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ABSTRACT

This paper clarifies the essence of the significance test of singular value decomposition analysis (SVD),
and investigates four rules for testing the significance of coupled modes of SVD, including parallel analysis,
nonparametric bootstrap, random-phase test, and a new rule named modified parallel analysis. A numerical
experiment is conducted to quantitatively compare the performance of the four rules in judging whether a
coupled mode of SVD is significant as parameters such as the sample size, the number of grid points, and
the signal-to-noise ratio vary.

The results show that the four rules perform better with lower ratio of the number of grid points to
sample size. Modified parallel analysis and nonparametric bootstrap perform best to abandon the spurious
coupled modes, but the latter is better than the former to retain the significant coupled modes when the
sample size is not much larger than the number of grid points. Parallel analysis and random-phase test
are robust to abandon the spurious coupled modes only when either (1) the observations at the grid points
are spatially uncorrelated, or (2) the coupled signal is very strong for parallel analysis and is not weak for
random-phase test. The reasons affecting the accuracy of the test rules are discussed.
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1. Introduction

Singular value decomposition analysis (SVD) is
one of several multivariate methods for isolating lin-
ear combinations of variables within two geophysical
fields S and Z that vary in both space and time. It
involves performing the singular value decomposition
of a temporal cross-covariance matrix of S and Z as
Csz = PδQ′, hence its name. In this paper, the no-
tation (′) means transpose of a vector or matrix, Ns

and Nz denote the number of grid points for fields S
and Z respectively, and let rank(A) and cov(a, b),
respectively denote the rank of the matrix A and co-
variance of two time series a, b. The matrices P
and Q, whose columns pi and qi (i = 1, 2, · · · , r)
are r =rank(Csz) pairs of coupled patterns or sin-
gular vectors, are orthogonal matrices. The matrix
δ is a diagonal matrix comprising positive singular
values δi (i = 1, 2, · · · , r) as its diagonal elements.
It is easily shown that the left and right singular

vectors are eigenvectors of the symmetrical matrices
CszC ′

sz = Pδ2P ′ and C ′
szCsz = Qδ2Q′ respec-

tively. When S and Z are projected onto the ith
pair of coupled patterns, one obtains singular vari-
ables or weight vectors ui and vi whose covariance is
Ci=cov(ui,vi)=cov(p′iS, q′iZ) = δi. Note that, for
i 6= j, ui(vi) may be correlated with uj(vj), but ui is
uncorrelated with vj . Correlation coefficients between
singular variables are positive but not necessarily or-
dered. That is to say, although C1 > C2 > . . . > Cr >
0, it need not be true, and in general will not be true,
that R1 > R2 > . . . > Rr. Here Ri is the correlation
coefficient between vi and ui.

SVD is widely used in meteorology for two aims:
one is to describe the links between two geophysical
fields in a symmetrical manner through pairs of pat-
terns or the correlation between twin singular vari-
ables (Prohaska, 1976; Lanzante, 1984; Dymnikov and
Filin, 1985; Wallace et al., 1992; Hsu, 1994; Shen and
Lau, 1995; Iwasaka and Wallace, 1995; Peng and Fyfe,

∗E-mail: lifang@mail.iap.ac.cn



200 RULES FOR TESTING THE SIGNIFICANCE OF COUPLED MODES OF SVD VOL. 24

1996; Guo et al., 2000; Lau and Weng, 2001; Lau and
Weng, 2001; Rodŕiguez-Fonseca and Serrano, 2002;
Wang and Fu, 2002; Liu, 2003; Shabbar and Skinner,
2004; Chang, C. P.; Terray and Dominiak, 2005, to
name only some of the representative studies); and the
other, which is used frequently for statistical down-
scaling or climate reconstructing, is to estimate one
field from the other (Feddersen et al., 1999; Feddersen,
2003; Feddersen and Ersen, 2005; Zhang and Zebiak,
2004; Widmann et al., 2003; Widmann et al., 2005; Li
et al., 2005, to name only a few recent studies).

Although SVD is powerful as a method to extract
important coupled modes of variability between time
series of two geophysical fields, it has high potential
for spurious coupled patterns and correlation due to
sampling error, especially for small sample size. This
can be easily understood from the following example.
For an infinite time record, if any two grid points each
from geophysical fields S and Z are uncorrelated, the
matrix Csz is zero matrix. Therefore, there are ac-
tually no coupled modes and correlation between the
two fields, and it is pointless to conduct SVD. In prac-
tice, however, one generally has a finite time record of
the two geophysical fields, and the matrices Ĉsz and
δ̂ as the estimated matrices of Csz and δ based on a
sample of finite size are usually nonzero matrices, es-
pecially for small sample size. Hence, one will obtain
the spurious coupled modes and wrongly consider the
two fields to be correlated through conducting SVD
for Ĉsz. In this paper, matrices, vectors and variables
with finite temporal dimensions, or estimated from a
sample of finite size are marked with the notation ( ˆ ).
The phrase “spurious coupled modes” means the cou-
pled modes that are not significant and should have
been abandoned. There have been some earlier studies
concerning how well SVD can extract coupled modes
for climate data. By analyzing and comparing the er-
rors (including sampling error and systematic error)
in the first pair of coupled patterns of various meth-
ods based on an ideal experiment, Bretherton et al.
(1992) pointed out: the sampling error in the first pair
of coupled patterns of SVD was considerable when the
sample size is not much larger than the number of grid
points, though the simple method SVD could yield re-
sults similar to the more elaborate method BPCCA
(Barnett and Preisendorfer, 1987). BPCCA is the
method which applies canonical correlation analysis
(CCA) to the principal components of the two ana-
lyzed fields. Cherry (1996) derived an experiment in
which there were no spatial correlations and coupled
modes between two analyzed fields. However, high
correlation coefficients between singular variables from
the leading five coupled modes led Cherry (1996) to
question the utility of the SVD procedure. In section

4 of this paper, based on an ideal experiment similar
to that of Bretherton et al. (1992) and Cherry (1996),
we will quantitatively show the high sampling error of
both patterns and correlation between singular vari-
ables of SVD when sample size is not too large.

Because SVD is widely used in meteorology and
has high potential for spurious patterns and correla-
tion due to sampling error, it is important and nec-
essary to test the significance of coupled modes of
SVD. Several rules have been applied to meteorological
data; we will concentrate on three of them. Lanzante
(1984) applied parallel analysis to test the significance
of coupled modes between the 700 hPa heights and sea
surface temperature in the Pacific and Atlantic; Wal-
lace et al. (1992) applied nonparametric bootstrap to
test the significance of coupled modes between winter
sea surface temperature and 500 hPa height anoma-
lies; and Terray and Dominiak (2005) applied random-
phase test to test the significance of coupled modes be-
tween sea surface temperature over the Indian Ocean
and ENSO. Although these rules have been used, there
have been no studies to investigate and compare them.

The outline of this paper is as follows. In section 2,
we clarify the essence of the significance test of SVD.
In section 3, the essence, process and properties of the
four rules, including parallel analysis, nonparametric
bootstrap, random-phase test, and a new rule named
modified parallel analysis, proposed in this paper, are
investigated. In section 4, we quantitatively compare
the performance of the four rules in the significance
test of SVD in a numerical experiment with various
parameters, such as sample size, the number of grid
points, and the ratio of the coupled signal amplitude
to uncoupled variability. Finally, section 5 presents
our conclusions.

2. Essence of the significance test of SVD

In statistics theory, the approach to avoid incorrect
conclusions regarding a characteristic of a population
due to sampling error is to build a null hypothesis
about the characteristic, and then decide whether the
null hypothesis is accepted through analyzing a sam-
ple of finite size from the population, i.e., statistical
hypothesis testing. There are two types of errors in
hypothesis testing: (1) reject the null hypothesis H0

when H0 is true (i.e., type I error); and (2) accept
H0 when H0 is false (i.e., type II error). Ideally, one
would like both types of errors to have probability 0.
Unfortunately, however, both these probabilities can-
not be simultaneously less than any positive value for
a finite sample size. One therefore has to content one-
self by trying to control the probability of a type I
error no more than a significance level α (0 < α < 1)
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without considering type II error, and this procedure
is defined as a significance test (Rohatgi, 1984; Sheng
et al., 1989).

The statistical hypotheses built in the significance
test of SVD are based on the singular values δj (j =
1, 2, · · · , r) of the cross-covariance matrix between the
two analyzed fields. The null hypothesis for the first
singular value is H0: Csz is zero matrix. When H0 is
accepted, there is no correlation between any pair of
points from the two fields respectively. Consequently,
it is pointless to interpret the coupled modes of SVD.
If the null hypothesis H0 is rejected, it is natural to ex-
amine the significance of higher order coupled modes.
Since the singular values are positive and ordered from
the largest to the smallest, one can begin by assuming
that there is only one singular value for Csz. If this
null hypothesis is rejected, one can assume that Csz

just has two singular values, and so forth. That is, the
implied sequence of hypotheses is as follows:

Hj
0 : Csz just has j − 1 singular values, j =

1, 2, · · · , r
Hj

1 : Csz has at least j singular values, where Hj
1

is the alternative hypothesis of Hj
0 . According to the

sequence of hypotheses above, the significance test of
SVD can control the probability of retaining the spu-
rious coupled modes no more than α.

However, the singular values δj (j = 1, 2, · · · , r)
of a population are generally unknown for actual me-
teorological fields. Therefore δ̂j , the estimator of δj

based on a sample of finite size from this population,
is used to decide whether to reject the null hypothe-
sis Hj

0 . When Csz has at least j singular value, the
significance statistic

ŜCFj =
δ̂2
j

r̂∑
i=1

δ̂2
i

× 100% ,

which is defined as the squared covariance fraction ex-
plained by the jth coupled mode of the two fields Ŝ
and Ẑ, should be larger than the corresponding value
when Csz just has j − 1 singular values. Hence, one
can select a critical squared covariance fraction ŜCF

α

j

and a significance level α to let P{ŜCFj > ŜCF
α

j } 6 α

as Hj
0 is true. In practice, the critical fraction ŜCF

α

j is

only required to satisfy that P{ŜCFj > ŜCF
α

j } = α as

Hj
0 is true for the uniqueness of ŜCF

α

j , and {ŜCFj >
ŜCF

α

j } is defined as the critical region or rejection re-
gion for Hj

0 . In other words, we just keep the proba-
bility of retaining the spurious coupled modes at sig-
nificance level α. When ŜCFj > ŜCF

α

j we reject the
null hypothesis to judge the jth mode of SVD to be
significant and keep on testing the significance of the

(j + 1)th mode, otherwise we accept the null hypoth-
esis to judge only the first j − 1 coupled modes to
be significant and abandon the remaining r̂ − j + 1
modes. It is the purpose of the rules for testing the
significance of coupled modes of SVD to estimate the
critical fractions ŜCF

α

j (j = 1, 2, · · · , r̂).

3. Rules for testing the significance of coupled
modes of SVD

Principal component analysis (PCA), SVD, and
CCA are matrix methods for analysis of structure in
data sets. Their common ground may suggest that
some rules used in the significance tests of PCA and
CCA, such as parallel analysis and nonparametric
bootstrap, can be modified to be used in the signif-
icance test of SVD.

However, the rules of maximum likelihood hypoth-
esis testing, which have been developed for PCA [e.g.,
Sphericity test (Bartlett, 1950); Bartlett’s test for
the first principal component (Bartlett, 1954); Law-
ley’s test for the second principal component (Lawley,
1956)] and CCA [e.g. Bartlett’s test (Bartlett, 1939)],
have not been modified to test the significance of cou-
pled modes of SVD for two main reasons. The first rea-
son is that they are classical parametric testing rules.
The reference distributions (i.e., the approximate dis-
tribution of the test statistic when the null hypothesis
is true) of these rules are derived analytically from
the normal distribution function and based on sam-
pling assumptions (i.e., observations are taken inde-
pendently and identically from the same distribution,
and the sample size is large enough). Earlier studies
have pointed out that the performance of these rules
is very sensitive to departure from the assumption of a
normal distribution (Seber, 1984) and to a large sam-
ple size (Crawford, 1975). These rules do not work well
when the observations are not independent and cannot
be approximately normally distributed, or the sample
size is small. The second reason is that the derivations
of these methods are very complicated. In general, the
observations of the analyzed fields are not independent
or the sample size is small, and sometimes the obser-
vations are not approximately normally distributed.
Furthermore, in these rules, only the Sphericity test
(Bartlett, 1950) has been developed for a covariance
matrix; the others are for correlation matrices. Con-
sequently, how to modify the original test statistics in
these rules to approximately fit the chi-square distri-
bution or other classical distributions is an intractable
work and sometimes impossible.

Moreover, based on matrix theory, the three propo-
sitions, which are (1) the data matrix of the field S is
0, (2) the covariance matrix Css of the data field S
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is 0, and (3) all eigenvalues of Css are equal to zero,
are equivalent. Therefore, the rule in the significance
test of PCA with the assumption that at least one
eigenvalue of Css is nonzero (North et al., 1982), or at
least two eigenvalues of Css are nonzero (Quadrelli et
al., 2005), is meaningful, and its assumption is easily
satisfied by most meteorological fields. However, any
nonzero data matrices S and Z are in general uncor-
related, i.e., Csz = 0, though Ĉsz and δ̂ are usually
nonzero matrices due to sampling error. Therefore,
the two parametric testing rules are unsuitable to be
modified as the rules of significance test of SVD.

Here we consider four Monte Carlo methods,
namely parallel analysis, nonparametric bootstrap,
random-phase test and modified parallel analysis, and
investigate their essences, procedures, and properties.
Hereafter, the superscript “k” indicates specifically the
kth pair of simulated fields built in these rules.

3.1 Parallel analysis

The rule is actually a Monte Carlo method. It gen-
erates a large number of squared covariance fractions
explained by each coupled mode of the simulated fields
and then uses these fractions to build confidence inter-
vals for corresponding coupled modes. The simulated
fields built in the rule are equivalent in size to the an-
alyzed fields, but comprise the independent elements
identically taken from a standard normal distribution
population. The procedure of parallel analysis is: (1)

Generate two simulated fields Ŝ
k

and Ẑ
k

that are
equivalent in size to the two analyzed fields but com-
prise the independent elements taken from N(0, 1) (i.e.
Standard Normal distribution). (2) Perform SVD on
the cross-covariance matrix of the two simulated fields
and retain the singular values. Denote d̂k

j as the jth
(j = 1, 2, · · · , r̂k) singular value in the kth simulation.
(3) Repeat steps 1 and 2 a total of m times and define

b̂k
j =

(d̂k
j )2

r̂k∑
i=1

(d̂k
i )2

× 100%

as the squared covariance fraction explained by the
jth mode in the kth simulation. When r̂− r̂k = ∆k >
0 (k = 1, 2, · · · , m), let b̂k

(r̂k+1) = · · · = b̂k
(r̂k+∆k) = 0.

Subsequently, order the squared covariance fractions
explained by the jth (j = 1, 2, · · · , r̂) mode in the m

simulations to satisfy b̂1
j > b̂2

j > · · · > b̂m
j . Select a

significance level α, then b̂α×m
j is the critical value for

the jth mode (j = 1, 2, · · · , r̂). (4) If the squared co-
variance fraction ŜCF1 explained by the first coupled
mode of the two analyzed fields Ŝ and Ẑ is less than
b̂α×m
1 , one can accept H1

0 to conclude that the first
coupled mode is spurious and the two fields S and

Z are uncorrelated. Otherwise, one needs to consider
whether ŜCF2 is less than b̂α×m

2 . If the answer is “yes”,
then the two analyzed fields have only one significant
coupled mode; or else they have at least two signifi-
cant coupled modes, and the significance of remaining
coupled modes needs to be further tested in the same
way.

The procedure of parallel analysis is essentially
parametric and assumes that the observations of ana-
lyzed fields are spatially and temporally independent,
and identically taken from a normally distributed pop-
ulation. Therefore, it is robust to test the significance
of coupled modes between two analyzed fields that sat-
isfy the above assumptions. When the assumptions are
unfit for the two analyzed fields, such as the observa-
tions at the grid points are dependent or not normally
distributed, its ability to test the null hypotheses may
be low (shown in subsections 3.4 and section 4).

3.2 Nonparametric bootstrap

Nonparametric bootstrap, one of the resampling
methods first proposed by Efron (1979, 1987) to es-
timate the bias, standard deviation, prediction error,
and confidence interval, was used to test the statisti-
cal hypotheses of SVD by Wallace et al. (1992). The
essence of the rule is to randomly order one field in the
time domain so that most of them were wrongly paired
with the other field. The procedure to order one field
randomly can be stated as follows: let the T vectors
X1,X2, · · · ,XT with size Ns × 1 be the T indepen-
dent observations of field S; putting probability mass
1
T on each Xi, if X∗

i (i = 1, 2, · · · , T ) is a random sam-
ple drawn with replacement from X1,X2, · · · ,XT ,
then X∗

1,X
∗
2, · · · ,X∗

T construct the kth simulated

field Ŝ
k
. The Monte Carlo protocol used here is: (1)

generate the simulated field Ŝ
k

by randomly order-
ing one field in the time domain; (2) perform SVD
on the cross-covariance matrix of the simulated field
Ŝ

k
and analyzed field Ẑ, retaining the singular values

dk
j (j = 1, 2, · · · , r̂k); the following steps are similar to

steps 3 and 4 of parallel analysis.
Nonparametric bootstrap need not assume the dis-

tribution of the observations in the analyzed fields.
Thus, it can be conducted in situations where it is
impossible or very intractable to derive reference dis-
tributions analytically as classical parametric meth-
ods. However, the rule assumes that observations of
Ŝ are temporally independent. Whether the tempo-
ral dependency of observations in the analyzed field
Ŝ affects the accuracy of the rule will be discussed in
subsection 3.4.

3.3 Random-phase test

This rule was proposed firstly by Ebisuzaki (1997)
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to test the significance of correlation between two time
series with temporally correlation and could be con-
sidered as a rule of resampling time series in the fre-
quency domain. Ebisuzaki (1997) put forward the
rule to replace nonparametric bootstrap because the
formal needn’t assume that the analyzed time series
is temporal independent. Recently, Terray and Do-
miniak (2005) introduced the method into the signif-
icance test of SVD based on the implied assumption
that the temporal correlation of analyzed fields would
markedly affect the critical fraction of the analyzed
cross-covariance explained by each coupled mode of
SVD.

Step 1 of random-phase test is to build the kth sim-
ulated fields Ŝ

k
by repeating the following process for

the time series at each grid point of Ŝ: (a) compute
the discrete Fourier transform of ŝh(h = 1, 2, · · · , Ns)
by

âh(l−1) =
2− σ̂l−1

T

T∑
t=1

ŝhte
2πi(t−1)(l−1)/T (1)

where l = 1, 2, · · · , T/2 + 1 for even T, l =
1, 2, · · · , (T + 1)/2 for odd T , and σ̂l = 0 except for
l = 1 and l = T/2 + 1 (for even T ), in which case
σ̂l = 1; (b) generate a Fourier series ŷh with random
phase and the same power spectrum as the original
series ŝh by




ŷh1 = 0 ,

ŷhl = |âhl|eiθ̂l for 1 < l <
T

2
+ 1 (for even T ) ,

and 1 < l <
T + 1

2
(for odd T ) ,

ŷh( T
2 +1) = 2

1
2

∣∣∣âh( T
2 +1)

∣∣∣ cos(θ̂( T
2 +1)) for even T

(2)

where θ̂l is a uniform random variable from (0, 2π); (c)
gain the simulated series ŝk

h through transformation of
the series by

ŝk
ht = Re

n∑

l=1

ŷhle
−2πit(l−1)/T (3)

where n = T/2 + 1 and (T + 1)/2 for even and odd T
respectively. The following steps are similar to steps
2, 3, and 4 of nonparametric bootstrap.

Even though the random-phase test is better than
nonparametric bootstrap to test the significance of cor-
relation between two time series with serial correlation,
it has three weak points in the significance test of SVD.
First, the random-phase test does not do well at re-
solving the low frequencies (periods greater than or on
the order of the length of the time series) because the
new series ŝk

h (k = 1, 2, · · · ,m;h = 1, 2, · · · , Ns) built
by the rule are periodically constructed and usually

have no trends. The weak point was first pointed out
and discussed by Ebisuzaki (1997) who used the rule
to estimate the critical correlation coefficients of two
pairs of time series generated by the models AR(1) and
AR(2) respectively (first- and second-order autoregres-
sive models). Second, Ebisuzaki (1997) recommended
the random-phase test because it could make the sim-
ulated time series preserve the power spectrum of the
original series. However, we have noted that each new
series ŝk

h (k = 1, 2, · · · ,m;h = 1, 2, · · · , Ns) built by
the rule retains only the real part of series generated
by the inverse Fourier transformation of ŷh in formula
(3) above. In other words, it is not ŝk

h but the com-

plex series {
n∑

l=1

ŷhte
−2πit(l−1)/T , t = 1, 2, · · · , T} that

has the same power spectrum as the original series ŝh.
Third, the critical fractions ŜCF

α

j (j = 1, 2, · · · , r̂) are
insensitive to temporal correlation of analyzed fields Ŝ
(shown in subsection 3.4), and hence the precondition
that random-phase test is better than nonparametric
bootstrap cannot be satisfied in the significance test
of SVD.

3.4 Modified parallel analysis

The optimal Monte Carlo methods require the as-
sumptions, which are based to build the simulated
fields, to be fitted exactly by the analyzed fields, or
affect the critical values ŜCF

α

j (j = 1, 2, · · · , r̂) as lit-

tle as possible. That is, the difference between ŜCF
α

j

and b̂α×m
j due to unapt assumptions should be neg-

ligible for the optimal test rules. The procedure
of parallel analysis assumes that the analyzed fields
comprise elements that are independent and normally
distributed. The assumptions are usually unfit for
geophysical fields since the observations at the grid
points are usually spatially and temporally correlated
or sometimes not approximately normally distributed.
The spatial correlation, serial correlation and distribu-
tion form affect the accuracy of the test rule in different
degrees.

The spatial correlation and serial correlation de-
crease the effective spatial dimensions and effective
sample size respectively. There are various distribu-
tion forms, such as normal distribution with kurtosis
(known as the fourth moment of normalized principal
component) equal to 3 (i.e. k=3), uniform distribu-
tions with k=1.8, exponential distribution with k=9,
and so on. The influence of spatial correlation, tempo-
ral correlation, and distribution form on critical values
ŜCF

α

j (j = 1, 2, · · · , r̂) can be reflected by the influence
of the number of grid points, sample size, and distri-
bution form on the critical values in the model with
independent observations at grid points. In the follow-
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Table 1. The means and standard deviations (std) of the critical squared covariance fractions explained by the first
three modes with different spatial dimension N of the two analyzed fields and sample size T . The means and standard
deviations are based on 100 independent realizations of the model with independent observations taken from a standard
normal distribution population.

N=(11,11) N=(11,81) N=(81,81)

mode mean std mean std mean std

T = 20
1 0.4528 0.0150 0.3002 0.0084 0.1542 0.0032
2 0.2849 0.0070 0.2177 0.0046 0.1259 0.0016
3 0.1963 0.0051 0.1699 0.0034 0.1086 0.0013

T = 50
1 0.4027 0.0123 0.2353 0.0058 0.1005 0.0019
2 0.2649 0.0054 0.1810 0.0031 0.0848 0.0010
3 0.1918 0.0045 0.1495 0.0023 0.0752 0.0008

T = 100
1 0.3842 0.0112 0.2085 0.0048 0.0789 0.0012
2 0.2597 0.0053 0.1658 0.0023 0.0684 0.0007
3 0.1913 0.0043 0.1408 0.0020 0.0616 0.0006
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Fig. 1. The means (histograms) and standard deviations
(error bars) of the critical squared covariance fractions
explained by the first eleven modes. The means and
standard deviations are based on 100 realizations of the
model comprising independent observations with sample
size T=100, spatial dimension N=36 and various distri-
bution forms.

ing text, we concentrate on the first three coupled
modes, which are usually used.

For 100 independent realizations of the model com-
prising independent observations taken from a stan-
dard normal distribution population, Table 1 shows
that the influence of sample size on the means of criti-
cal fractions for the first three coupled modes is much
smaller than that of the number of grid points. The
standard deviations are much smaller than the corre-
sponding means. Thus we can believe that the num-
ber of grid points affects the critical fractions more
remarkably than sample size for the important first
three coupled modes. Here, N = (Ns, Nz). Note that,

the critical fractions for the first three modes will in-
crease steeply as long as Ns or Nz decreases.

For 100 independent realizations of the model com-
prising independent observations with N = (36, 36)
and T=100, we compare the influence of various dis-
tribution forms (normal distribution, uniform distri-
bution and exponential distribution) on the critical
fractions. The results (Fig. 1) show that the means
of critical values for various distribution forms are al-
most equivalent and the standard deviations for the
three distribution forms are much smaller than their
corresponding means in the first three modes. Thus
the critical fractions for the first three modes are quite
insensitive to distribution form.

In conclusion, the assumption that the observa-
tions in the analyzed fields are spatially independent
affects the critical value ŜCF

α

j far more significantly
than that of temporal independence and normal dis-
tribution. In fact, as long as the spatial correlation
of either analyzed field increases, the critical values
ŜCF

α

j (j = 1, 2, · · · , r̂) will increase abruptly, and the

differences between ŜCF
α

j and b̂α×m
j will be more ob-

vious if the rules assume that the observations in the
analyzed fields are spatially independent.

For the reason that the influence of spatial corre-
lation is remarkable on the critical values ŜCF

α

j (j =
1, 2, · · · , r̂), we modify the parallel analysis and re-
quire the number of grid points of simulated fields to
be equal to the estimated effective number of spatial
degrees of freedom (ESDOF) of analyzed fields so as
to take out the assumption of spatial independence
for analyzed fields in parallel analysis. The new rule is
named as modified parallel analysis. ESDOF is used
to estimate the number of grid points required to rep-
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resent the field and can be easily calculated according
to the formula proposed by Bagrov (1969) and Ter-
Megreditchian (1969) as follows:

N̂∗
ef =

(
N∑

i=1

Ĉii

)2

N∑
i,j=1

Ĉ2
ij

=

(
N∑

k=1

λ̂k

)2

N∑
k=1

λ̂2
k

. (4)

Here, Ĉ is the estimated covariance matrix of the ana-
lyzed field, and λ̂k is the kth eigenvalue of Ĉ. Formula
(4) is based on two assumptions: (1) the observations
in analyzed fields are normally distributed and (2) Ĉ is
as the estimated matrix of true Ĉ with sufficient accu-
racy (i.e., the effective sample size is relatively large).
However, Bretherton (1999) pointed out that N̂∗

ef is
insensitive to assumption (1) since it depends only on
the partition of the variance between the EOFs, and
the estimate error of N̂∗

ef is small when the effective
sample size is many times of N∗

ef. The procedures of
modified parallel analysis and parallel analysis are sim-
ilar except for step 1, which requires spatial dimension
of the simulated fields built in the two rules to be equal
to N̂∗

ef and spatial dimension of the analysis fields re-
spectively.

One may ask why not modify the parallel analysis
further by replacing sample size with effective sample
size (ESS) to abolish the assumption that the obser-
vations are temporally independent for analyzed fields
in parallel analysis? In our opinion, there are two
reasons. First, the influence of temporal correlation
on critical fractions is small and negligible relative to
that of the spatial correlation for the first three modes.
Moreover, modified parallel analysis, which requires
only the number of grid points of the simulated fields
to be equal to N̂∗

ef of the analyzed fields, can perform
satisfactorily (shown in section 4). Second, Thiébaux
and Zwiers (1984) pointed out the formula of ESS pro-
posed by Davis (1976) was severely biased and should
be considered only as a diagnostic quantity.

4. An experiment to compare the four rules

4.1 Description of the three models

The models in this paper are similar to those
conducted by Bretherton et al. (1992) and Cherry
(1996) to compare how well various methods can iso-
late coupled modes in climate data. The two fields S
and Z of interest are also called left and right fields
that have Ns and Nz grid points respectively. Let
S = (s1, s2, · · · , sNs)

′ and Z = (z1,z2, · · · ,zNz )′

be Ns × 1 and Nz × 1 random vectors. For conve-
nience, we assume that S and Z are anomaly fields,
and Ns = Nz = N.

Model 1: The observations at the grid points are
spatially and temporally uncorrelated and identically
distributed. There is no coupling between the two an-
alyzed fields. Since the critical fractions for the first
three modes are insensitive to the distribution form
according to the analysis in subsection 3.4, we as-
sume that the observations are identically taken from
N(0,1). Therefore the time series have the form

S(t) = W s(t) , Z(t) = W z(t) , t = 1, 2, · · · , T
(5)

Here, wij ∼ N(0, 1). When the number T of observa-
tions of the two analyzed fields is finite, we denote the
two fields as Ŝ and Ẑ.

Model 2: The observations at the grid points
are spatially correlated but temporally uncorrelated.
There is no coupling between the two fields. The spa-
tial correlation structure is described by what geo-
statisticians refer to as the exponential covariance
function C(h) = ve−5h/(N−1)L (Isaaks and Srivastava,
1989). Here, h is the spatial lag, v is the variance of red
noise generated, and L is the noise redness length (the
separation at which the red noise correlation drops to
e−1). Let v=1 and L=1. Following the same method
as Cherry (1996), we can generate the red noise Rs(t)
and Rz(t) with mean 0 and variance 1, and CRR = V ,
where Vij = e−5|i−j|/(N−1). Therefore, the time series
have the form

S(t) = Rs(t) , Z(t) = Rz(t) , t = 1, 2, · · · , T . (6)

When the number T of observations of the two ana-
lyzed fields is finite, we denote the two fields as Ŝ and
Ẑ.

Model 3: The observations at the grid points are
spatially correlated and there is also a deterministic
signal shared by the two analyzed fields. The signal
is incorporated in each field by adding a signal matrix
to the data matrix of Model 2. Hence, the time series
have the form

{
S(t) = Rs(t) + ηΦf(t) ,

Z(t) = Rz(t)− ηΦf(t) , t = 1, 2, · · · , T
(7)

where η is a positive scalar, and

f(t) = 2
1
2 sin

(
4π

T
t

)
. (8)

While Φ is a N × 1 vector with elements given by

Φi = cbe
−y2

i
2 , (9)

where

yi =
5(i− 1)
N − 1

− 1, i = 1, 2, · · · , N (10)
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Here, cb is a constant for normalizing Φ. This coupled
signal is the bell signal proposed by Bretherton et al.
(1992). When the number T of observations of two
analyzed fields are finite, we denote the two fields as
Ŝ and Ẑ.

4.2 Analysis of the models

For the models described above, we can calcu-
late the exact covariance matrices for an infinite time
record (T →∞) as follows:
for model 1, 2,

Csz = cov(S(t),Z(t)) = 0 , (11)

for model 3,

Css = cov(S(t),S(t)) = cov(Rs(t),Rs(t))+
2cov(Rs(t), ηΦf(t))+
cov(ηΦf(t), ηΦf(t))

= V + η2ΦΦ′ ,

Czz = cov(Z(t),Z(t)) = cov(Rz(t),Rz(t))−
2cov(Rz(t), ηΦf(t))+
cov(ηΦf(t), ηΦf(t))

= V + η2ΦΦ′ ,

Csz = cov(S(t),Z(t)) = cov(Rs(t),Rz(t))−
cov(Rs(t), ηΦf(t))+
cov(ηΦf(t),Rz(t))−
cov(ηΦf(t), ηΦf(t))

= −η2ΦΦ′ . (12)

According to matrix theory, the rank of a zero ma-
trix is zero, and the rank of a nonzero matrix is
a positive integer. Thus, rank(Csz) = 0 for mod-
els 1 and 2. For model 3, because rank(Csz) 6
min(rank(Φ), rank(Φ′)) and rank(Φ) = rank(Φ′) = 1,
rank(Csz) = 1. That is, for models 1 and 2, there are
actually no pairs of coupled patterns and no singular
values of Csz; for model 3, there is only one pair of
patterns and one singular value of Csz.

For climate data fields, the sample size T is fi-
nite and may not greatly exceed the number N of
grid points. The sampling fluctuation in the cross-
covariance matrix can greatly reduce the skill of SVD
for isolating the coupled signal. To show the high po-
tential of the spurious patterns and correlation in SVD
due to sampling fluctuation more clearly than Brether-
ton et al. (1992) and Cherry (1996), we apply an en-
semble of d (=100) independent realizations of each
model to determine the sampling errors (εR1 , εR2 , εR3)
and (εp) for correlation coefficients between the singu-
lar variables from the first three modes and the nor-
malized first pair of coupled patterns respectively. The

sampling errors εR1 , εR2 , εR3 and εp are defined as:

εRj
=

√√√√1
d

d∑

k=1

(R̂jk −Rj)2, j = 1, 2, 3 (13)

εp =

√√√√1
2
· 1
d
· 1
N

d∑

k=1

N∑

i=1

[
(p̂ik − pi)

2 + (q̂ik − qi)
2
]

.

(14)

Here, R̂jk is the correlation coefficient between the sin-
gular variables from the jth mode in the kth realiza-
tion for a finite time record, while Rj is that from the
jth mode for an infinite time record in models 1, 2,
and 3; p̂ik and q̂ik are the first left and right coupled
patterns respectively at the ith grid point in the kth
realization for a finite time record, while pi and qi are
that at the ith grid point for an infinite time record
in model 3. Because 0 6 R 6 1 and the patterns are
normalized, the sampling errors are non-negative and
no more than 1, i.e., 0 6 εRj 6 1 (j = 1, 2, 3), and
0 6 εp 6 1.

According to the change of the sampling errors for
100 realizations with η = 0.4 and N = 36 as the sample
size T varies (Fig. 2), εR2 and εR3 are almost the same
and much larger than εR1 . For small T, εR1 , εR2 , εR3

and εp are large. With T = 50, εR2 , εR3 and εp are
about 0.4. As T increases, all of the sampling er-
rors decrease as expected. If instead the number N
of grid points in each field varies with fixed T=100
and η = 0.4, the results (Fig. 3) indicate that the
sampling errors is insensitive to N . With fixed N=36
and T=100, we compare the sampling errors over 100
realizations for the models 1 and 2, and for model 3
with various η. The results (Fig. 4) indicate that
the sampling errors of correlation between the singu-
lar variables from the first three modes in model 1 are
a lot larger than those in model 2. εR1 and εp decrease
abruptly as η increases, but εR2 and εR3 are large and
insensitive to η. Note that model 1 has the sampling
errors εRj

≈ 0.8 (j = 1, 2, 3) and is the model with no
spatial and temporal correlation, and no signal. There
is, however, a great deal of spurious linear structure
for SVD to exploit. On account of the high potential
of the spurious coupled mode and correlation in SVD
due to sampling error, it is essential to conduct the
significance test of SVD.

4.3 Experiments results

According to the analysis in the former subsection,
there is actually no coupled mode for models 1 and
2 and only one for model 3. If we only test the first
three modes for d (=100) independent realizations of
each model with various N, T (and η in model 3), the
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Fig. 2. Sampling errors for (a) the correlation coefficients between the singular variables from the
first three modes and (b) the normalized first pair of coupled patterns respectively based on 100
independent realizations of model 3 with spatial dimension N=36, the signal-to-noise ratio η=0.4
and various sample size T .
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Fig. 3. As in Fig. 2 except with T=100, η=0.4 and various N.
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Fig. 4. As in Fig. 2 except with T=100, N=36 and various η. η=“∗” represents the situation in
model 1, and η=0 represents that in model 2.
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Table 2. The number of realizations rejecting the null hypothesis at each of the first three coupled modes for 100 inde-
pendent realizations of the three models. The expected values for numbers in bold are 0, while 100 for those in normal
font. The signal-to-noise ratio η=“∗” represents the situation in model 1, and η = 0 represents that in model 2.

Parallel analysis Nonparametric Random-phase Modified parallel
bootstrap test analysis

Mode 1 2 3 1 2 3 1 2 3 1 2 3

η = 0.4, N = 36
T 50 100 100 94 60 0 0 100 34 2 40 0 0

100 100 100 94 98 0 0 100 16 2 69 0 0
200 100 99 76 100 0 0 100 7 0 100 0 0
400 100 98 41 100 0 0 100 6 0 100 0 0
800 100 86 10 100 0 0 100 2 0 100 0 0

T = 100, N = 36
η ∗ 9 2 1 0 0 0 5 1 0 0 0 0

0 100 100 100 4 0 0 98 69 45 2 0 0
0.2 100 100 100 12 0 0 96 53 26 5 0 0
0.4 100 100 94 98 0 0 100 16 2 69 0 0
0.6 100 79 15 100 0 0 100 1 0 100 0 0
0.8 100 18 0 100 0 0 100 0 0 100 0 0

1 100 0 0 100 0 0 100 0 0 100 0 0
T = 100, η = 0.4
N 11 100 16 0 91 1 0 95 3 0 91 0 0

36 100 100 94 98 0 0 100 16 2 69 0 0
81 100 100 100 97 2 0 100 48 12 53 0 0

121 100 100 100 96 2 0 100 64 27 48 0 0
201 100 100 100 94 1 0 100 75 39 57 0 0
301 100 100 100 92 1 0 100 72 46 52 0 0

expected values for numbers in bold are 0, while 100
for those in normal font.

With fixed N=36 and η=0.4, all of these rules per-
form better with a larger sample size. Nonparametric
bootstrap and modified parallel analysis are the best
rules of the four to abandon the actual spurious cou-
pled modes, and perform better to retain the signifi-
cant coupled mode with a larger sample size. Parallel
analysis works worst in abandoning the spurious cou-
pled modes. It rejects the null hypothesis to consider
the second mode, which is not significant and should
have been abandoned, to be true for 86% realizations,
even when T=800. Random-phase test performs worse
than nonparametric bootstrap and modified parallel
analysis to abandon the spurious modes, but much
better than parallel analysis.

As the signal-to-noise ratio η varies with N=36 and
T=100, all of the rules perform better with a stronger
coupled signal. Note that the parallel analysis is ro-
bust only in the special cases when either (1) the ob-
servations at the grid points are spatially uncorrelated
or (2) the coupled signal shared by the two analyzed
fields is very strong. In other situations, the rule is
apt to retain the spurious coupled modes. Random-
phase test works well in model 1, and in model 3 with
η > 0.4. When there is no coupled signal or weak
signal (η < 0.4) shared by the two analyzed fields

in which the observations are spatially correlated, the
rule is unable to perform satisfyingly, especially in the
situation of model 2.

Unlike the sampling errors that are insensitive to
the number N of grid points with fixed T and η
[Bretherton et al. (1992) considered the sampling er-
rors to be independent of N based on experiment re-
sults], some rules are sensitive to N . The modified
parallel analysis performs best to abandon the spuri-
ous modes, but its capability of retaining the signifi-
cant mode is low when N/T > 0.2. As the number
of grid points increases, parallel analysis and random-
phase test perform worse to abandon the spurious cou-
pled modes, especially the former, which does well only
when N is much smaller than T . Nonparametric boot-
strap performs satisfactorily with various N to control
not only the probability of a type I error, but also the
probability of a type II error. In other words, it is the
most powerful one of the four rules to judge how many
modes should be retained.

4.4 Analysis of the experiment results

In the procedures of the four test rules, every step
is similar except for step 1 that illustrates how to build
the simulated fields. There are three main factors that
impact upon the accuracy of the four test rules: (1) the
simulated fields are built inappropriately according to
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step 1; (2) in step 3, the frequency (=α) of a type I
error based on m independent pairs of simulated fields
is used to replace the probability (=µ) of a type I error
for any pair of simulated fields; and (3) the significance
level α is unequal to 0. Let b̂α

j (j = 1, 2, 3) denote the
critical squared covariance fractions explained by the
first three modes for any simulated fields with signif-
icance level α. Then ŜCF

α

j 6= b̂α
j and b̂α

j 6= b̂α×m
j are

due to the first two reasons respectively. For d (=100)
independent realizations of a particular model, even
though ŜCF

α

j = b̂α×m
j , the number of realizations re-

serving spurious coupled modes may be unequal to 0
on account of the third reason. Here, we will discuss
the first two reasons in detail.

The unapt simulated fields built to find out ŜCF
α

j

is the main reason why parallel analysis and random-
phase test perform worse than nonparametric boot-
strap and modified parallel analysis to abandon the
spurious coupled modes, when the observations in the
analysis fields are spatially correlated. The N̂∗

ef of the
unapt simulated fields built in the two test rules is
larger than that of the analyzed fields, and hence the
critical fractions b̂α

j (j = 1, 2, 3) of the simulated fields

are smaller than the critical fractions ŜCF
α

j of the an-
alyzed fields based on the discussion in subsection 3.4.
If we replace ŜCF

α

j with b̂α
j (j = 1, 2, 3), there are

many realizations whose fractions ŜCF
α

j (j = 1, 2, 3),
which should have been out of the rejection regions
of null hypotheses, are in the rejection regions of null
hypotheses now. The underlying reason, why N̂∗

ef is
different between simulated fields built according to
parallel analysis and corresponding analyzed fields,
is the improper assumption that the observations of
analyzed fields are spatially independent. While the
underlying reason for random-phase test is that the
course of performing step (b) to build simulated fields
makes every grid point have random phase and conse-
quently induces simulated fields to have large N̂∗

ef. For
example, for one realization of model 2 with T=100,
N=36, the N̂∗

ef is about 25 for 100 pairs of independent
simulated fields Ŝk (k = 1, 2, · · · , 100) built according
to random-phase test but about 6 for the correspond-
ing analyzed field (Fig. 5).

Step 3 in the procedure of the four test rules does
not keep the probability, but only the frequency of re-
serving the actual spurious modes at the small valueα
for finite m pairs of independent simulated fields, so
the significance level of the four test rules is unequal
toα but µ. In terms of probability theory, the sam-
ple space of a significance test with significance level
µ contains only two sample points: 0 (accepting the
null hypothesis) with probability equal to 1 − µ, and
1(rejecting the null hypothesis) with probability equal

to µ. That is, a significance test is a Bernoulli trial.
Let ε denote the error of estimating the probability µ
with frequency (=α). According to the Weak Law of
Large Numbers, also known as Bernoulli Theorem, ε
converges to 0 as m → ∞. The bound εb of ε for m
pairs of simulated fields with fixed N/T can be derived
from Chebyshev Inequality:

P (|µ− α| > εb) 6 σ2

mε2
b

. (15)

If we let σ2/(mε2
b)=0.05, then P (|µ − α| > εb) 6

0.05. For Bernoulli distribution, the variance σ2 =
µ(1− µ), so

ε2
b =

µ(1− µ)
0.05m

6 0.5(1− 0.5)
0.05m

.

Hence, for m (=100) independent pairs of simulation
fields with fixed N/T , the possible value of µ ranges
from 0 to 0.27. For fixed N/T, ε is smaller and hence
the gap between b̂α

j and b̂α×m
j is narrower as m in-

creases. For fixed m (=100) independent pairs of sim-
ulation fields, as N/T is lower, the fractions b̂α

j of the
simulated fields are estimated more accurately, and
hence b̂α×m

j is closer to b̂α
j .

For d (=100) independent realizations of one of the
three models introduced in subsection 4.1, the num-
ber g of realizations rejecting the null hypothesis with
probability µ at the spurious modes fits the binomial
distribution, that is, P (g) = Cg

dµg(1 − µ)d−g (g =
0, 1, 2, · · · , d). When µ=0, g is determinately equal to
0. While the possible value of g almost ranges from 0
to 15 with µ=0.05 (Fig. 6) and almost ranges from 15
to 40 with µ=0.27 (Fig. 7). Therefore, the possible
number of realizations rejecting the null hypothesis at
the spurious modes almost ranges from 0 to 40. In
other words, for all modes of models 1 and 2 and re-
maining r̂− 1 modes of model 3, when the small value
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α is equal to 0.05 and b̂α
j = ŜCF

α

j , the range of the pos-
sible value of g is from 0 to 40 and narrower as N/T is
lower or m increases. When α =0 and b̂α

j = ŜCF
α

j , g
converges to the expected value 0 as N/T → 0 or
m →∞.

5. Conclusions

Due to SVD having a high potential for spurious
coupled patterns and correlation due to sampling er-
ror, it is essential to test the significance of coupled
modes of SVD, especially for geophysical fields, in
which the sample size is generally not large enough.
In this paper, we have clarified the essence of the sig-
nificance test of SVD, and investigated the essence,
process, and properties of four significance test rules:
parallel analysis, nonparametric bootstrap, random-
phase test, and modified parallel analysis. The new
rule (modified parallel analysis) has been proposed be-
cause the critical fractions for the first three coupled
modes of the two analyzed fields are quite sensitive to
spatial correlation.

Each of the rules is applied to a numerical experi-
ment including three models: model 1 is that the ob-
servations at the grid points are spatially and tem-
porally uncorrelated, and there is no coupled signal
between the two fields; model 2 is that the observa-
tions at the grid points are spatially correlated but
temporally uncorrelated, and there is also no coupling
between the two fields; and model 3 is that there is
a perfect anti-correlated coupled signal adding to the
two data fields in model 2.

Results from the experiment show that the four
rules are more accurate for testing the significance of
coupled modes of SVD with a lower ratio of the num-
ber of grid points N to sample size T. Modified parallel
analysis is the best rule to abandon the spurious cou-
pled modes, and performs better to retain the signifi-
cant modes with lower N/T . Nonparametric bootstrap
performs quite satisfactorily to abandon the spurious
modes and retain the significant modes. In particular,
when N/T > 0.2, it is the best rule to control two
types of errors. Parallel analysis is robust only in spe-
cial cases when the observations at the grid points are
spatially uncorrelated or there are very strong coupled
signals shared by the two analyzed fields. If there are
no coupled signals or a small signal (η < 0.4) between
the two analyzed fields, random-phase test is unable
to perform satisfactorily, especially in model 2. As
the number of grid points increases, parallel analysis
and random-phase test perform worse to abandon the
spurious modes, especially the former which only does
well when N is much smaller than T .

Three reasons that may affect the accuracy of the
test rules have been discussed in this paper: (1) the
simulated fields are built inappropriately; (2) in the
step which selects the critical fractions, the frequency
(=α) of a type I error based on m independent pairs
of simulated fields is used to replace the probability µ
of a type I error for any pair of simulated fields; and
(3) the significance level α is unequal to 0.
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