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ABSTRACT

It has been theoretically proven that at a high threshold an approximate expression for a quantile of
GEV (Generalized Extreme Values) distribution can be derived from GPD (Generalized Pareto Distribu-
tion). Afterwards, a quantile of extreme rainfall events in a certain return period is found using L-moment
estimation and extreme rainfall events simulated by GPD and GEV, with all aspects of their results com-
pared. Numerical simulations show that POT (Peaks Over Threshold)-based GPD is advantageous in its
simple operation and subjected to practically no effect of the sample size of the primitive series, producing
steady high-precision fittings in the whole field of values (including the high-end heavy tailed). In compari-
son, BM (Block Maximum)-based GEV is limited, to some extent, to the probability and quantile simulation,
thereby showing that GPD is an extension of GEV, the former being of greater utility and higher significance
to climate research compared to the latter.
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1. Introduction

Recent modeling studies have reconfirmed that
possible future changes of weather and climate ex-
tremes are derived by comparing models of natural cli-
mate variability and its future state with atmospheric
constituents affected by human activity (e.g., ever-
increased greenhouse gases, sulfate aerosols etc.), as
reported by IPCC. Consequently, the possible regime
of extreme climate/weather events has become a ma-
jor concern in climate research (IPCC, 2001; Meehl et
al., 2000; Huang, 2000; Christensen and Christensen,
2003; Ding et al., 2006).

Rapid advances in climate modeling capabilities
have made reality-closer estimate of future mean cli-
mate change during the past decade. Current global
coupled climate models have improved resolution (grid
points typically at 2.5◦ × 2.5◦), with more detailed

and accurate land surface schemes, and dynamical sea
ice formulations. Some have even higher resolution
in the ocean near the equator (leading to improved
simulations of El Niño). These changes are coupled
with improved techniques to study climate changes
and processes at smaller regional scales from GCM
results through either embedding high-resolution re-
gional models (with grid points every 50 km or so)
in the global models or statistical downscaling tech-
niques. However, direct imitation of extreme climate
events and their changes remain rather difficult. The
combination of a downscaling method under develop-
ment with the theory on the distribution of extreme
values used in statistical climate has advanced the re-
search into the prediction of possible climate extreme
values in a certain return period to follow (Jones et
al., 1997; IPCC, 2001; Ding and Sun, 2006).

In general, the statistical simulation of the extreme
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climate values must be given by using the extreme
value distribution of each climatic element so that
a statistical inference of the future climatic extreme
value from above provided future climate projections
scenario can be obtained (Katz et al., 2005; Meehl et
al., 2000; Easterling et al., 2000). Thus, to determine
a certain model for extreme value distribution is the
foundation of diagnosis and prediction for extreme cli-
mate according to a projection of the future climate
scenario (Katz et al., 2005; Meehl et al., 2000; Karl
and Easterling, 1999) .

Jenkinson (1955) proposed the classical theory on
extreme distribution advanced by Fisher and Tippett
(1928), in which the three kinds of typical extremes
distribution were changed into a three-parameter Gen-
eralized Extreme Values distribution (GEV) as a new
model (Gumbel, 1958) for applied researches. GEV
studies on meteorological extreme value distribution
are now popular, especially type-I Gumbel model
(Fisher and Tippett, 1928; Jenkinson, 1955; Gum-
bel, 1958). Pickands (1975) introduced Generalized
Pareto Distribution (GPD) into hydro-meteorological
research, which was improved by Hosking and Wal-
lis (1987) and is now being diffused (Pickands, 1975,
Davison and Smith, 1990; Abild et al., 1992; Guttman
et al., 1993). GPD is capable of extracting the
yearly maxima (or minima) above (below) a given
threshold from a primitive sequence, e.g., of calen-
dar year, a threshold that falls into a so-called POT
(Peaks Over Threshold) sampling scheme (Davison
and Smith, 1990) so that the needed number of years
is greatly decreased and the number of samples is in-
creased for extremes, thereby overcoming the major
disadvantage of the BM (Block Maxima) or AM (An-
nual Maxima) sampling for GEV or Gumbel distri-
bution (Katz et al., 2005; Davison and Smith, 1990).
Since the mid 1960s research into GPD statistical the-
ories and applications have been actively undertaken,
leading to rapid advances and new results appearing
one after another (Cunnane, 1973, 1979; Ashkar and
Rousselle, 1987). They made a study on the problems
of threshold choice and GPD extremes distribution.

In recent years, it is demonstrated theoretically
that at high thresholds there is a close association of
parameters between GEV and GPD, which has further
improved a stochastic point-process theory proposed
by Coles (2001) and Katz et al. (2005), independently.
Due to the fact that GPD parameters (threshold, scale
and shape) are of generalization, they bear unique rela-
tions to the logarithmic, Beta and Pareto distributions
at different thresholds, thus making application even
easier and more flexible. Currently, GPD finds a vari-
ety of uses in hydrology, achieving numerous advances
in the distribution of rainstorms and flood water levels

as well as the statistical inference for flood likelihood
(Pickands, 1975). In contrast, little is reported regard-
ing the utility in atmospheric sciences.

China is a country often hit by local rainstorms
that tend to trigger floods. If an exceptionally heavy
rain occurred in a return period of decades or even
a hundred years, major rivers and lakes would be
swollen, making for deluges (Zhai et al., 1999, Wang et
al., 2002). But previous studies of rainstorm extremes
predominantly made use of the classical Gumbel or
GEV distribution (Jenkinson, 1955; Gumbel, 1958),
and their indispensable prerequisite is that the max-
imum value sampling takes just one value per year,
i.e., Annual Maximum (AM). In reality, the stochas-
tic variability of a maximum is quite high in the same
year, and for different regions having varied wetness,
one maximum taken for each year is unjustifiable. For
example, there may be more than one extreme rainfall
events beyond a set warning level in some years and it
is quite possible that just a single rainstorm is observed
in others. As a result, the sampling of one maximum
per year is likely to lose a considerable amount of use-
ful information. However, for arid or semi-arid areas it
is quite probable that practically no such events reach
the critical value throughout the year and extraction,
if made, is bound to include spurious information on
the maximum, a demerit that is inherent in the clas-
sical extremes distribution (Pickands, 1975; Yao and
Ding, 1990; Coles, 2001; Ding et al., 2004; Katz et al.,
2005).

The purpose of the paper is to introduce the lat-
est theory on GEV and GPD models and to further
demonstrate theoretically their approximate relation
in seeking the quantile at high thresholds. By use of
observations we have demonstrated and assessed the
merit and demerit of GEV-, Gumbel- and GPD-fitted
extreme rainfall amounts and attempted to predict the
quantile, whereon an optimal model of the extremes
distribution is explored, with which to lay a founda-
tion for better simulating and predicting the statistical
features of extreme precipitation event in our country.

2. Linkage between GPD and GEV theories

GPD is essentially an simple primitive distribu-
tion model, designed specifically to describe probabil-
ity distribution features of the whole dataset of obser-
vations beyond a given critical value (threshold), for
example, floods above a given critical value level, rain-
fall over a given peak value for an hour, day, pentad,
decade or month, temperature higher than a thresh-
old and gust stronger than a set wind speed, and its
distribution function is in the form



NO. 3 DING ET AL. 509

F (X) = 1 −
[
1 − k

(
x − β1

α1

)]1/k

,

k > 0, β1 � x � β1 +
α1

k

or k < 0 , β1 � x < ∞ , (1)

F (x) = 1 − exp
[
−

(
x − β1

α

)]
, k = 0 , (2)

in which β1 denotes the threshold, α1 the scale pa-
rameter and k the shape parameter (linear type). If
y = x− β1 denotes the values of the variable X above
the threshold β1, we are allowed to rewrite the distri-
bution function as F (y). It is seen from Eq. (2) that
for k = 0, the GPD can be simplified to a logarithmic
distribution (Coles, 2001; Katz et al., 2005).

To infer the GPD quantile at a given probability it
is necessary to determine the crossing rate λ (> 0) for
variable X over a certain threshold β1. Theoretically,
POT is generally assumed to experience the Poisson
process before reaching exceedance that means to be
related to a crossing rate over a given threshold, with
the unbiased estimate as , where stands for the number
of POT and for the number of years of records. Fol-
lowing the theory on the Poisson process, the crossing
rates (i.e., exceedances) obey the Poisson distribution
(Gumbel, 1958; Wang, 1991). From the size of sam-
ples with one year as a unit, the annual crossing rates
above a certain threshold in years t can be given (Katz
et al., 2005) as

λx = λt[1 − F (x)] (3)

where λ is a mean over multi-year crossing rates be-
tween the given value of an extreme event and the
threshold β1, viz., the expectation value of the number
of POT each year. As a result, if the quantile XT with
a return period T (years) is assumed, then λx(= 1) of
Eq.(3) is simplified to a unit element 1 (unity). Now
we can derive the solution to the quantile from Eqs.
(1) and (3)

xT = β1 +
α1

k

[
(1 − (λT )−k

]
, k �= 0 , (4)

xT = β1 + α1 ln(λT ) , k = 0 , (5)

in which λ denotes the yearly mean crossing rate,
β1 the given threshold, α1 scale parameter, and k
the shape parameter (to denote the distribution curve
type). Then, the related GPD model and its quantile
can be found by obtaining GPD parameters by use of
the given estimating method. In a special case with

λ = 1, i.e., the POT crossing rate appearing once a
year, we simplify Eqs. (4)–(5) to (6)–(7), respectively.

xT = β1 +
α1

k
(1 − T−k) , k �= 0 , (6)

xT = β1 + α1 ln(T ) , k = 0 . (7)

On the other hand, according to GEV distribution
theory proposed by Jenkinson (1955), its distribution
function can be written as

F (x) = exp

{
−

[
1 − k

(
x − β

α

)]1/k
}

, k �= 0 ,

(8)

F (x) = exp
[
− exp

(
−x − β

α

)]
, k = 0 , (9)

Evidently, for k = 0, GEV falls into Tippett type
I (i.e., Gumbel distribution), into its type II for k < 0
and into its type III (Weibull distributionm ) for k > 0.
Given a return period T , we have the relationship be-
tween the distribution function and T in the form

F (xT ) = 1 − 1
T

, (10)

from which we obtain the associated quantile with a
return period T according to Eqs. (8) and (9).

XT = β +
α

k

{
1 −

[
− ln

(
1 − 1

T

)]k
}

, k �= 0 (11)

XT = β − α ln
[
− ln

(
1 − 1

T

)]
, k = 0 . (12)

Coles (2001) and Katz et al. (2005) have proven,
independently, that parameters of GEV and GPD are
bound up with each other. With GEV parameters
β, α > 0 and k given for GPD, if we assume the thresh-
old β1 and scale parameter α1, then the distribution
function of GEV can be approximately written as that
of GPD under a high enough threshold, leading to

F (x) = 1 −
[
1 − k

(
x − β1

α1

)]1/k

, (13)

where the parameter k is constant for both, but the
parameters between GPD and GEV have the following
relations (Coles, 2001)

α1 = α + k(β1 − β) , (14)

β1 = β +
α

k
(λ−k − 1) , (15)

In Eq. (15), λ denotes the exceedance of Poisson
in a randomized point process, which is obtained from
the data series by means of the Poisson probability
model. Again, from Eq. (15) we have the relation

ln λ = −1
k

ln
[
1 + k

(β1 − β)
α

]
. (16)
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Obviously, substitution of Eq. (14) into Eq. (16)
yields the general expressions of GEV parameters α
and β

ln α = lnα1 + k ln λ . (17)

Then, taking Eq. (15) into account, we find

β = β1 − α

k
(λ−k − 1) . (18)

When GPD parameters α1 and β1 are given, we
are allowed to calculate GEV parameters α and β by
means of parameter λ, which is obtained from the data
series using the Poisson probability model. It follows
that their parameters are acquired by inter-conversion
with constant k (refer to Coles, 2001). We can also see
from Eq. (14) that with β1 → β, GPD and GEV are
equivalent.

3. Approximate relation between GPD and
GEV quantiles

We attempt to further prove the relationship be-
tween quantiles of GPD and GEV at higher thresh-
olds.

In the logarithmic term on the right-hand side of
the expression for GEV quantile of Eqs. (11) and (12)
there is p = 1/T of small probability in general, where
T represents the return period, and by power series ex-
pansion, and neglecting the high-order terms, we have
an approximate expression in the form

− ln
(

1 − 1
T

)
≈ 1

T
,

∣∣∣∣ 1
T

∣∣∣∣ � 1 . (19)

Correspondingly, we arrive at the approximate ex-
pressions of Eqs. (11) and (12) as follows

XT ≈ β +
α

k
[1 − (T )−k] , (20)

and

XT ≈ β + α ln T . (21)

Substituting Eqs. (14) and (15) into above equa-
tions, we have approximate expressions for GPD quan-
tile

XT =β1+
exp[ln(α1λ

k)]
k

(2−T−k−λ−k) , k �= 0 ,

(22)

XT =β1+exp[ln(α1λ
k)][lnT− 1

k
(λ−k−1)] , k = 0 .

(23)

It is evident that at a higher threshold that will
lead to the annual crossing rate λ → 1. Eqs. (22) and
(23) are simplified, respectively, to

XT = β1 +
α1

k
(1 − T−k) , (24)

XT = β1 + α1(ln T ) , (25)

indicating clearly that GPD parameters β1 and α1 are
completely equivalent to GEV parameters β and α so
that Eqs. (24) and (25) are the equivalent formulae
to the approximate expressions (20) and (21), respec-
tively.

The above approximate expressions show that in
seeking GEV quantile, when the yearly crossing rate
λ → 1 and T is big, Eq. (11) is close to Eq. (20) or Eq.
(24) for seeking the GPD quantile and Eq. (12) is close
to Eq. (21) or Eq. (25) for seeking the GPD quantile.
From the above we see that at higher thresholds as
a special case GEV approximately represents GPD,
the latter being the more generalized form of the for-
mer. It follows that GEV distribution can be viewed
as a special case of GPD under certain circumstances,
thereby demonstrating theoretically that when a high
threshold is assumed, with the decrease in the yearly
crossing rate, leading to λ → 1, the solutions to the
quantile of all types of GPD can be obtained by ap-
proximate calculation from those of all types of GEV
distribution and vice versa, regardless of whether or
not the shape parameter k = 0. In other words, both
the distributions are exchangeable in use under a given
condition. If λT = T ∗ is assumed in Eqs. (4) and (5),
then we can give the related forms

xT = β +
α

k
(1 − T ∗)−k , k �= 0 , (26)

xT = β + α ln(T ∗) , k = 0 . (27)

Similarly, substituting the approximate expression
(19) into Eqs. (26) and (27), we have

XT∗ ≈ β+
α

k

{
1−

[
−ln

(
1− 1

T ∗

)]k
}

, k �= 0 , (28)

XT∗ = β − α ln
[
− ln

(
1 − 1

T ∗

)]
, k = 0 . (29)

which indicate that for GEV, the derived quantile in
a return period T ∗ is just equivalent to the extreme
obtained in the return interval T = T ∗/λ from GPD
fitting because of λT = T ∗. Generally speaking, GPD
sampling mode is POT, with the yearly crossing rate
λ � 1 while for GEV its sampling mode is AM, so
that the former is more generalized compared to the
latter. The utility of Eqs. (28) and (29) lies in that
the use of GPD fittings and the above-mentioned rela-
tions allows us to derive the GEV parameters and the
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quantile without specially calculating the counterparts
of GEV.

4. An estimation method of parameters: L-
moment estimation based on PWM

Following Hosking and Wallis (1987) we can obtain
the L moment estimation formulae for GPD parame-
ters as follows,

µ1 = β1 +
α1

1 + k
, (30)

µ2 =
α1

(1 + k)(2 + k)
. (31)

According to the relation between PWM (Proba-
bility Weighed Moment) and L moment we have the
following

µ1 = b0 , (32)

µ2 = 2b1 − b0 , (33)

where µ1 and µ2 are, respectively, the first- and
second-order L moment, and

b0 = x̄ , (34)

b1 =
n−1∑
j=1

(n − j)
n(n − 1)

xj , (35)

where xj is a sequenced statistics of observations, viz.,
xn � xn−1 � . . . � x1, suggesting a sequence that is
formed by extremes above a given threshold arranged
in a decreasing order. Finally we get general expres-
sions for parameters α and k of GPD, viz.,

k̂ =
b0

2b1 − b0
− β1

2b1 − b0
− 2 , (36)

α1 = (b0 − β1)
(

1 +
b0

2b1 − b0
− β1

2b1 − b0
− 2

)
,

(37)

wherein the threshold β1 denotes a critical value given
from a certain condition. For rainfall, a range of stan-
dard critical precipitation amounts can be defined for
experiment or we can assume one, two and three SD
(Standard Deviation) as the critical values for experi-
ments.

5. Case study

5.1 Data

A set of samples for experiment consists of daily
rainfall from May to September, 1953–2002, taken out
of 10 representative stations, including the Qiqihar,
Beijing, Xi’an, Chongqing, Nanjing, Hangzhou, and
Guangzhou areas.

5.2 Comparison between fitting accuracies

The parameters of GPD, GEV and Gumbel distri-
bution are estimated using the L moment method of
Eqs.(30)–(37), indicating once more the advantages,
e.g., the statistical method being simple and the esti-
mated parameters having greater robustness as well
as demonstrating by example that the GPD, GEV
and Gumbel distributions show the highest, higher and
lowest fitting accuracy, in order, for which three test
indices are utilized, which are Kolmogoroff-Smirnoff
statistic test (K-S), correlation coefficient (R) and
mean square error (MSE) (see Hosking, 1990). Table
1 gives the fittings of the 10 representative stations for
comparison. But as regards to the calculation of high-
end quantile they are somewhat similar to each other,
still in a decreasing order for the precision. Besides,
N denotes the sample size of extreme values for each
model in Table 1.

From the given examples it is demonstrated that
in terms of fitting accuracy, GPD is higher than GEV
and Gumbel, with GEV, in turn, superior to Gumbel.

Here we made use of three test criteria, as men-
tioned above. As shown in Table 1, on average,
the biggest correlation coefficient between the Gumbel
modeled and measured curves does not exceed 0.55,
compared to 0.99 in the case of GPD. In other words,
GPD shows the perfect fit between its theoretical and
observed curves while Gumbel model gives a good fit
only in part of the curves.

To investigate the GPD utility, we have calculated,
separately, different sizes of samples and the related
parameters of GPD at given thresholds and GEV, as
well as Gumbel. Table 2 gives the fittings of these
models for comparison in the Hangzhou area as an
example. It is seen from Table 2 that the GPD pa-
rameters are steadier in all the cases because of their
smaller standard deviation, suggesting that their fitt-
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Fig. 1. GPD fitted curve of rainfall for Guangzhou area.
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Table 1. Comparison among the fittings from GPD, GEV and Gumbel models.

Place GPD GEV Gumbel

K-S R MSE N K-S R MSE N K-S R MSE N

Qiqihar 0.07 0.99 0.01 31 0.23 0.99 0.03 50 0.94 0.52 0.15 50
Beijing 0.03 1 0 111 0.27 0.98 0.03 50 0.96 0.36 0.18 50
Xi’an 0.06 0.99 0.01 33 0.24 0.98 0.03 50 0.96 0.45 0.17 50
Zhengzhou 0.03 1 0 90 0.18 0.99 0.03 50 0.96 0.42 0.17 50
Yichang 0.07 0.99 0.01 135 0.23 0.98 0.03 50 0.92 0.48 0.15 50
Wuhan 0.04 1 0 197 0.31 0.97 0.04 50 0.94 0.41 0.17 50
Chongqing 0.05 0.99 0 134 0.34 0.96 0.04 50 0.94 0.41 0.17 50
Nanjing 0.04 1 0 143 0.24 0.99 0.03 50 0.92 0.55 0.14 50
Hangzhou 0.05 1 0 157 0.2 0.99 0.03 50 0.98 0.45 0.16 50
Guangzhou 0.01 1 0 260 0.25 0.98 0.03 50 0.92 0.52 0.14 50

Table 2. Comparison of stability fitted models (threshold 50.0 mm for GPD) in Hangzhou area.

N

Model Parameter 10 20 30 40 50 Mean S.D.

GPD Shape k −0.02 −0.06 −0.07 −0.07 −0.05 −0.05 0.02
Scale α1 21.37 20.53 20.12 20.73 21.4 20.83 0.49

Gumbel Shape α2 21.65 34.1 38.28 36.02 24.79 30.97 6.54
LP β2 5.14 14.66 28.13 47.89 73.85 33.93 24.59

GEV Shape k −0.69 0.33 0.05 0.33 0.04 0.01 0.37
Scale α 16.89 30.37 38.86 40.26 25.16 30.31 8.70
LP β 17.63 34.34 50.23 68.68 88.16 51.81 24.83

Note: S.D. stands for “standard deviation” and LP for “local parameter”.
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Fig. 2. As in Fig. 1 but for GEV fitted curve.

ings are subject to practically no effect of sample sizes,
next being the GEV parameters fittings, and calcu-
lated Gumbel parameters show greater dependence
upon the sample size, thus producing relatively big
mean square error.

Now, we take the Guangzhou area for example.
The fitting curves of the distribution models are pre-
sented in Fig. 1 for GPD and Fig. 2 for GEV, where

we can readily visualize considerable difference among
the flood-season rainfall fitting precisions from these
models in the same size of samples and the same area
(see below).

It is seen that the GPD is best suitable for fitting
all frequency points, next being the GEV, with the
Gumbel fittings relatively better just at a higher or
upper boundary of cumulative frequency (figure not
shown), whose residual part is, however, very poor. In
other words, viewed from the entire course of fitting,
GPD result is the best and the Gumbel is the worst
among the three cases. However, viewed from predict-
ing the high-end quantile in a given return period, i.e.,
the small-probability extreme event, their results may
vary little but in comparison, GPD is the optimal.

5.3 GEV Parameters used as GPD ones and
vice versa for experiments

To illustrate the inter-conversion we take the Bei-
jing case for example, with the results depending on
different thresholds given in Table 3, where we can de-
termine at what thresholds the combinations are op-
timal. From Table 3 we see that at higher thresholds,
the GEV fitted parameters can be used to approxi-
mately calculate GPD parameters by means of Eqs.
(15) and (16). And with the constant shape parame-
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Table 3. Relative errors (Re, %) of the estimated scale parameter and quantile (X100) for a return period of 100-yr in
the Beijing area.

Threshold GPD (GPD) Re (%) X100 (X100) Re (%)

62 25.31 29.52 0.17 210.41 186.00 0.12
64 26.53 29.34 0.11 210.41 192.30 0.09
66 26.11 28.63 0.10 210.41 190.45 0.09
68∗ 29.17 30.5 0.05 210.4 204.00 0.03
70 32.41 28.83 0.11 210.4 217.92 0.04
72 32.84 28.27 0.14 210.4 219.79 0.05
74∗ 29.00 28.40 0.02 210.4 203.85 0.03
76 27.26 27.44 0.01 210.41 196.80 0.06
78∗ 30.31 29.16 0.04 210.4 209.28 0.01
80∗ 29.50 29.43 0.002 210.4 206.17 0.02
82 26.37 27.73 0.05 210.4 194.02 0.08
84 23.12 26.0 0.12 210.4 181.57 0.13

Note: The asterisk-denoted thresholds represent <5% relative errors of the calculated scale parameter and quantile, and bracketed

(GPD) designates the GPD scale parameter calculated by use of the GEV equivalent and bracketed (X100) denotes the calculated

upper-level quantile, respectively.
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Fig. 3. Threshold-dependent error of approximately cal-
culated quantile for the Guangzhou, Nanjing and Beijing
areas.

ter (Coles, 2001), the relative error of the scale param-
eter generally does not exceed 17%, with the minimum
error close to zero.

Also, from the table, we see an exceedingly small
error of the calculated quantile at the upper part (the
thick tail) of the distribution density curve and par-
ticularly at higher thresholds the relative error is gen-
erally less than 5%, with the minimum on the order of
1%. The asterisk-denoted entries in Table 3 show the
relative errors of the estimated parameters and quan-

tiles to be smaller than 5% so that the set thresholds
are optimal. The results from the use of GEV fitted
parameters instead of the GPD ones are quite compa-
rable for the other chosen stations.

5.4 Approximate calculation of ouantile

Under a certain high threshold, the quantile for
GPD can be approximately estimated from the pa-
rameters of fitted GEV, or otherwise, the quantile to
GEV is still approximately estimated from the param-
eters of fitted GPD by using Eqs. (20) and (21) or
equivalents to Eqs. (24) and (25) as well as Eqs. (26)
and (27). If at higher thresholds parameters derived
by GPD or GEV are substituted into the above formu-
lae, the upper-part quantile can be obtained by means
of either of them for the other. Tables 4 and 5 in-
dicate the approximate calculations and the relative
errors to the different thresholds, respectively, in the
Beijing and Nanjing areas.

Figure 3 depicts, separately, the threshold-varying
approximate error of the calculated quantile for the
Guangzhou, Nanjing and Beijing areas, indicating that
the optimal threshold for the quantile in a 100-yr re-
turn period depends on regional difference in rainfall
climate features. It is also seen from the figure that
mean rainfall differs greatly between the three city
areas during the flood period, to which the optimal
threshold may be related. From this unexpected dis-
covery a new approach is found to further reveal a
relationship between the original variable and GPD
parameters.

5.5 Selection of thresholds

As stated earlier, for GPD it is required to infer an
optimal threshold before seeking a quantile in a certain
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Table 4. Approximate calculations of GPD quantile (mm) for the Beijing area at a range of thresholds (mm) at N = 50
years with relative error (Re) presented.

Thresholds 60 65 70 75 80

GPD 177.3 191.3 217.9 200.1 206.2
GPD∗ 167.2 185.9 219.1 204.2 215.7
T ∗ 64.9 82.0 104.2 116.3 138.9
λ 1.54 1.22 0.96 0.86 0.72
Re 0.06 0.03 0.01 0.02 0.04

Note: The GPD∗ represent the approximate GPD quantile and the T ∗ represent the equivalent return period of GEV, and λ is the

yearly crossing rate.

Table 5. Approximate calculations of the GPD quantile (mm�for the Nanjing area at N = 50 years with the threshold
in units of mm and relative error denoted as Re.

Threshold 60 65 70 75 80 85 90

GPD 212.1 206.6 181.3 230.7 224.9 239.0 241.7
GPD∗ 192.0 191.9 171.9 227.3 226.1 246.6 255.4
T ∗ 50 58.8 65.8 ∗90.9 ∗104.2 125 147.1
λ 2 1.7 1.52 ∗1.1 ∗0.96 0.8 0.68
Re 0.09 0.07 0.05 ∗0.01 ∗0.01 0.03 0.06

Note: The GPD∗ represent the approximate GPD quantile and the T ∗ represent the equivalent return period of GEV, and λ is the

yearly crossing rate.

return period, viz., an extreme event of small prob-
ability. As indicated by numerous investigators, the
choice of an optimal threshold is related to the sam-
pling independence and the smallest interval between
two extreme events, that is, to guarantee the inter-
independence of the selected extremes without involv-
ing their correlativity. However, it should be noted
that the choice of a threshold is related to the pur-
pose, so that the optimal threshold is to make minimal
the error of the calculated quantile when examining
the approximate estimate of the quantile or inferring
it, and the mean square error of the calculated pa-
rameters is to be made minimal when considering the
accuracy of the calculated model parameters.

6. Conclusions and review

6.1 Comparison of the sampling schemes

GEV distribution is the one of asymptotical ex-
tremes derived from primitive distribution when the
sequence of an original variable is long enough to re-
quire a maximum in the interval of time, say, in a year,
as the sample size, i.e., an extreme taken from the se-
ries on a yearly basis, which is known as Block Maxima
(BM) or Annual Maxima (AM) (refer to Hosking et al.,
1985; Katz et al., 2005). Obviously, just a few sam-
ples of extremes can be taken if the sequence is very
short, thus leading to the fact that the number of the
extremes is too small to meet the needs. For example,

only 10 extremes are available in a 10-yr data series.
Evidently, for stations or regions that have shorter pe-
riods of records the errors of calculated parameters
would definitely be greater, resulting in credibility that
is by no means idealized. In fact, it is often against
the reality to take annual extremes from a large size as
examples. Take the rainfall of a particular station, for
example, whose climate may differ from others in that
more than one daily rainfall maximum (beyond a crit-
ical value) may occur if the station is in a rainy area or
year such that not only does annual maximum rainfall
exceed a set critical value as an event of intense pre-
cipitation but the following one or two extremes may
remain intense as well, which are often observed in
many places. By contrast, in arid or semi-arid zones
or in rainless years, even though the annual maximum
may hardly reach the level of heavy rains (actually of
moderate rainfall), it is obviously irrational to take one
extreme in the year. Furthermore, sampling just one
maximum one year will lose much useful information
or involve useless information, a major shortcoming
that is inherent in GEV and Gumbel distributions.
In contrast, GPD has its most prominent merit just
in that it extracts all maxima above a given level di-
rectly from a set of primitive data (as in many years),
known as POT sampling method can lead to bigger
sample size of extremes (as maxima) above a given
threshold. Hence, the length of years is cut down a
lot, but the size of extremes is increased, thus over-
coming the demerit of sampling based on BM or AM
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for GEV and Gumbel distribution. This provides as
full meaningful information for extreme value research
as possible. As a result, the increased size of sam-
ples allows us to have a bigger size of effective samples
even for stations and regions that keep shorter-length
records, which would greatly improve fitting precision
and augment the robustness of calculated parameters.
In particular, GPD distribution is featured by its prob-
ability better described for the high-end thick tail part
compared to GEV and Gumbel distributions.

6.2 Comparison of fitting accuracies of the
models

The present study shows that GPD fittings have
the highest accuracy so that it is most suitable for the
study of rainfall extremes in a rainy season, thus supe-
rior to GEV and Gumbel models, the latter of which
fails to completely match empirical distribution but
provides some information on the quantile calculated
for the high-end for reference. The GPD is generally
subject to no effect of a size of samples because the
volume of POT sampling extremes is larger than that
of AM or BM for GEV and Gumbel so that it is es-
pecially suitable for stations having shorter length of
samples.

6.3 Conclusions

(1) The expressions proposed for the high end
quantile in a given return period using GPD for GEV
and vice versa to further improve their theoretical
inter-relationship and it is thus of higher utility. For
instance, the use of GPD fitting and its relation to
GEV parameters and quantile permits us to calcu-
late those of GEV without the need to calculate them
specifically.

(2) Using the method for approximately calculat-
ing a quantile presented in this paper we can approxi-
mately find the GEV quantile at a given return period
with the aid of GPD parameters and vice versa. Ex-
periments show that at Poisson exceedance λ → 1 and
in a large return period T (say, 50 or 100 years) the
quantile to be calculated can be of rather high accu-
racy.

(3) From Fig. 3 we see that the mean rainfall varies
vastly for the Guangzhou, Nanjing and Beijing areas
and this may be directly associated with the set opti-
mal threshold, an unexpected discovery of a new ap-
proach that helps reveal the relationship between the
distribution of parameters of an original variable and
GPD parameters. This problem will be dealt with in
a separate paper.
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