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ABSTRACT

The linear two-layer barotropic primitive equations in cylindrical coordinates are used to derive a gen-
eralized energy equation, which is subsequently applied to explain the instability of the spiral wave in the
model. In the two-layer model, there are not only the generalized barotropic instability and the super high-
speed instability, but also some other new instabilities, which fall into the range of the Kelvin-Helmholtz
instability and the generalized baroclinic instability, when the upper and lower basic flows are different.
They are perhaps the mechanisms of the generation of spiral cloud bands in tropical cyclones as well.
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1. Introduction

Tropical cyclones, a sort of violent storm taking
place over tropical oceans, have received lots of at-
tention by scientists as one of the most serious nat-
ural disasters, and much valuable progress has been
achieved in the relevant research (Chen and Meng,
2001; Meng et al., 2002; Chen and Luo, 2004; Chen
et al., 2004). The spiral cloud and rain bands develop-
ing with the eye-wall of typhoons/hurricanes are called
spiral cloud bands, which have been the subject of
observational studies for a long time (Wexler, 1947;
Ligda, 1955; Senn and Hiser, 1959; Kurihara, 1976;
Guinn and Schubert, 1993; Liu et al., 1997; Nasuno
and Yamasaki, 2001; Liu et al., 1999; Yu, 2002; Chow
et al.; 2002). On the basis of observations of Ligda
(1955), it is found that the spiral cloud bands, whose
translational speeds are higher than wind speeds com-
monly, move along the air flow and around eyes of
tropical cyclones. In the observation data of weather
surveillance radars in Senn and Hiser (1959), it is fur-
ther reflected that spiral bands spread outward and
the life time of a single spiral band is 1-2 hours. The
feature of large-scale spiral bands reflected in a whole
mature tropical cyclone is the primary knowledge that
we have on spiral bands of tropical cyclones. Gray
(1968) considered that, in a tropical cyclone, there
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are azimuthal symmetry flows and asymmetry flows.
The latter is usually the most distinct part in radar
and satellite pictures and spiral bands are the repre-
sentation of it. Based on radar observations, Diercks
and Anthes (1976a, b) pointed out that spiral bands,
of which the angular velocity is usually greater than
that of the basic flow, are distributed in order and
move around the centers of tropical cyclones. Further-
more, spiral bands move outward along the radial di-
rection at a speed of about 28 m s~!, which is approxi-
mately the spread velocity of gravity waves. Moreover,
trailing spiral bands typically appear in the Northern
Hemisphere and their azimuths vary from 2 to 4. The
spaces between two adjacent bands are often as wide
as scores of kilometers to several hundred kilometers
while those near centers are even wider. Guinn and
Schubert (1993) further pointed out that there are two
kinds of spiral bands in tropical cyclones, viz. internal
spiral bands and external spiral bands. The former
are in the neighborhood of centers of vortexes, which
are evidently reflected by radar echoes but indistinct
in the satellite pictures due to the coverage of cirrus
clouds. The latter, which are probably long and nar-
row, generally lie in the region 500 km away from the
center of the typhoon. Both the rain bands and the
air near cores rotate around the centers of tropical
cyclones, while a great deal of air in the external re-
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gion moves through them. In order to find features of
micro-scale spiral bands observed in tropical cyclones,
Tuttle and Gall (1995) studied the radar reflectivity
field with the wave train analysis technique. After he
analyzed the radar data of three strong typhoons, Gall
et al. (1998) pointed out that microscale spiral bands
frequently exist within 100 km of the center. They
are originally 10 km in width, and can extend to 100
km when rotated clockwise outward around the ty-
phoon at a speed close to the tangential wind speed.
Their potential vorticity are high in high reflectivity
regions, leading to changes of at least 8 ms™! in wind
speed. Through observing the two-way airborne radar,
Reasor et al. (2000) pointed out that the microscale
structure of spiral bands is on the outer side of the
high vorticity region in the radial direction, with the
magnitude of the radial wave length being 5-10 km.
Barnes et al. (1991) and May (1996) suggested that
spiral bands are composed of orderly strong convec-
tion cells under the background of wide cumulostratus
rain, and some rotate around the center and propagate
radially. Thus it shows that the spread velocity of the
microscale spiral bands which are 5-10 km in the ra-
dial and tangential directions away from the cyclone
centers is not consistent. Perhaps they actually spread
outward and counterclockwise at different speeds. Al-
though the function of these microscale spiral bands in
the tropical cyclone dynamics has not been made clear
yet, it is not difficult to draw the following conclusions
about their essence from the above observation. First,
the rotation velocity of spiral bands around the eye of
a tropical cyclone is unequal to that of air flow, which
indicates that they are a substantial belt composed of
different air particles. Secondly, they tend to grow in
the radial direction, which indicates that radial energy
propagation is taking place. So it can be hypothesized
that the spiral band is a kind of wave in typhoons,
which can be called a spiral wave, and its cause can
be ascribed to the instability of the basic flow in a
vortex. The instabilities of barotropic vortexes have
been studied before (Huang and Zhang, 2003). How-
ever, it is more suitable to study the instability of the
basic flow in them, for the real atmosphere is baro-
clinic. Due to the complexity of the problem, first, a
two-layer barotropic fluid is used to approach the baro-
clinic fluid, which is significant to the understanding
of the occurrence and evolution of spiral cloud bands
in tropical cyclones.

2. Mathematical model
It is well known that it is not only convenient but

also feasible to adopt a multilayer barotropic model
to approach a baroclinic model. Zeng (1979) even
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gave the control equations of the multilayer barotropic
model, of which, the simplest one is a two-layer
barotropic model. Therefore, the barotropic primi-
tive equations of the two-layer homogeneous fluid in
cylindrical coordinates (Liang and Zhang, 2003) are
adopted to derive linear equations, setting:

v = Vi(r) + v,
Py, = ghy, = gHy(r) + ghy, = ®p + @}, . (1)

!/
Uk == uk7

Here, the subscript & = 1,2, which is also used infra.

Qmitting the symbol “’ 7 the control equations are
given as:
(5 + i) i = PTG oo
(5 8o (1)
uk% =0, (2-3)

where, fr, = f+2V /7, fx = f+Vi/r+dV}/dr,C3 =
Priar = 1,00 = p1/p2, and the positive constant as
represents the ratio of density between the upper level
and the lower level respectively. The boundary condi-
tions are:

’LL1|T:0 = 0 u1|r:7: = 0 5 (3—1)

Uz|r—0 = 0 uz|r—# =0, (3-2)

where 7 is the radius of the two-layer barotropic vor-
tex.

In order to derive the energy equation, we make
C2 up-(2-1)+C2 v (2-2)+P(2-3). Then the result
is integrated over the horizontal range S. The range of
radius r is [0,7] and that of azimuth 6 is [0, 2], thus
the energy equations at upper and lower levels are de-
rived. Following the means in Zeng (1979), the gener-
alized energy equation at upper and lower levels can
be obtained. Then the upper-level generalized equa-
tion is multiplied by as and added to the lower-level
generalized equation. Finally, the generalized energy
equation of the two-layer model can be derived as:

6 - Cgk V?ﬂ 2 2
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(4)
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where

by =as >0,by =a; >0,

orvy, U, drVi\ @y
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is the absolute vorticity of the basic flow.
3. Discussion

3.1 Instability criterion

The following equation can be obtained from (4):

2 —2 = 2
C? 1% Qr+V
//{Zbkgk ( 02‘k> v§+uﬁ+<kzkvk) _
d =1 Ok .

‘;’“Qi} + a2<p1<1>2} rdrdf = Const. (5)
k

Equation (5) indicates that, if 1 — Vi/Cgk > 0,
then Vi /F), < 0 and ®;®3 > 0 can apply to every
place in region S, the generalized energy of the two-
layer barotropic model is finite and the disturbance is
stable at any time. Thus the necessary conditions of
the instability of the disturbance are:

V> 02, (6-1)
Vk/Fk >0 (6—2)
1Py < 0. (6-3)

Equations (6-1) and (6-2) are the criteria of the super
high-speed instability and the generalized barotropic
instability respectively, which has been discussed in
Zeng (1979). However, in the two-layer barotropic
model, the instability criteria are also linked to ®;P5,
namely the interaction between the upper-layer and
the lower-layer liquid. It is noticed that the vari-
ables in Egs. (6-1) and (6-2) are all basic fields, while
the variables in Eq. (6-3) are a disturbed field. If
®,P5 < 0, namely, if the upper and lower disturbance
thickness fields are in opposite phase, then there will
be instability in the model. The numerical calculation
(Liang and Zhang, 2003) indicates that the upper-layer
and the lower-layer thickness fields are indeed in oppo-
site phase when there is instability, which is consistent
with the conclusions in this paper.
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3.2 Discussion

The two-layer barotropic model in cylindrical coor-
dinates is used in this paper. There is tangential basic
flow complying with gradient wind balance at both up-
per and lower layers. If the curvature of cylindrical co-
ordinates is ignored, the gradient wind balance trans-
forms into geostrophic balance. It is well known that
the flow is always unstable as long as the upper-layer
and the lower-layer basic flows are different, if the Cori-
olis force is ignored, which is called Kelvin-Helmholtz
instability (Thomson, 1871). On the other hand, the
instability of a two-layer quasi-geostrophic model have
been studied by Phillips (1954), whose results show
that instability called the baroclinic instability of the
Rossby wave may occur when the upper-layer and the
lower-layer basic flows are different. However, they can
only be considered as special cases of the model used
in this paper which is more complex compared with
those in the two previous cases. The Coriolis force and
the curvature of cylindrical coordinates are ignored in
the former, whereas the cylindrical coordinates are ig-
nored while the geostrophic basic flow is adopted in the
latter. Therefore the instability corresponding to Eq.
(6-3) includes both Kelvin-Helmholtz instability and
the baroclinic instability. As to the latter, it is bet-
ter to call it generalized baroclinic instability, for the
instability disturbance is a geostrophic vortex wave.
Therefore, as long as Eq. (6-3) is obeyed, there may
be two instabilities in this model, which results in the
generation of a spiral wave.

Finally, the instability in the two-layer barotropic
model is discussed in detail, in which the radial wind
profile (Liang and Zhang, 2003) (Fig. 1) is adopted:

Vi = Vinaxk (7/Tmaxk ) exp[0.5(1 — rQ/TIQHan)],
k=12 (7)

In the profile, Vijaxk is the maximum wind speed at the
upper or lower layer, rmaxk is the radius of maximum
wind speed at the upper or lower layer, and Vijx1 = 10
m st Vipaxe = 35 m s~'. The maximum wind speed
radius at the upper level is the same as that at the
lower level, that is 7. =62.5 km. The static thick-
ness of the fluid at the upper and lower layers are both
3 km. So that real tropical cyclones can be simulated
better, the horizontal radius is set to be 7 = 500 km
in the computation region, and the variation curves of
Cox and Fy, are shown in Fig. 2 and Fig. 3.

Figures 1, 2 and 3 show that V, are always smaller
than Cyi in the whole region S, which indicates that
the criterion in Eq. (6-1) cannot be applied here,
namely, there is no super high-speed instability. At
a range of less than 125 km from the vortex center, Fj
are always positive. So the criterion in Eq. (6-2) is



150 GENERALIZED ENERGY EQUATION AND INSTABILITY IN TWO-LAYER BAROTROPIC VORTEX VOL. 24

[ =
S o
~
N
e
—_

Wind speed (ms™)

0 100 200 300

0 400 500
Radius(km)

Fig. 1. The radial wind profiles at the upper and lower
levels. Solid line represents the upper radial wind profile.
Dashed line represents the lower radial wind profile.
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Fig. 2. Distribution of C; and Cop2. Solid line represents
Co1. Dashed line represents Coa.
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Fig. 3. Distribution of F} and Fs. Solid line represents
Fy. Dashed line represents Fb.

obeyed here, which indicates that there may be gener-
alized barotropic instability. On the basis of numerical
calculation (Liang and Zhang, 2003), it can be learned
that there is a mode in which the upper and lower
disturbance thickness fields are in opposite phase with
the distribution of the radial wind profile mentioned
above. Moreover, this mode is unstable. So there are
Kelvin-Helmholtz instability and the generalized baro-
clinic instability, which are caused by different basic
flows in the vertical direction. This is also the main
difference between the two-layer barotropic model and
a general barotropic model.

4. Conclusions

The instability of the linear two-layer barotropic
model is studied with the energy method. With the
analysis of the generalized energy equation, it can be
learned that besides the super high-speed instability
and the generalized barotropic instability, the differ-
ence between the upper-layer and the lower-layer ba-
sic flows also produces other instabilities. For the ev-
ident vertical wind shear, the instabilities are found
frequently in real tropical cyclones, falling into the
range of Kelvin-Helmholtz instability and the general-
ized baroclinic instability. Because the scales of max-
imum instability wavelength of Kelvin-Helmholtz in-
stability and the generalized baroclinic instability are
different, that is, the former is smaller while the lat-
ter is larger, there should be two unstable spiral waves
of different scales in our model, which probably corre-
spond to spiral bands of different scales in real tropi-
cal cyclones. The theoretical study in this paper can
only provide instability types in the model but no ma-
terial growth rates or scales of the instability mode.
Therefore, there is plenty of work needing to be done
before applying the conclusions drawn in this paper
to studying the occurrence of real spiral cloud bands.
Moreover, the release of latent heat of condensation
in cumulus convection, which is important in a trop-
ical cyclone, is not considered in our model. That is
also a limitation of the two-layer model which will be
discussed in our future work.
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