

k=0

ak

∞∑
n=1

ck,2n−1 = 0 ak ≡
1

z2 − z1

∫ z2

z1

ρϕk(z)dz .

(A12)
We can see that, for the Eady model, a2j+1 = 0 for all
j > 0 by (A7) and (A9); a0 = 1/w2

0 and a2j = −1/w2
2j

for j > 1 by (A6) and (A8).
Now by (A11), we change the minimization prob-

lem of η to a discrete one:

µ ≡ min
F [η]
G[η]

= min

∞∑
k=0

∞∑
n=1

λknc
2
k,n

∞∑
k=0

∞∑
n=0

c2k,n

, (A13)

subject to constraint (A12), where

λk,n =
n2π2

4Y 2
+ µk(1) k = 0, 1, . . . ; n = 1, 2, . . . .

(A14)

Combining (A2), (A10) and (A13), we have an optimal
inequality for the Eady model:

F [ψ′] > min
(
π2

4Y 2
+
π2

X2
− w2

0

H2S
, µ

)
G[ψ′]

= λ(1)G[ψ′] ,
where λ(1) is equal to the value of (8) subject to
the constraints (4)–(5) and (9) with K = 1 and
C1 = C2 = H. Thus, the nonlinear stability criterion
is

λ(1) = min
(
π2

4Y 2
+
π2

X2
− w2

0

H2S
, µ

)
> 0 . (A15)

We shall prove (in Appendix B) that:

If
0.990589 · · ·π2

Y 2
− w2

0

H2S
> 0 , ten µ > 0 . (A16)

Thus, the criterion (12) follows from (A15) and (A16).
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APPENDIX B

Proof of (A16)

We discuss a discrete conditional minimization
problem:

Let λj and sj be two given real sequences such that
λ1 < λ2 6 λ3 6 λj , for all j > 3.

Denoting

µ(c) ≡

∞∑
j=1

λjc
2
j

∞∑
j=1

c2j

, (B1)

where c = {cj} 6= 0 subjected to the condition
∞∑

j=1

cjsj = 0 , (B2)

then we have the following lemma.
Lemma 1. When s1 6= 0, and if there is a

µ ∈ (λ1, λ2) satisfying
∞∑

j=1

s2j
λj − µ

= 0 , (B3)

then min
c
µ(c) = µ.

Proof. Taking

cj =
s2j

λj − µ
, j = 1, 2, . . .

in (B1), we can see that µ(c) = µ by (B3). On the
other hand, if c1 = 0, we see that µ(c) > λ2 by (B1).
When c1 6= 0, by constraint (B2), the Chauchy in-
equality and (B3),

1 = −
∞∑

j=2

sjcj
s1c1

= −
∞∑

j=2

sj

√
µ− λ1

s1
√
λj − µ

cj
√
λj − µ

c1
√
µ− λ1

6

√√√√ ∞∑
j=2

s2j (µ− λ1)
s21(λj − µ)

√√√√ ∞∑
j=2

c2j (λj − µ)
c21(µ− λ1)

=

√√√√ ∞∑
j=2

c2j (λj − µ)
c21(µ− λ1)

That is,

1 6

√√√√ ∞∑
j=2

c2j (λj − µ)
c21(µ− λ1)

which implies µ(c) > µ. Therefore, min
c
µ(c) = µ.

Now we apply Lemma 1 to problem (A13) sub-
ject to (A12) with λ1 = λ01 = π2/(4Y 2)+µ0(1), c1 =
c0,1, s1 = a0 6= 0, λ2 = min(λ02, λ11), λ3 =

max(λ02, λ11), and arrange the other λkn of (A14)
in any order by λ3, λ4, . . . .

In the interval I ≡ (λ1, λ2) we consider Eq. (B3),
which is now to be

∞∑
k=0

1
µ2

2k(1)

∞∑
n=1

1

(2n− 1)2
π2

4Y 2
+ µ2k(1)− µ

= 0 .

(B4)
By the theory of complex analysis, we have the

identity (which holds for any complex number z)

tan z
2z

≡ tanh(iz)
2iz

≡
∞∑

n=1

1
(2n− 1)2π2/4− z2

.

Eq. (B4) can be written as

F (µ, Y ) ≡
tan

(√
µ+

w2
0

H2S
Y

)

µ2
0(1)

√
µ+

w2
0

H2S

+

∞∑
k=1

tanh(
√
µ2k(1)− µY )

µ2
2k(1)

√
µ2k(1)− µ

= 0 , (B5)

where tanh(
√
x)/

√
x = tan(

√
−x)/

√
−x if x < 0, and

we define tanh(0)/0 = 1. We see that the function
F (µ, Y ) defined by (B5) is a continuous increasing
function both of Y > 0 and µ ∈ I.

In the following, we need only consider the case
that λ1 60 (otherwise µ>λ1>0 by (B1). It is easy to
verify that lim

µ→λ1+0
F (µ, Y )< 0 and lim

µ→λ2−0
F (µ, Y )>

0. Therefore, (B5) has a unique root µ in the interval
I by the continuity and monotonicity of F (µ, Y ) in µ.

By the monotonicity of F (0, Y ) in Y , we found by
numerical computation that if

0.990589 · · ·π2

Y 2
− w2

0

H2S
> 0 ,

then λ2 > 0, and F (0, Y ) < 0. Hence there is a pos-
itive root µ of (B5) in the interval (0, λ2) ⊂ (λ1, λ2).
This completes the proof of (A16).
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