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ABSTRACT

Different multimodel ensemble methods are used to forecast precipitations in China, 1998, and their
forecast skills are compared with those of individual models. Datasets were obtained from monthly simula-
tions of eight models during the period of January 1979 to December 1998 from the “Climate of the 20th
Century Experiment” (20C3M) for the Fourth IPCC Assessment Report. Climate Research Unit (CRU)
data were chosen for the observation analysis field. Root mean square (RMS) error and correlation coeffi-
cients (R) are used to measure the forecast skills. In addition, superensemble forecasts based on different
input data and weights are analyzed. Results show that for original data, superensemble forecasting based
on multiple linear regression (MLR) performs best. However, for bias-corrected data, the superensemble
based on singular value decomposition (SVD) produces a lower RMS error and a higher R than in the MLR
superensemble. It is an interesting result that the SVD superensemble based on bias-corrected data performs
better than the MLR superensemble, but that the SVD superensemble based on original data is inferior to
the corresponding MLR superensemble. In addition, weights calculated by different data formats are shown
to affect the forecast skills of the superensembles. In comparison with the MLR superensemble, a slightly
significant effect is present in the SVD superensemble. However, both the SVD and MLR superensembles
based on different weight formats outperform the ensemble mean of bias-corrected data.
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1. Introduction

Initial errors and model errors are the two key
types of error which can lead to uncertainties in nu-
merical weather and climate prediction. In general,
initial errors are considered to be the main problem,
while model errors are more relevant to short-term cli-
mate prediction (Mu et al., 2002). In order to reduce
the effects of initial errors, different methods are used
to generate initial perturbations (Leith, 1974; Hoff-
man and Kalnay, 1983; Molteni et al., 1996; Toth and
Kalnay, 1993, 1997), with breeding and singular vec-
tors being two of the more popular methods at the
present time. For model errors, some scientists believe
that multimodel ensembles could decrease the uncer-
tainties of single models, and thus this is an approach

which has become popular in recent years (Kalnay,
2003).

It has long been known that an ensemble average
of operational global forecasts from different opera-
tional centers is generally more skillful than the best
individual forecast (Fritsch et al., 2000). Based on
an ensemble average, a multimodel superensemble was
proposed (Krishnamurti et al., 1999), and many sub-
sequent studies have since been made (Krishnamurti
et al., 2000, 2001; Pavan and Doblas-Reyes, 2000; Yun
et al., 2003, 2005). Some of this research has indicated
that multimodel superensembles can improve the fore-
casting skills (Krishnamurti et al., 1999, 2000, 2001),
however other results have shown few advantages or
improvements when using this approach (Pavan and
Doblas-Reyes, 2000; Peng et al., 2002; Kharin and
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Zwiers, 2002).
Pavan and Doblas-Reyes (2000) combined four dif-

ferent AGCMs for seasonal forecasting and found min-
imal improvement. Similarly, Peng et al. (2002) in-
dicated that the use of more sophisticated techniques
for constructing multimodel ensembles may not be any
more advantageous than the use of simpler approaches.
Furthermore, Kharin and Zwiers (2002) found that su-
perensemble forecasting obtained by optimally weight-
ing the individual ensemble members did not perform
well, either in the simple ensemble mean or in the
regression-improved ensemble mean. Yun et al. (2003)
suggested that the disagreement between Kharin and
Zwiers (2002) and Krishnamurti et al. (2000) is due
to the fact that, in the former of the two studies, the
seasonal mean was removed only after the regression
coefficients were calculated, whereas in Krishnamurti’s
work, the seasonal mean was removed prior to the cal-
culation of the regression coefficients. How, therefore,
does the order in which weights are derived affect the
ability of the ensemble? Crucially, previous studies
have tended to focus on the effect of data formats on
the ensemble mean, but have paid little attention to
data format differences affecting superensemble skills.
Furthermore, atmospheric predictability is low in the
extratropics. How would a multimodel ensemble per-
form in China? These are the main issues to be ad-
dressed by the present study, and to achieve this eight
models from the “Climate of the 20th Century Exper-
iment” (20C3M) were chosen to assess the abilities of
different methods of ensemble forecast and to analyze
the effects of different input data on these forecasting
skills.

Three ensemble methods are used, including the
ensemble mean, multiple linear regression (MLR) and
singular value decomposition (SVD). In terms of Kr-
ishnamurti et al. (1999) and Yun et al. (2003), the
MLR and SVD methods are equivalent to the MLR
and SVD superensembles, respectively. Original and
bias-corrected data will be treated as the input data.
Finally, superensemble results regarding weights de-
rived from different data formats will be analyzed.

2. Datasets and superensemble construction

Datasets were obtained from the monthly simula-
tions of eight models during the period January 1979
to December 1998 from the “Climate of the 20th Cen-
tury Experiment” (20C3M) for the Fourth IPCC As-
sessment Report. The eight models chosen for the
construction of the superensemble presented by Kr-
ishnamurti et al. (1999) are shown in Table 1. Cli-
mate Research Unit (CRU) data were used for the
observation analysis field. In terms of the format of

the CRU data, all multimodel forecast fields were in-
terpolated to a common resolution of 0.5◦ × 0.5◦ for
the monthly mean time intervals. Various multimodel
approaches, including the ensemble mean, MLR and
SVD superensembles (SE) for precipitation prediction
have been discussed in the literature (Krishnamurti et
al., 2001, 2003; Stephenson and Doblas-Reyes, 2000;
Yun et al., 2003). These are defined as follows:

Eb =
1
N

N∑

i=1

(Fi) , (1)

SE = O +
N∑

i=1

ai(Fi − F i) , (2)

where Eb is the bias ensemble mean. By substituting
original data for the seasonal-cycle removed data, then
Eq. (1) can be written as:

Ec = O +
1
N

N∑

i=1

(Fi − F i) . (3)

Here, Ec represents the bias-corrected ensemble mean;
Fi is the ith model forecast out of N models; F i is
the monthly mean of the ith forecast over the training
period; O is the monthly mean of the observed state
over the training period, and corresponds to F i; and
ai is the regression coefficient of the ith model, which
is computed at each grid point; SE represents the su-
perensemble.

In the conventional mulitimodel superensemble
forecast (Krishnamurti et al., 2000), ai is obtained us-
ing Gauss-Jondan elimination with pivoting, and in
the SVD superensemble ai is calculated by using singu-
lar value decomposition of the covariance matrix and
selecting only the largest singular value (Yun et al.,
2003). If original data are used to perform the su-
perensemble forecast, Eq. (2) could be written as:

SE =
N∑

i=1

ai × Fi . (4)

3. Verification metrics

In order to measure forecasting ability, either the
bias between the forecast and observation can be cal-
culated, or the degree of correlation between them can
be obtained. The correlation coefficient (R) is often
used to assess the relationship between two meteoro-
logical variables, and root mean square (RMS) denotes
the mean state of difference between a variable and
the mean value. The correlation coefficient is a good
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Table 1. Selected 20C3M Project models.

Acronym Horizontal resolution (Atmosphere) 20C3M group

CCSM3 1.40625◦ × 1.40625◦ National Center for Atmospheric Research,
Boulder, Colorado, USA

CGCM3.1 2.8125◦ × 2.8125◦ Canadian Climate Centre, Downsview, Ontario, Canada
CNRM-CM3 2.8125◦ × 2.8125◦ Centre National de Recherches Météorologiques,

Toulouse, France
ECHAM5 1.875◦ × 1.875◦ Max Planck Institute for Meteorology, Hamburg, Germany

FGOALS1.0 2.8125◦ × 2.7906◦ Institute of Atmospheric Physics, Beijing, China
GFDL-CM2.1 2.5◦ × 2.0225◦ Geophysical Fluid Dynamics Laboratory, Princeton,

New Jersey, USA
MRI-CGCM2.3.2 2.875◦ × 2.875◦ Meteorological Research Institute, Tsukuba, Japan

UKMO-HadGEM1 1.875◦ × 1.875◦ United Kingdom Meteorological Office, Bracknell,
England, UK

measure of phase error (Déqué, 1997), but forecasts
with large errors of magnitude still have the possibility
of good correlation coefficients. Therefore, it is neces-
sary to use RMS to evaluate the magnitude of errors.
In this paper, both RMS and R are used to compare
different ensemble skills and are defined as follows:

RMS =

√
1
G

∑
[(F − F )− (O −O)]2 , (5)

R =
∑

(F − F )(O −O)√∑
(F − F )2

√∑
(O −O)2

. (6)

Here, the overbar denotes time average, and G denotes
the number of grid points. It is necessary to note that
F represents the forecast average over the forecast pe-
riod, and the R only means the correlation coefficient
between the forecast and observation during the fore-
cast period. In order to quantify the difference be-
tween different forecasts, the following definition can
be adopted. The improvement of the R of forecast A
over forecast B can be defined as RA/RB − 1, where
RA and RB are the R of forecasts A and B, respec-
tively. Similarly, with regard to RMS, the improve-
ment of forecast A over forecast B can be defined as
1−RMSA/RMSB (Yun et al., 2005). These definitions
are used to compare the skills of any two forecasts.

4. Results

4.1 Performance of multimodels and ensem-
ble forecasts

Given the definition of the proposed superensemble
(Krishnamurti et al., 1999), a multimodel superensem-
ble based on MLR has been used to study the en-
semble forecast. Some scientists believe that the su-
perensemble technique can improve forecasting ability
because of the collective information of all the mod-
els used in the statistical algorithm (Krishnamurti et
al., 2000), although other results have shown that su-

perensembles do not perform better than simple en-
semble mean (Peng et al., 2002; Kharin and Zwiers,
2002). In addition, it has been found that the use of
SVD for constructing superensembles provides an in-
cremental improvement in forecasting ability over con-
ventional (MLR) superensembles (Yun et al., 2003). In
the present study, different performances of individual
models and their ensembles are analyzed.

First, the period of 1979–1997 was chosen for the
training time, and 1998 for the forecast time. Monthly
mean precipitation was adopted for the calculation. In
this subsection, ensemble skills based on three differ-
ent methods are compared. Figure 1 shows the ob-
served and forecasted total precipitation distributions
by individual models and ensemble methods in China
for 1998. From the observation field, it can be seen
that the most significant rainfall center occurs in East
China, and in the southern part of the Yangtze River.
In addition, South China shows heavy precipitation.
Most of the individual models show the heaviest rain-
fall in the east of the Tibetan Plateau, but only Figs.
1a, 1d, 1e, and 1g partly reflect the heaviest rain-
fall center shown in the observation field. However,
the rainfall magnitude is remarkably underestimated,
and the position of the rainfall center differs between
each model. Ensemble mean forecasting based on bias
data does not remove the overestimated rainfall cen-
ter located on the Tibetan Plateau, but the MLRb
and SVDb superensemble forecasts realize it. More-
over, compared with individual models, superensemble
forecasts show the position of the rainfall center more
accurately, although the rainfall magnitude is under-
estimated. Compared with bias data, it is found that
ensemble forecasts based on bias-corrected data re-
flect more information similar to the observation field,
although they also underestimate strong precipitation
centers in the observation field. One of the probable
reasons for underestimating rainfall is that the grids of
individual models are significantly coarser than those
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Fig. 1. Total precipitations for individual models, ensemble forecasts and the observation field in China, 1998 (unit:
mm): (a)–(h) are the individual models (CCCMA, CNRM, GDFL, IAP, MPI, MRI, NCAR, and UKMO); (i)–(j), (k)–(l)
and (m)–(n) are, respectively, the ensemble mean, MLR, and SVD superensembles for original and bias-corrected data;
and (o) represents observation.
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Fig. 1. (Continued).
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Fig. 1. (Continued).

Table 2. Mean RMS and R of precipitation events for in-
dividual models and ensemble forecasts based on different
data inputs. A R value of 0.576 represents a coefficient
significant at the 95% level (n = 12).

RMS R

CCCMA 1.755 0.650
CNRM 1.910 0.627
GFDL 1.843 0.405
IAP 2.029 0.363
MPI 2.031 0.457
MRI 1.819 0.425

NCAR 1.635 0.508
UKMO 1.933 0.637

Eb 1.344 0.667
MLRb 1.233 0.775
SVDb 1.326 0.654

Ec 1.181 0.789
MLRc 1.117 0.815
SVDc 1.089 0.842

of the observation field, and strong rainfall centers
which occur in the observation field are negligible in
the individual models. Finally, for heavy precipita-
tions in South China, most ensemble forecasts perform
well, except for Eb in Fig. 1.

Figure 2 shows the averaged RMS and R of indi-
vidual models and ensemble forecasts for the forecast
period. It can be seen that individual models show dif-
ferent abilities to forecast precipitations, and that en-
semble forecasts perform better than individual mod-
els. For bias data, it can be seen that the ensemble
mean (Eb) is superior to the best individual model,
and the superensemble based on MLR shows the best
forecasting ability. As for the forecasting skill of the
SVD superensemble, both the RMS and R values are
slightly lower than for Eb. However, for bias-corrected
data, the SVD superensemble performs best and sig-
nificantly better than other ensemble forecasts.

Table 2 lists the values of RMS and R for all fore-
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(a) 
(b) 

Fig. 2. Mean RMS and R of precipitations for the individual
models and ensemble forecasts during the forecast period from
January to December 1998 in China. Units for RMS is mm d−1.
(a) RMS; (b) R. RMS  SVD1 SVD2 SVD3 SVD4 SVD5 SVD6 SVD7 SVD8 MLR1.201.221.241.261.281.301.321.341.36 RMS  SVD1 SVD2 SVD3 SVD4 SVD5 SVD6 SVD7 SVD8 MLR1.061.071.081.091.101.111.121.131.14

 (a) (b) 
Fig. 3. Mean RMS of precipitations for the SVD superensemble forecasts derived from different
inputs of data during the forecast period from January to December 1998. SVDn represent the
SVD superensemble with n larger singular values held in calculating weights (units: mm d−1). (a)
SVDb; (b) SVDc.

casts. The RMS range of individual models is between
1.635 and 2.031. Similarly, the R range of individual
models is between 0.363 and 0.650. In terms of the
above definition of improvement, the RMS improve-
ments of the Ec, MLRc, and SVDc forecasts based
on bias-corrected over those of bias data are 12.1%,
9.4% and 17.9%, respectively. The corresponding R
improvements are 18.3%, 5.2%, and 28.8%. It is obvi-
ous that the SVD superensemble is the most sensitive

to the format of input data. By comparing SVDc with
Ec and MLRc, 7.8% and 2.5% improvements in RMS,
and 6.7% and 3.3% improvements in the R are found.

It is interesting that the SVD superensemble skill
for bias data is inferior to the corresponding MLR su-
perensemble, but that the SVD superensemble skill for
bias-corrected data is superior. It indicates that for the
same ensemble method, the SVD superensemble based
on bias-corrected data significantly improves forecast-



NO. 1 KE ET AL. 79

ing. The SVD method selects only the largest singular
value and makes the residual less when weights are
solved (Yun et al., 2003), although this is only for
a SVD superensemble of bias-corrected data. How-
ever, it can clearly be seen that the forecasting skills of
SVDb is worse than MLRb. This indicates that differ-
ent formats of data not only influence the forecasting
skills based on the same method, but also have differ-
ing degrees of effect on various ensemble methods.

Figure 3 shows the averaged RMS of forecasted pre-
cipitations by the SVD method under different condi-
tions where different numbers of singular values are
held in calculating weights. For bias data, RMS shows
a tendency to decrease with an increasing number of
singular values held (Fig. 3a). It is worthwhile noting
that the SVD superensemble is the same as the MLR
superensemble when all singular values are held. In
other words, if the character string “SVDn” is used to
represent the SVD superensemble with n larger singu-
lar values held in calculating weights, the performance
of SVD8 is equal to that of the MLR superensem-
ble. However, the SVD superensemble based on bias-
corrected data reflects an opposite phenomenon (Fig.
3b), and the RMS of SVD1 is sharply less than that
of SVD8. Its RMS distribution shows an approximate
tendency to increase with an increasing number of sin-
gular values held. This can be used to explain that the
SVD superensemble performs worse than the MLR su-
perensemble for bias data, but better than the MLR
superensemble for bias-corrected data. This indicates
that for bias-corrected data, only choosing the largest
singular value to solve weights could perform best in
the SVD method, which is in accordance with the re-
sults of Yun et al. (2003).

In order to understand the performance of ensem-
ble forecasts in detail, monthly RMS errors during the
forecast period are shown in Fig. 4. RMS error in sum-
mer is significantly higher than that of the other sea-
sons, which is in accordance with the heaviest precipi-
tation in China taking place in summer. The ensemble
for bias-corrected data performs generally better than
the ensemble based on bias data, except in September
and October. For bias-corrected data, the SVD su-
perensemble in general shows a lower RMS than other
ensembles.

Figure 5 shows bias percentages of summer pre-
cipitations forecasted by several ensemble methods in
China for 1998. In comparison with Eb, all other en-
semble forecasts show obvious improvement. In the
south of Xinjiang Province, MLRc and SVDc show
less bias than Ec. However, it is also found that Ec
performs best for Northeast China. This indicates
that different levels of performance of the ensemble
methods could be present in different regions, although

in general, the superensemble shows more advantages
than the ensemble mean in China. It could be used
to partly explain disagreement existing in previous re-
sults. For a certain grid, the superensemble being su-
perior to the simple ensemble mean mainly depends
on whether or not weights obtained during the train-
ing time fit various models during the forecast time.

4.2 Different order of obtaining weights

Kharin and Zwiers (2002) found a disagreement
with the results of Krishnamurti et al. (2000), in that
the superensemble performed worse than the ensemble
mean. Yun et al. (2003) considered that this discrep-
ancy was due to the fact that the seasonal mean was
removed only after the regression coefficients were cal-
culated, while the seasonal mean was removed prior
to the calculation of regression coefficients in the work
by Krishnamurti et al. (2000). In other words, they
used a different data format to calculate regression co-
efficients of the superensemble. How different, then,
is it when different data formats are used to calculate
weights? Is this difference enough to obtain an oppo-
site forecast result? How great an effect do weights
obtained with different data formats have on forecast-
ing ability? To answer this, regression coefficients with
different data formats are calculated and superensem-
ble forecasts are made. In order to distinguish between
them, the term “wr” is used to represent the process of
first calculating weights, and then removing seasonal
cycle information; and “rw” to represent the process
in reverse order. Indeed, the result of “rw” is the same
as that of bias-corrected data. Figure 6 illustrates the
mean RMS and R of the MLR and SVD superensem-
bles based on different regression coefficients, and it
can be seen that different regression coefficients have
a slight effect on the MLR and SVD superensembles.
The RMS and R improvements of MLRrw over ML-
Rwr are 4.0% and 0.3%, respectively. In comparison
with this, slightly obvious differences derived from the
discrepancy of calculating weights are shown for the
SVD superensemble. The RMS and R improvements
for SVDrw over SVDwr are 6.0% and 2.6%, respec-
tively. Therefore, the SVD superensemble is slightly
more sensitive to the order in which weights are de-
rived than the MLR superensemble, and calculating
weights after removing the seasonal mean could im-
prove forecasting skills. For the MLR superensemble,
weights derived from bias-corrected data also improve
forecasting skills, however, the degree of improvement
is inferior to that of the SVD superensemble.

Is it possible that this difference could lead to dif-
ferent conclusions about ensemble methods? To ad-
dress this, the forecasting skills of MLRwr and SVDwr
are compared with Ec, whose RMS and R are shown
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Fig. 5. Bias percentages of summer precipitations forecasted by different ensemble methods in China, 1998
(unit: %). (a) Eb; (b) Ec; (c) MLRc; (d) SVDc.
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(a) (b) 
Fig. 6. Mean RMS and R of precipitations of the superensemble fore-
casts during the forecast period in China, where “rw” represents re-
moving the seasonal mean and then calculating the weights; and “wr”
represents calculating the weights and then removing the seasonal mean
(units for RMS: mm d−1). (a) RMS; (b) R. RMS  Ec MLRwr SVDwr  11.021.041.061.081.11.121.141.161.181.2  R  Ec MLRwr SVDwr  0.750.760.770.780.790.80.810.820.830.840.85

 
(a) (b) 

Fig. 7. Mean RMS and R of precipitations of Ec, MLRwr and SVDwr
during the forecast period in China (units for RMS: mm d−1). (a)
RMS; (b) R.

in Fig. 7. Both MLRwr and SVDwr perform better
than Ec. According to this study, therefore, it is found
that the order in which weights are obtained could in-
fluence ensemble ability to a certain extent, but this
might not be the main reason for disagreement pre-
sented in previous studies (Kharin and Zwiers, 2002;
Krishnamurti et al., 2000).

5. Summary

Eight model outputs from 20C3M were used to
study the forecasting skills of multimodel ensembles
for precipitations in China, 1998. Different ensem-
ble methods were compared with individual models.
Moreover, the effects of different formats of input data
on superensemble forecasting were analyzed. Finally,

the order in which weights were derived was also con-
sidered.

Forecasting skills of superensembles were superior
to those of all individual models and the simple en-
semble mean. Different formats of input data had ob-
vious effects on forecasting skills. Superensemble fore-
casts based on bias-corrected data performed better
than those of original data. In contrast, the SVD su-
perensemble was slightly more sensitive to the format
of input data. Therefore, an interesting phenomenon
occurred in that the SVD superensemble based on
bias-corrected data performed better than the MLR
superensemble, although a performance to the con-
trary was shown for the original data. The cause
of this needs to be studied further in the future. In
addition, the order in which weights were derived in-
fluenced slightly the forecasting skills, with it being
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optimal to remove the seasonal mean first, before cal-
culating the weights. It is worthwhile noting that dif-
ferent performance levels of ensemble methods may be
present in different regions. For a superensemble, it
is important that more valuable information of indi-
vidual models is obtained during the training time.
How to calculate weights more suitably in individual
models for the forecast period is the key to improving
forecasting skills.
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