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ABSTRACT

It is thought that satellite infrared (IR) images can aid the recognition of the structure of the cloud and
aid the rainfall estimation. In this article, the authors explore the application of a classification method
relevant to four texture features, viz. energy, entropy, inertial-quadrature and local calm, to the study
of the structure of a cloud cluster displaying a typical meso-scale structure on infrared satellite images.
The classification using the IR satellite images taken during 4–5 July 2003, a time when a meso-scale
torrential rainstorm was occurring over the Yangtze River basin, illustrates that the detailed structure of
the cloud cluster can be obviously seen by means of the neural network classification method relevant to
textural features, and the relationship between the textural energy and rainfall indicates that the structural
variation of a cloud cluster can be viewed as an exhibition of the convection intensity evolvement. These
facts suggest that the scheme of following a classification method relevant to textural features applied to
cloud structure studies is helpful for weather analysis and forecasting.
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1. Introduction

With enhancement in the spatial-temporal resolu-
tion, satellite images can provide more detailed atmo-
spheric information. The concomitant issues on how to
extract the effective information, which is helpful for
weather analysis, have received much attention from
academicians around the world. Among them, the
problems such as cloud classification, rainfall estima-
tion and cloud phase etc. are some hot topics, which
are in general based on precise segmentation of the
satellite images.

It is known that a cloud cluster is an object hav-
ing a semi-fluid property. It is influenced not only by
environmental air but also by the disturbing air inside
itself. The airflow often brings moisture to the differ-
ent levels of the troposphere to form different types of
hydrometeors, such as water droplets, snow flakes and
ice crystals, etc., and it is made up of distinct kinds
of cloud such as cirrus, stratus, cumulus, and cumu-

lonimbus, etc. A cloud cluster is often composed of a
variety of clouds, which are often mixed together with-
out obvious divisions, so it is difficult to distinguish the
structure of a cloud cluster precisely from satellite im-
ages (Lin et al., 2001; Kambhamettu, 1994). In the
past years, some researchers have tried to apply some
classical image processing methods to cloud structure
recognition and classification on the basis of spectral
characteristics, but the results have not been satisfac-
tory (Corpetti et al., 2002; Grazinni et al., 2002). Re-
cently, scientists have come to recognize that clouds
in nature, as any other object, also have their own
intrinsic textural characteristics. The texture is an
important visual property of an object, which is often
used for image analysis. As for its definition, a uni-
form one has not yet been agreed upon. Generally,
it is defined as a recurrent pattern composed of many
elements, which are bordered upon and knitted with
each other (Zhang, 1999). Study on the segmenta-
tion of satellite images based on texture began in the
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1980s or even earlier (Baraldi and Parmigianni, 1995;
Gu et al., 1991; Welch et al., 1988). Their applications
in weather analysis are mostly effective, especially in
the recognition and classification of macro-scale cloud
cluster structure (Lakshmanan et al., 2000; Papin et
al., 2000; Arnaud et al., 1992; Peak and Tag, 1994;
Jobard and Desbois, 1993). Based on statistics, disas-
ters caused by rainstorms, hail, tornados, and thunder-
storms comprise a large portion of the major annual
natural disasters around the world. With regards to
the mechanism, these severe weather phenomena are
closely related to the meso- and micro-scale systems
that are incorporated as some meso- and micro-scale
cloud clusters embedded in a macro-scale cloud system
on satellite images. Therefore, it is worth furthering
the study of designing methods for understanding the
structure of meso- and micro-scale cloud clusters.

In this paper, we apply a neural network based
on textural characteristics to cloud classification us-
ing infrared satellite images (IR images). Herein, this
method will be tested on a rainstorm process. Fur-
thermore, the relationship between precipitation and
the structure of a cloud cluster will be discussed to get
a better understanding of the meaning of this work.

The paper is organized as follows. Descriptions of
the classification algorithm are given in section 2. An
application of the method will be provided in section
3. To further understand the influence of the structure
on the heavy rainfall, an empirical function of rainfall
and texture is presented in section 4. Finally, section
5 gives the conclusions of the whole paper.

2. Cloud classification based on textural fea-
tures

2.1 Textural Features

As a certain visual property of an object, a textural
feature is often expressed in terms of a quantity. A tex-
tural descriptor can indicate the extent of smoothness,
sparseness or regularity of a certain area on an object
(Wechsler, 1980). Generally, textural feature descrip-
tion methods can be divided into spectral, structural
and statistical categories (Zhao and Zhao, 1998). The
proposed cloud-texture classification here is based on
the statistical approach, which first sets up a matrix
called the Gray Level Co-occurrence Matrix (GLCM).

The GLCM is a matrix which expresses the dis-
tribution density of pixels on an image, and each el-
ement therein denotes the probability of concurrence
of two pixels with a distance interval of δ pixels and
an angle difference of θ degrees respectively (Zhang,
2003). According to this matrix, lots of textural char-
acteristics can be derived based on the principles of
statistics. Among them, there are four parameters: en-
ergy, entropy, inertial-quadrature, and local calm, and
these are used most frequently in describing the tex-
tural characteristics of clouds (Zhao and Zhao, 2000).

The functions are shown respectively as formulas 1–4,
where i and j are gray scales of any two pixels within
the study area, and δ and θ represent respectively the
distance and angle intervals between these two pixels.
Here P (i, j|δ, θ) prescribe the probability of concur-
rence of two pixels with gray scale i and j having a
distance interval δ and an angle difference of θ degrees.

f1 =
∑

i

∑
j

[P (i, j|δ, θ)]2 , (1)

f2 =
∑

i

∑
j

[P (i, j|δ, θ)× lg P (i, j|δ, θ)] , (2)

f3 =
∑

i

∑
j

[(i− j)2P (i, j|δ, θ)] , (3)

f4 =
∑

i

∑
j

1
1 + (i− j)2

P (i, j|δ, θ) . (4)

2.2 Cloud Classification

With respect to the methods of classification, they
are often divided into two major types: supervi-
sory and non-supervisory. In the former, the min-
imum distance or maximum likelihood classifier, for
instance, seeks to build up a set of samples and a
discriminant before classification. In contrast, a non-
supervisory classifier, such as ISODATA (Iterative Or-
ganizing Data Analysis Technique) or the K-means
classifier seeks to automatically make a threshold se-
lection based on the likelihood between two pixels
on an image. Generally, for bypassing the procedure
of setting transcendental samples, a non-supervisory
classifier becomes much more simple and effective than
a supervisory one, and this has been noted by many
scientists and applied to cloud classification. For ex-
ample, Grazzini and his colleagues once studied a K-
means classifier, which is based on textural features,
and tested its effect on cloud cluster classification in
an infrared satellite image (Grazzini et al., 2002). The
result shows that the K-means classifier is not better
than a normal supervisor classifier for cloud classifica-
tion, regardless of whether it is based on the spectral
characteristics or textural features. As the authors
have analyzed recently in their paper, classic methods
such as the K-means classifier, etc., are not so efficient
because of the multi-scale properties of the turbulent
flows. In view of this, we decided to use a supervisory
classifier based on textural features.

The neural network is a relatively new classifier
compared to other supervisory classification methods.
It shows an unusual extensive ability to work with un-
known input data and its parallel structure is benefi-
cial for a system with multi-components (Dai, 2000).
These highlights nicely meet the requirements of cloud
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Table 1. The textural features of the cirrus, cumulus, cumulonimbus, stratus and cloudless areas.

Cirrus Cumulus Cumulonimbus Stratus Cloudless area

Energy 0.047–0.66 0.017–0.045 0.08–0.260 0.068–0.078 1

Entropy 3.17–3.45 > 3.53 2.01–2.91 2.87–3.25 0

Inertial-quadrature 4.21–7.78 > 8.05 0.975–2.74 2.22–2.77 0

Local Calm 0.45–0.516 0.23–0.44 0.56–0.73 0.51–0.58 ∞
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Fig. 1. The BP neural network.

classification, especially for the recognition of the
structure of meso- and micro-scale convective cloud
which characteristically has multi-scale properties.
Thus we design a texture-based BP neural network
for the classification.

Because the neural network is one of the super-
visory classification methods, a volume of samples
should be selected from the research areas to initially
make a training field. The samples are collected man-
ually according to the characteristics of different cloud
types on infrared satellite images depicted in Satellite
Meteorology (Chen, 1989). Experimentally, the areas
of the infrared satellite images are roughly divided into
five areas: cloudless, cumulus, cirrus, cumulonimbus
and stratus areas. Generally, the more samples there
are, the higher the precision of the classification will
be. As a test in this paper, a total of 500 sample areas
are selected from infrared satellite images during June
2003. Each of the five cloud types mentioned above
has 100 samples respectively.

In order to study the distributions of these samples’
textural characteristics and their relationship with the
object types, a distance operator is applied to clus-
ter all the textural characteristics of the sample areas.
The Mahalanobis distance operator is used in this pa-
per, for it considers not only the scatter of the data in
a dataset but also the correlation of the population dis-
tribution between each axis, which is suitable for the
datasets with a super-ellipsoid structure such as the
textural characteristics matrix (Gao and Xie, 1999).
The formula of the Mahalanobis distance can be ex-
pressed as (5). Here dij is the Mahalanobis distance,
Xi, Xj represent two elements in a textural charac-
teristics matrix, and C−1 is the converse matrix of the

standard covariance matrix C.

(dij)2 = (Xi −Xj)TC−1(Xi −Xj) . (5)

Table 1 gives the results of the cluster. From each
row of the table we can see that the watershed between
each type is obvious, which means the four textural
characteristics used in this paper can each depict one
kind of area effectively.

According to the input and the output data, the
BP neural network in this paper is designed as shown
in Fig. 1, whose inputs correspond to the four textural
characteristics and outputs correspond to the five ar-
eas, viz. the cloudless, cirrus, cumulus, cumulonimbus,
and stratus areas.

The sample dataset is first input into the network
to produce a discriminant. Differing from the other
supervisory classifiers in producing a discriminant, the
neural network builds it up by iterating and adjusting
the weight coefficients on each branch of the net until
the error between two iterations is less than ε. After
several sets of experiments, when the momentum of
the network α is set to 0.5, the training tempo η to
0.05 and the critical error ε to 0.01, the network works
more effectively. Once the discriminate function is set,
the automatic classification can be done through this
net. Details about the algorithm can be found in the
flowchart of the BP neural network training and clas-
sification as shown in Fig. 2.

3. Case study

To examine the effectiveness of the above method,
we apply it to an analysis of a rainstorm process that
occurred during 4–5 July 2003 in the middle-lower
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Fig. 3 The path of the rain clusters during 4–5 July 2003. 
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Fig.4 Rainfall of Chuzhou and Nanjing during the period 2100LST 4 July–1900LST 5 July 2003. 

Fig. 3. The path of the rain clusters during 4–5 July 2003.

Yangtze River basin in China. The infrared satellite
images during this period are supplied by the National
Satellite Meteorological Center of the China Meteoro-
logical Administration (NSMC-CMA).

3.1 Case Introduction

The rainstorm process that occurred in the middle-
lower Yangtze River basin from 2100 LST 4 July–1900
LST 5 July 2003 is a typical abnormal summer rainfall
event. It was observed that the rain belt was about

200 km wide and 1000 km long, extending from west
to east (Fig. 3). The rainfall center was located near
Nanjing city (Fig. 4). According to the observation
data, the 24-hour rainfalls in more than seven cities
in the middle-lower Yangtze River basin were over 200
mm, some even beyond 300 mm, which caused flash
floods in the Huaihe, Chuhe and Lixiahe River basins
(Liao and Shou, 2004; Yan and Shou, 2005; Shou et
al., 2005).

3.2 Analysis and Results

According to the location of this rainstorm, the
study area is set within 20◦–40◦N, 105◦–126◦E. For
segmenting the satellite image, we first calculate the
textural characteristics for every 8×8 pixel-sized win-
dow area. Figure 5 shows the textural features of the
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Fig 5 The cloud textural features of the area centered at (32ºN, 119ºE) from 2100LST 4 July to 1900LST 5 July 

2003 (Energy and local calm are multiplied by 50 and 10 respectively). 

Fig. 4. Rainfall of Chuzhou and Nanjing during the pe-
riod 2100 LST 4 July–1900 LST 5 July 2003.
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Fig. 5. The cloud textural features of the area centered at
(32◦N, 119◦E) from 2100 LST 4 July to 1900 LST 5 July
2003 (Energy and local calm are multiplied by 50 and 10
respectively).

area centered at (32◦N, 119◦E) from 2100 LST 4 July
to 1900 LST 5 July.

Based on the network parameters such as α, η and
ε mentioned in section 2, each area on the images can

be classified as soon as the newly-computed textural
characteristics are input. Figures 6 and 7 show the
original infrared satellite images and classification re-
sults, respectively, every 4 hours from 2000 LST 4 July
to 0800 LST 5 July. After a careful examination, we
find that the classification results are well matched
with the original images. Furthermore, the meso-scale
structure of the cloud which stayed over Jiangsu and
Anhui provinces during 4–5 July 2003 is obviously seen
in Fig. 7. As seen from its structural evolvement, the
cloud cluster is mainly composed of cumulus and cir-
rus and is pushed from southwest to northeast by the
upper-level flows during the earlier stages (Figs. 7a,
b). With the enhancement of the convection inten-
sity, the proportion of cumulonimbus in the cloud clus-
ter begins to increase. At the strongest stage of the
convection (Fig. 7c), the cumulonimbus expands to its
maximum extent and forms as a convective cloud belt
covering Jiangsu and Anhui provinces. At 0800 LST
5 July 2003, the weakening period, the cumulonimbus
shrinks to disappearance (Fig. 7d). These points of
evidence suggest that the convection varies with the
evolvement of the
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Fig. 6  IR cloud images every 4 hours from 2100LST 4 July to 0800LST 5 July   

(b)

 

(a) 

(d)(c) 

Fig. 6. IR cloud images every 4 hours from 2100 LST 4 July to 0800 LST 5 July [(a) 2000 LST 4
July (b) 0000 LST 5 July (c) 0400 LST 5 July (d) 0800 LST 5 July].
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Fig. 7  Cloud textural classification of every 4 hours, as in Fig. 6. 
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Fig.8 Distribution of texture energy versus TBB. 
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Fig. 7. Cloud textural classification every 4 hours as in Fig. 6.

cumulonimbus in the cloud cluster. Now, we will dis-
cuss whether there is some relationship between the
cloud structural evolvement and the precipitation in
the following paragraphs.

4. Rainfall estimation based on texture fea-
tures

As we know, not all kinds of cloud can produce tor-
rential rainfall. Cirrus, for instance, is a type of cloud
that cannot make rainfall, which means that clouds
with different properties may contribute differently to
the rainfall. So it is worthwhile to enquire further into
the relationship between the cloud structural evolve-
ment and the precipitation.

In the 20th century, some scientists discovered the
relationship between infrared brightness temperature
(TBB) and the ground rainfall. In 1998, Vicente et al.
expressed this kind of relation by an equation, which
is expressed as:

r = c1 × exp(c2 × T c3) , (6)
where r is the precipitation rate, T is the infrared
brightness temperature, and c1, c2, c3 are constants.

However, TBB is a physical quantity which only repre-
sents the temperature of the object on infrared satellite
images, however it has no ability to reflect the prop-
erties of a cloud directly. Illuminated by the effect of
textural features in cloud classification, we try to set
up a relation between a textural characteristic and the
rainfall.

After studying the distribution of the four textural
characteristics against TBB, we find that, compared
to the other three textures, the textural energy has
the best relationship with TBB (Fig. 8), which is a
negative correlation, with one increasing as the other
decreases. Through a regression analysis, this relation
is assigned to a power law equation as follows:

T = c4E
c5 , (7)

where E is textural energy, T is TBB, and c4 and c5

are constants.
By substituting (7) into (6) we can get the follow-

ing:
r = c1 × exp[c2 × (c4E

c3)c3 ] . (8)
Equation (8) suggests that once the optimal parame-
ters (c1, c2, c3, c4, c5) are given, the rainfall caused by
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Fig.9 Rainfall estimated by TBB and textural energy as well as the observational rainfall at Nanjing during 

2100LST 4 July to 2000LST 5 July 2003. 

Fig. 9. Rainfall estimated by TBB and textural energy as
well as the observational rainfall at Nanjing during 2100
LST 4 July to 2000 LST 5 July 2003.

different types of cloud can be estimated. With refer-
ence to the parameters given by Vicente et al. (1998),
the coefficients in formula (8) are finally determined
as (1.1183×1011, 3.6382×10−2, 1.2, 163.1, −0.1465).

Figure 9 gives the hourly rainfall estimations at
(32◦N, 119◦E) around Nanjing during 2100 LST 4 July
to 2000 LST 5 July according to the formulas (6) and
(8). From the figure, we can see that the rainfall es-
timated by textural energy matches better with the
observations than that by TBB. Combined with the
classification results above, the proportion of the cu-
mulonimbus in the convective cloud cluster varies syn-
chronously with the rainfall, i.e., the more intense the
precipitation, the bigger the proportion of the cumu-
lonimbus in the convective cloud cluster.

Moreover, the cloud types shown on the classifica-
tion time-series images are also seen increasing syn-
chronously with the rainfall, which indicates that the
vertical motion in the cloud cluster increases con-
tinuously during the torrential rainfall process. The

more violent the vertical motion, the stronger the mix-
ture between the upper and lower atmospheric levels.
As such, being synchronously provided with sufficient
moisture and vertical motion, the hydrometeors at the
upper level will circulate in the air and grow signifi-
cantly. Once there is an imbalance between the buoy-
ant force and gravity, a large number of hydrometeors
within the clouds will drop down into the low level to
cause an increase in rainfall (Shou et al., 2003). This
suggests that the structural variation of a cloud cluster
can be viewed as an exhibition of the convection in-
tensity evolvement, which may be helpful for weather
analysis and forecasting.

5. Conclusions

In this article, we have first particularized to a
cloud classification method relevant to four textural
features, viz. energy, entropy, inertial-quadrature and
local calm, in the infrared satellite images. Then we
applied it to a study of a cloud cluster displaying a
typical meso-scale structure. The application of the
classification method shows that the detailed structure
of the cloud cluster that caused the rainstorm in the
Yangtze River basin during 4–5 July 2003 can obvi-
ously be seen after classification. To further study the
relationship between the cloud structure and the rain-
storm, a rainfall estimation formula based on textural
energy was given. According to the case documented
in this paper, the evolvement of the cumulonimbus in
the cloud cluster is closely related to the convection
intensity. This suggests that the structural variation
of a cloud cluster can be viewed as an exhibition of the
convection intensity evolvement, which may be helpful
for weather analysis and forecasting.

Although the scheme in this paper has proved to be
meaningful to weather analysis and forecasting, there
are still many issues that should be improved upon in
the future, such as increasing the amount of the sample
data, comparing this scheme to some other correlative
methods in use today, and combining this with some
other methods such as numerical modeling.
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