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ABSTRACT

Tropospheric ozone concentrations, which are an important air pollutant, are modeled by the use of an
artificial intelligence structure. Data obtained from air pollution measurement stations in the city of Istanbul
are utilized in constituting the model. A supervised algorithm for the evaluation of ozone concentration using
a genetically trained multi-level cellular neural network (ML-CNN) is introduced, developed, and applied to
real data. A genetic algorithm is used in the optimization of CNN templates. The model results and the
actual measurement results are compared and statistically evaluated. It is observed that seasonal changes in
ozone concentrations are reflected effectively by the concentrations estimated by the multilevel-CNN model
structure, with a correlation value of 0.57 ascertained between actual and model results. It is shown that
the multilevel-CNN modeling technique is as satisfactory as other modeling techniques in associating the
data in a complex medium in air pollution applications.
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1. Introduction

Air pollutants exert a wide range of impacts on
biological, physical and economic systems. Their ef-
fects on human health are of particular concern. The
decrease in respiratory efficiency and impaired capabil-
ity to transport oxygen through the blood caused by a
high concentration of air pollutants may be hazardous
to those having pre-existing respiratory and coronary
artery disease (Sharma et al., 2003).

Ozone (O3) is a reactive gas that forms naturally
on a limited scale in the Earth’s atmosphere and is
the most important of the oxidizing agents. Ozone re-
siding in the stratosphere (a layer 12–48 m above the
Earth) acts as a shield to protect the Earth’s surface
from the Sun’s harmful ultraviolet radiation. Closer to
the Earth, in the troposphere, ozone is not a pollutant
thrown from pollutant sources into the atmosphere,
but is formed with the help of factors such as sunlight

and heat, and with the adverse effects of various pollu-
tants such as VOCs and NOx. As ozone is a secondary
pollutant, it is directly associated with the other fac-
tors affecting air pollution and meteorological agents
(Wahab-Abdul and Al-Alawi, 2002).

Tropospheric ozone (O3) is the most common pho-
tochemical oxidant in the air. While stratospheric
ozone (12–48 m above the Earth) is necessary to cur-
tain solar ultraviolet radiation, high concentrations of
ozone residing closer to the Earth has negative ef-
fects on living beings. It causes coughs, dyspnea, tra-
chea contractions, headaches, chest contractions and
burns, pulmonary disfunction, changes in the cellular
structure of erythrocytes, angina, as well as eye, nose
and larynx irritations. Furthermore, it penetrates into
plant fibers, damaging plant cell metabolism, and gen-
erates spots and stains on the leaves (Tecer, 2000).

A wide variety of operational warning and forecast-
ing systems based on empirical, causal, statistical and
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hybrid models have been developed in order to begin
preventive action before and during episodes (Niska et
al., 2004). Cellular neural networks (CNNs)—special
kinds of artificial neural networks (ANNs)—are con-
temporary methods recommended for the first time by
Chua and Yang (1988). Their effectiveness is greater
than ANNs for two-dimensional data processing and
they fulfil the ANN’s function by using a limited coeffi-
cient. The most important distinction between a CNN
and an ANN is that, in a CNN, a cell with this struc-
ture has links only with its own adjacent cells, accord-
ing to the adjacency definition, and the linkage weights
between the components of the two-dimensional cell
constitute a constant connection network. Due to their
two-dimensional structures, CNNs are mostly applied
practically in the fields of image processing and image
definition (Danaci, 2002).

In this study, 24-hour estimations of tropospheric
ozone values with CNN modeling and a genetic algo-
rithm technique are made using air pollutant param-
eters recorded in 2003 at the Istanbul, Aksaray air
pollution measurement station and the meteorological
parameters of the same year obtained from the Florya
meteorology station. Following estimation of the sta-
tistical parameters between the model results and ac-
tual measurement results, the appropriate model per-
formance is determined.

2. Materials and methods

2.1 Description of the investigated area

The city of Istanbul, located at 41◦N and 29◦E,
with an area of 5700 km2, is a metropolis. Air pol-
lutant parameters recorded in 2003 at Istanbul, Ak-
saray air pollution measurement station and obtained
from the Istanbul Metropolitan Municipality Environ-
ment Protection and Control Directorate are used in
this study. The meteorological parameters used in the
model are data obtained from the Istanbul Meteorol-
ogy Regional Directorate, belonging to the Florya me-
teorology station. Daily averages in 2003 of the eight
meteorological and six pollutant parameters utilized,
with minimum and maximum values and the units and
abbreviations of each variable are given in Table 1.

The O3 concentration of the following day is esti-
mated by the CNN modeling technique using the pa-
rameters stated in Table 1. The data are arranged
between the dates from 1 January 2003 to 30 Decem-
ber 2003, and, excluding any missing data of these
obtained variables, the total sum of all has been used
in 321 data training and test processes. The size of
the input matrix for the training is 14×172, and for
the test is 14×149.

2.2 Basic CNN structure

A basic 2-D CNN can be viewed as an array of basic
processing units, as shown in Fig. 1. In a conventional
ANN, all cells communicate with each other, whereas
in a CNN only cells within a prescribed neighborhood
do so. The r-neighborhood of cell Ci,j is defined (Chua
and Yang, 1988) as:

Nr(i, j) = [C(k, l)max{|k − i|, |l − j|} 6 r ,

1 6 k 6 M ; 1 6 l 6 N ] ,

and is shown in Fig. 1 for r = 1 and r = 2. As each
cell communicates with its neighbors, the effect of a
cell propagates to cells farther away than r.

2.3 Multi-level CNN

The CNNs introduced above have a well suited
structure for image processing. Their normalized dif-
ferential state equations, which are nothing but a com-
pact matrix representation, can be described via the
matrix convolution operator defined by

dx

dt
= −X + A× Y + B ×U + I , (1)

where U ,X,Y are the M×N input, state, and output
matrices, respectively; A and B represent the feed-
back and feed-forward connections, respectively; and
I is a M ×N offset matrix representing the bias cur-
rents (Bilgili et al., 2005).

According to Eq. (1), CNN output changes until
the derivative of the state variable of the CNN is zero;
so, the last stable output is defined as Y∞

ij = Yij , when
dx/dt = 0 for all t. For designing a stable CNN, A and
B should be symmetrical and A22 must be greater
than one, if the size of A has been selected as 3 × 3.
CNNs are used for different special signal/image pro-
cessing applications with various templates (Bilgili et
al., 2005). The multi-level CNN introduced in this pa-
per consists of the serial cascaded connection of similar
type CNN structures. The same templates are used in
each level, and the output of each CNN level is the in-
put of the next CNN level in the cascade connection.

2.4 Genetic algorithms

Genetic algorithms are based on the mechanisms
of natural selection and genetics and have proven to be
effective in a number of applications (Al-Ahmad et al.,
2004; Aleixandre et al., 2004; Montastruc et al., 2004).
They work with a binary coding of the parameter set
and search from a number of points of the parameter
space for the best one; they use only a cost function
during the optimization and do not need derivatives
of the cost function or other information. In genetic
algorithms, reproduction and mutations may cause the
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Table 1. Minimum, maximum and mean values of parameters used in the model.

Parameter Notation Unit Max. Min. Mean

Sulphur dioxide SO2 µg m−3 82 0 15
Particular matter PM µg m−3 198 14 66
Carbon monoxide CO µg m−3 9575 36 1646
Nitrogen oxide NO µg m−3 690 7 104
Nitrogen dioxide NO2 µg m−3 127 9 59
Ozone O3 µg m−3 86 0 16
Temperature TEMP ◦C 28.8 −0.8 14.4
Relative humidity RH % 95.7 43.3 72.2
Pressure P hPa 1025.3 100.3 1006.6
Sun shines SUN h 13.8 0 6.7
Cloudy C − 10.0 0 4.49
Wind direction WD − − − NW
Wind speed WS m s−1 6.2 0.4 2.6
Rainfall R mm 31.8 0 1.7

Fig. 1. 1- and 2-neighborhoods of the central cell.

chromosomes of children to be different from those of
their biological parents, and crossing-over processes
create different chromosomes of children by inter-
changing some parts of the parent chromosomes. Like
in nature, the genetic approach solves the problem of
finding good chromosomes by manipulating the chro-
mosomes blindly without any knowledge about the
problem they are trying to solve (Davis, 1991; Kozek
et al., 1988; Holland, 1975). A general outline of the
genetic approach used in this paper is as follows:

Step 1. Construction of the initial population. A
matrix called a population matrix is constructed. Each
row of the population matrix represents chromosomes
and each column represents the bits in chromosomes,
and its size is M × N . At the beginning, this matrix
is constructed randomly.

Step 2. Extraction of the CNN templates. Chro-
mosomes represent the binary codes of the elements of
the CNN templates, A,B, I. In this step, each chro-
mosome is decoded and the elements of the CNN are
computed in a chosen interval. These elements are

shown in vector form as

S =[a11, a12, a13, a21, a22, a23,

a31, a32, a33, b11, b12, b13,

b21, b22, b23, b31, b32, b33, I] , (2)

With each of the elements of S being coded in binary,
the chromosome S0 used in the algorithm is obtained
from S as follows: The first five bits in S0 represent
the first five bits of the template elements, the second
five bits represent the second five bits of the template
elements in each chromosome, and so on; the length of
each chromosome will be denoted by LengthS.

Step 3. Evaluation of the cost function value for
each chromosome. In this step, an image that was
selected as the training image is inputted to the CNN,
which works with the templates belonging to the first
chromosome. After the CNN output appears to be sta-
ble, the cost function is computed between this output
image and the desired target image. This process is re-
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Fig. 2. Daily average level of O3 concentration (µg m−3) (January 2003–December 2003).

Fig. 3. Correlation between input air pollution parameters (NO2, NO, SO2 and CO) and
ozone.

peated with the template sets belonging to each chro-
mosome in the population. The cost function has been
selected in this study as follows:

J(A,B, I) = (Tij − Pij)2 , (3)

where P and T represent the CNN output image and
the target image, respectively.

Step 4. Creation of a new generation. Before cre-
ating the next generation, fitness values of the popula-
tion are sorted in descending order and normalized rel-

ative to the sum of the fitness values of the population.
A random number r between 0 and 1 is generated.
Then, the first population member is selected whose
normalized fitness, added to the normalized fitness of
the preceding population members, is greater than or
equal to r. This operation is repeated several times
and any chromosome whose fitness is bad is deleted
from the population. This above procedure is called
“reproduction” in genetic algorithms. The reproduc-
tion process does not generate new chromosomes, but
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rather elects the best chromosomes in a population
and increases the number of chromosomes whose fit-
ness values are relatively greater than the others. Af-
ter the reproduction, depending on the application, K
pairs of chromosomes are selected as “parents” ran-
domly. Two numbers, si, and sii, between 1 and the
length of chromosomes are generated. The bit strings
between si and sii are called the crossover site. During
the crossing-over process, bit strings in the crossover
sites in each pair of chromosomes are interchanged and
two new chromosomes are created from a pair of old
chromosomes. Finally, 2K new chromosomes, which
are called “children”, are generated to build the new
population. Over these chromosomes, the mutation
operation is carried out. Since the mutation probabil-
ity has been set to 1%, 0.01×M ×N bits are selected
randomly from the population and inverted. The chro-
mosome whose fitness value was the best before the
reproduction process is added and another randomly
selected chromosome is deleted from the final gener-
ation; the purpose of this addition is to preserve the
fittest chromosome of the previous step, and this new
population is the next generation population. After
obtaining the new generation, the search procedure
goes to the second step and continues until the stop-
ping criterion is met.

2.5 Statistical evaluation

Three different statistical expressions are used to
evaluate the performance of the CNN model’s estima-
tions. These are: mean absolute error (MAE), root
mean square error (RMSE) and correlation coefficient
(R, found as a result of calculations made between the
observed and estimated values (Ozcan et al., 2006).
These calculations are:

MAE =
1
n

n∑

i=1

|oi − pi| , (4)

RESE =

√√√√ 1
n

n∑

i=1

(oi − pi)2 , (5)

and

R = 1−

n∑
i=1

(oi − pi)2

n∑
i=1

(oi − o′)2
(6)

Here, oi represents the observed concentration, o′

the observed concentration average, n the observation
number (days), and pi the estimated concentration.

3. Results and discussion

The time change of the values of the ozone concen-

Table 2. Genetic training algorithm parameters for data.

Parameters Value

Number of chromosome 30
Bits per parameter 16
Number of parameters 5
Chromosome length 152
Total bits in the population 4560
Mutation probability 1%
Number of inverted bits 16
Template parameters range [−5, 5]

Table 3. Statistical evaluation of model results.

Actual value

Statistical Index Training Testing

MAE 6.30 6.32
RMSE 9.59 8.7

R 0.62 0.57

trations estimated between January 2003 and Decem-
ber 2003 used in the model is given in Fig. 2. The
relationships of the pollutant parameters NO2, NO,
SO2, and CO with O3 are given in Fig. 3.

Input and output data of the same dimensions are
formed and the calculation of all values as the output
has been realized in the model structure of the CNN.
In the dataset arrangement, effective input variables
are the eight different meteorological datasets and the
six different pollutant concentrations in the time t, and
the output variable is the concentrations in the time
t + 1.

The model works by selecting the adjacency r = 1
and the coefficients A,B and I extracted at the end
of the training, as presented below. These coefficients
have been applied to the test dataset and the results
are given graphically in Fig. 4. Genetic algorithm pa-
rameters used in the training phase are presented in
Table 2.

A =




0.4938 0.1688 −0.2500
−0.1187 −0.7813 0.4688
0.1000 0.4562 −0.4375




B =



−0.5250 0.6188 0.5188
0.1000 0.3937 0.0125
−0.5938 −0.0437 0.5750




I = [−0.4875]

The model results have been evaluated by calcu-
lating three separate statistical parameters based on
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Fig. 4. Outputs for ML-CNN model structure: (a) training set and (b) testing set.

error calculation between the observed and estimated
O3 concentrations. Mean absolute error (MAE) ex-
presses the absolute average of the difference (Eq. 4)
and the root mean square error (RMSA) expresses the
root of the total sum of the squares of all differences
(Eq. 5). The measurement of the proximity of the ob-
served and estimated concentrations is given by the
correlation coefficient R (Eq. 6). In a well adjusted
model, low MAE and RMSA values and a value of r
closer to 1 represents a satisfactory modeling.

According to the statistical evaluation made be-
tween the model results and the actual O3 concen-
tration values, it can be seen that MAE and RMSE
expressions reach the values of 6.32 µg m−3 and 8.70
µg m−3, respectively. The value of the correlation co-
efficient R, that is, a coefficient giving paralleling the
follow-ups for the increase and decreases in O3 concen-
tration, is 0.57 for the estimations. Statistical evalu-
ation of training and testing sets are given in Table

3.

4. Conclusion

In this study, ozone, which is an important air pol-
lutant has been modeled by the use of CNNs, and the
common pollutant parameters and meteorological fac-
tors. The model outputs and statistical values in Fig.
4 show that the CNN technique used in data process-
ing can be applied to air pollution modeling.

One-year changes of the atmospheric parameters
used in the ozone estimation have been taken into
consideration. It is probable that increasing the data
record time is directly proportional with the sensibility
of the model. However, in this study, data that can
provide all atmospheric conditions and four seasons
have been entered into the model to minimize the er-
rors of the model. That all kinds of atmospheric and
meteorological variables (belonging to winter, summer,
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spring, and fall periods) have been applied accentuates
the consistency of the model.

In order to evaluate the performance of the ANN
model, results were compared using measures of error.
These were based on the deviations between predicted
values and original observations. The MAE is the av-
erage absolute value of these residual values (Eq. 4)
and the RMSE the square root of all squared resid-
uals (Eq. 5). Evaluation can also be undertaken by
considering measures of agreement, such as the Pear-
son product moment correlation coefficient (R) (Eq. 6)
(Nunnari et al., 2004; Sahin et al., 2004, 2005). Here,
they were derived using observation and model output
predictions and are summarized in Table 3 to obtain
the ANN model’s performance. Table 3 shows the per-
formance statistics of the trained and tested networks
and regression for the same data when used to predict
pollutant concentrations for 2003. In the literature,
Spellman (1999) developed an ANN model which es-
timated ozone concentrations. Spellman’s work pre-
sented a model for London, Harwell and Birmingham
in the United Kingdom, and the correlation coefficients
(R) of the model for these places were 0.59, 0.51 and
0.28, respectively. Gardner and Dorling (2000) also
developed a MLP (Multi layer perceptron) neural net-
work model for ozone prediction. They obtained sat-
isfactory results and correlation coefficients of models
between 0.40–0.60. In the present study, the correla-
tion coefficient (R) between the actual values and the
model’s results was 0.57. It is therefore demonstrated
that the ML-CNN modeling technique produces re-
sults that are equally as satisfactory as previous stud-
ies in the literature.

Prior research on modeling ozone concentrations
have used ANN approaches (Ruiz-Suarez et al., 1995;
Comrie, 1997; Spellman, 1999; Gardner and Dorling,
2000; Elkamel et al., 2001; Ozcan et al., 2005). As
mentioned in section 1, CNNs have mainly been ap-
plied in the field of image processing and until now
have not been used in studies of air pollution model-
ing. The present work, therefore, is a novel approach
that can be used as a baseline for improvement by fel-
low researchers working in this area.
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