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ABSTRACT

Based on anomalous diffraction theory and the modified Rayleigh-Debye approximation, a physically
realistic model in bridging form is described to approximate the scattering phase function of particles.
When compared with the exact method, the bridging technique reported here provides a reasonable ap-
proximation to the Mie results over a broader range of angles and size parameters, and it demonstrates
the advantage of being computationally economic. In addition, the new phase function model can be
essentially extended to other shapes and conveniently used in more complicated scattering and emission
problems related to the solutions of the radiative transfer equations.
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1. Introduction

The scattering phase function is one of the basic
inputs in various radiative transfer models that de-
scribes the normalized angular distribution of scat-
tered radiative energy and also represents the proba-
bility for radiation propagating from a given direction
to be scattered into an elementary solid angle about
another direction. In principle, the phase function is
determined by solutions of the Maxwell equations for
the interaction between the radiation field and partic-
ulate medium, and its quantitative calculation can be
performed accurately by means of miscellaneous an-
alytical and numerical techniques aimed at the elec-
tromagnetic scattering problems. These methods, in-
cluding the separation of variables method, integral
equation method, T-matrix method, point matching
method, superposition method, finite element method
and finite difference time domain method, have been
recently reviewed by Wriedt (1998), Mishchenko et
al.(2000), Liou (2002), and Kahnert (2003). However,
the comprehensive investigation of solutions to electro-
magnetic scattering problems has been confined to a
few simple shapes. Generally for the complex shaped
particles, the common trick is employing the equiva-
lent sphere model so as to make the Lorenz-Mie theory

available. As has been pointed out, even with this sim-
plifying assumption, strong angular oscillations and
considerable computation time in the calculation may
occur (Modest, 2003), which will enormously compli-
cate the analysis of the radiative transfer at a given
wavelength. This inconvenience has led to the design
of a simple but accurate approximate phase function.

So far, quite a few models have been developed to
approximate the scattering phase function. Henyey
and Greenstein (1941) proposed an empirical model
(the so-called HG phase function) to describe the scat-
tering of radiation in a galaxy. This expression, with
g (the asymmetric factor) as a single free parameter,
has been widely used in atmospheric sciences because
of its simple and analytic form. However, it can be-
come highly inaccurate for some values of the parti-
cle size parameter and refractive index. To improve
the precision of the HG phase function, some mod-
ifications and extensions have been suggested, which
include the modified HG phase function (Cornette and
Shanks, 1992; Draine, 2003), the two-parameter phase
function (Reynolds and McCormick, 1980), and the
three-parameter phase function (Irvine, 1965; Kat-
tawar, 1975). Besides the HG-type approximations,
there are other valuable forms which have been pro-
posed, e.g., by Chu and Churchill (1955), McKel-
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lar and Box (1981), Fournier and Forand (1994), Liu
(1994), Sharma and Roy (2000), Sharma et al.(1998),
and Caldas and Semião (2001). However, the above-
mentioned phase functions cannot describe the asymp-
totic limit for small and large particles simultaneously.

In this paper, we present a new scattering phase
function valid for various sizes by the bridging tech-
nique. In section 2, the asymptotic behavior of the
phase function formula is discussed and a new bridg-
ing function for it is developed. Section 3 contains
comparisons of the new approximation to the exact
method for spheres. The main results are summarized
in section 4.

2. Development of the phase function formulas

Consider the general scattering problem of an arbi-
trarily shaped particle characterized by volume V and
projected area P . As is well known, the scattering
properties of particles that are optically small enough
can be represented by the Rayleigh-Debye approxima-
tion (RDA), and those that are optically large enough
can be approximated by anomalous diffraction theory
(ADT). The primary object of this article is to com-
bine the two asymptotic approximations into a general
expression that is capable of describing the phase func-
tion for particles of all sizes.

2.1 Small particle limit

The RDA, otherwise known as the Rayleigh-Gans
approximation or Born approximation (Irvine, 1965),
as a powerful tool, is widely applied to the problems
of light scattering by small particles. General condi-
tions of the validity of the RDA are kd|m − 1| � 1
and kd|m− 1| � 1, where d represents the character-
istic particle size, m is the complex index of refraction
of particle relative to the medium§and k is the wave
number. These conditions imply that the particles are
assumed to be not too large compared to the wave-
length of radiation (although they may be larger than
in the case of Rayleigh scattering) and optically “soft”.
The fundamental assumption of the RDA is that each
volume element of the scattering object is excited only
by the incident field, and the electric field inside the
scatterers is equal to the incident field. This simpli-
fied assumption leads to significant analytical progress
in many specific cases. On the other hand, some im-
provements and extensions for RDA have been made
already (Acquista, 1976; Khlebtsov, 1984; Khlebtsov
and Melnikov, 1991; Khlebtsov et al., 1991; Muinonen,
1996). If the particle irradiated by unpolarized light
is assumed homogeneous and isotropic, the scattering
phase function in the small particle limit, p(θ)small can
be expressed as

p(θ)small = a|b1|2(1 + cos2 θ) , (1)

where θ is the scattering angle, a is the normalization
constant, and b1 is the form factor, which is given by

b1 =
1
V

∫
exp[i(ki − ks) · r′]d3r′ , (2)

where i =
√
−1 is the imaginary unit, ki and ks are

wave-vectors of the incident field and scattering field,
respectively, d3r′ is the volume element at the point
r′(x′, y′, z′) within scatterer. However, Shimizu (1983)
pointed out that Eq. (2) does not yield the correct an-
gular position for the extrema in the scattering curves.
Saxon (1955) and Gordon (1985) discussed and sug-
gested respectively a modified RDA (MRDA) method,
which allows the refractive index of the particle to en-
ter the calculation, whereas in the unmodified RDA
the scattering results are independent of m. Unfor-
tunately, the MRDA scheme is not exact enough for
particles comparable in size to wavelength, so here we
design a new scheme to improve the original MRDA
and rewrite Eq. (1) as

p(θ)small = a0[t|b1|2 + (1− t)(|b2|+ γ)2](1 + cos2 θ)
(3)

with
b2 =

1
V

∫
exp[i(mki − ks) · r′]d3r′

t = exp[−c1x
3
vp]

γ =
x

9/2
vp

(200 + x6
vp)(1 + m2 − 2m cos θ)3/4

.

(4)

In Eq. (4), c1 = 5Re[(m− 1)/8], Re represents the
real part of a complex quantity xvp = 3kV/(4P ) is the
equivalent-sphere size parameter. Then new normal-
ized factor a0 is determined according to relation:∫

psmall(θ)dΩ = 1 , (5)

where dΩ = sin θdθdϕ is the element of solid angle and
the integration is over all scattering angles.

2.2 Large particle limit

The traditional ADT is a widely used Eikonal-type
approximation (Van de Hulst, 1957; Chen, 1984) and
was initially developed to calculate the extinction and
absorption cross section for large optically soft spheres.
Xu and Alfano (2003) put a statistical interpretation
on it recently. ADT presumes that the index of re-
fraction is close to unity and that the size parameter
is large enough. This assumption implies that the re-
fraction and the reflection are negligible as the ray
passes through the particles, and it allows simple ana-
lytical expressions for many geometrical shapes. These
consist of spheres (Van de Hulst, 1967), spheroids
(Greeberg and Meltzer, 1960; Fournier and Evans,
1991), ellipsoids (Streekstra et al., 1994 ), cubes (Nap-
per, 1967; Maslowska et al., 1994), prismatic columns
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(Chylek and Klett, 1991a, 1991b), hexagonal crystals
(Sun and Fu, 2001), infinite cylinders (Gross and La-
timer, 1970), elliptical cylinders (Fournier and Evans,
1996), finite circular cylinders (Liu et al., 1998), fractal
clusters (Meeten, 1982), and arbitrary shapes (Zhao
and Hu, 2003). Like other high-energy approxima-
tions (Perrin and Chiappetta, 1985, 1986; Bourrly et
al., 1989; Klett and Sutherland, 1992), ADT also pos-
sesses the ability to describe the angular distribution
of scattering energy. Briefly, the scattering phase func-
tion in the larger particle limit, p(θ)large has the form:

p(θ)large =
|f(ki, ks)|2

Csca,ad
, (6)

where Csca,ad =
∫
|f(ki, ks)|2dΩ is the scattering sec-

tion, and the unpolarized scattering amplitude func-
tion f(ki, ks) is expressed by Zhao (2003):

f(ki, ks) =− ik

2π

∫
{exp[i(ki − ks) · r′]×

∂

∂z′

{
exp

[
ik

∫ z′

−∞
dz′′(m−1)

]}
d3r′ .

(7)

In above equation, z′′ = r′′ · êz′ , r′′ = r − r′ and
r′′//r, r is position vector at the observation point
far from the particle, êz′ is the unit vector along z′

axis, and the integration is done over all space. Addi-
tionally, it should be noted that the scattering section
can also be approximated by

Csca,ad =
∫∫

|1− exp[ik(m− 1)l]|2dP , (8)

where l represents a geometrical path of a given ray
path through the particle, dP is the area element of
the projection on the plane perpendicular to the di-
rection of the light ray, and the integration domain is
over the whole projected area P .

2.3 Bridging function

As the particle size approaches zero and infin-
ity, the corresponding phase function expressions ap-
proach the MRDA and the ADT expressions, respec-
tively. A bridging function is required for the interme-
diate particles. The bridging function should satisfy
the following two conditions: (1) it should be able to
provide reasonably good approximation over the range
between the so-called Mie scattering region and the ge-
ometrical optics region; (2) it can be applied to a va-
riety of particle shapes, sizes and all scattering angles.
In this paper, the following simple bridging function is
selected:

f(ξ) = f1(ξ)F1 + f2(ξ)F2 , (9)
where fi(i = 1, 2) denotes a function. This function
can be used to smoothly bridge the transition between
two given functions F1 and F2 when the independent
variable ξ is increasing if

(a) f1(ξ) → 1, for small ξ
(b) f1(ξ) → 0, for large ξ
(c) f1(ξ) + f2(ξ) = 1
Clearly, convenient choices for our purpose are

F1 = p(θ)small , (10)

F2 = p(θ)large , (11)

For simplicity, it is considered that independent
variable ξ can be approximated by equivalent-sphere
size parameter xvp, and function f1(xvp) represents
exponential decay:

f1(xvp) = exp(−c2x
3
vp) . (12)

By extensive trial and error for spherical particles, we
find that the optimal values of c2 over all size param-
eters can be given by c2 = 0.0128 Im(m). In the pre-
vious section, a similar bridging technique has been
employed to obtain Eq. (4). Finally, the complete for-
mulation for the phase function, which has two asymp-
totes as its limits, can be expressed by

p(θ) = exp(−c2x
3
vp)p(θ)small+

[1− exp(−c2x
3
vp)]p(θ)large . (13)

3. Comparisons with exact results

To evaluate the accuracy of the proposed phase
function, we compare it with the exact Lorenz-Mie
phase function and HG approximate phase function.
The simplification here used for spheres is listed be-
low:
(I) Form factors in MRDA

b1 = b(ξ1), b2 = b(ξ2) (14)

where ξ1 = 2x sin(θ/2), ξ2 = x(1 + m2 − 2m cos θ)1/2,
x = ka, a is the radius of the particle, and function
b(ξ) is defined as

b(ξ) =
3(sin ξ − ξ cos ξ)

ξ3
. (15)

(II) Scattering amplitude function in ADT

f(θ) =
−ix(m− 1)

m− 1 + 2 sin2(θ/2)
×

∫ π/2

0

dτ [sin τ cos τJ0(x cos τ sin θ)×

{exp[−i2x sin2(θ/2) sin τ ]−

exp[i2x sin τ((m− 1) + 3 sin2(θ/2))]}] , (16)

where τ is parameter angle, and J0 is the zeroth order
Bessel function.
(III) The scattering section in ADT

Csca,ad = 2P{Re[Q[i(m− 1)]]−Q[−2Im(m− 1)]} ,

(17)
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Fig 1. Comparisons of the new phase function with the Mie phase function and the HG 

phase function for x=0.1, 1, 10, and 100 and relative refractive index i 0.02.1 +=m . 

 
 
 
 
 
 
 
 
 

Fig. 1. Comparisons of the new phase function with the Mie phase function and the HG phase
function for x=0.1, 1, 10§and 100 and relative refractive index m = 1.2 + 0.0i.
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Fig 2. Same as Fig. 1 but for x=0.5, 5, 50, and 500 and 1.2 0.0 m i= +  

  

 
 
 
 
 
 
 
 
 

Fig. 2. Same as Fig. 1 but for x=0.5, 5, 50, and 500 and m = 1.2 + 0.0i.
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Fig 3. Same as Fig 1 but for x=0.9, 9, 90, and 900 and 1.33 0.01 m i= + . 

 

 
 

 

Fig. 3. Same as Fig. 1 but for x=0.9, 9, 90, and 900 and m = 1.33 + 0.0i.

where Im represents the imaginary part of a complex
quantity, and function Q(ξ) is defined by

Q(ξ) = 2
[
1
2
− exp(ξx)

(ξx)
− 1− exp(ξx)

(ξx)2

]
. (18)

Figure 1 demonstrates the comparison for different
size parameters x=0.1§1§10§100 and the complex
relative index of refraction m = 1.2 + 0.0i. Figure 2
shows the results of the agreements for x=0.5, 5, 50,
500 and m = 1.2+0.0i. The case of absorption for size
parameters x=0.9, 9, 90, 900 and m = 1.33 + 0.01i is
displayed in Fig. 3. It is clear from the comparisons
in these figures that new phase function model is a
very good representation of the exact phase function
at small and moderate sizes. In contrast, HG shows
poor agreement. As the size parameter and the real
part of the refractive index of the particle increase,
many lobe patterns begin to appear in the curve of
the real phase function; accordingly, it will be more
difficult to reproduce them well and accurately. As it
stands, the new model of the phase function is able to
provide correctly the descriptions of the forward peak
and backscattering behavior for the larger imaginary
refractive indexes and larger sizes. Liu et al.(1998)
discussed similar results for cylinders in ADT.

4. Conclusions

A physically realistic model based on a bridging

technique is proposed to calculate the phase function
for unpolarized light by particles over a wide range of
sizes. Comparisons of the new expressions with the re-
sults from the exact theory and other approximations
(HG phase function) are made for spherical particles.
It is obvious that the new model achieves good agree-
ments at all scattering angles and constitutes a sub-
stantial improvement over the HG approximate phase
functions. Also, it leads to analytic expressions for
small and even moderate sized α parameters, and it
provides a simple way of predicting the variation of
relative intensity with scattering angle for radiation
incident upon aerosol particles suspended in the at-
mosphere. The new method will be sufficiently accu-
rate for polydisperse particles and can be potentially
applied to particles of other shapes and sizes. So, it
is worthwhile to investigate further the practical per-
formance of this new phase function in the multiple
scattering problems under various physical conditions.
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