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ABSTRACT

Seasonal prediction of Asian-Australian monsoon (A-AM) precipitation is one of the most important
and challenging tasks in climate prediction. In this paper, we evaluate the performance of Grid Atmospheric
Model of IAP LASG (GAMIL) on retrospective prediction of the A-AM interannual variation (IAV), and
determine to what extent GAMIL can capture the two major observed modes of A-AM rainfall IAV for
the period 1979–2003. The first mode is associated with the turnabout of warming (cooling) in the Niño
3.4 region, whereas the second mode leads the warming/cooling by about one year, signaling precursory
conditions for ENSO.

We show that the GAMIL one-month lead prediction of the seasonal precipitation anomalies is primarily
able to capture major features of the two observed leading modes of the IAV, with the first mode better
predicted than the second. It also depicts the relationship between the first mode and ENSO rather well.
On the other hand, the GAMIL has deficiencies in capturing the relationship between the second mode and
ENSO. We conclude: (1) successful reproduction of the El Niño-excited monsoon-ocean interaction and El
Niño forcing may be critical for the seasonal prediction of the A-AM rainfall IAV with the GAMIL; (2)
more efforts are needed to improve the simulation not only in the Niño 3.4 region but also in the joining
area of Asia and the Indian-Pacific Ocean; (3) the selection of a one-tier system may improve the ultimate
prediction of the A-AM rainfall IAV. These results offer some references for improvement of the GAMIL and
associated seasonal prediction skill.
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1. Introduction

The dynamical model simulation and seasonal pre-
diction of the Asian-Australian monsoon (A-AM) rain-
fall has been a major challenge. Many researchers in-
vestigated performances of atmospheric general circu-
lation models (AGCMs) on various aspects of mon-
soons and their prediction (Sperber and Palmer, 1996;
Webster et al., 1998; Wang et al., 2004a; Zhang and Li,
2007). Sperber and Palmer (1996) evaluated perfor-
mances of thirty two AGCMs that participated in the
Atmospheric Model Intercomparison Project (AMIP).
These models show little or no predictability in the

all-Indian rainfall from 1979 to 1988 except during
the 1987 El Niño and the 1988 La Niña. Wang et al.
(2004a) assessed performances of the ensemble simu-
lations of A-AM anomalies in eleven AGCMs during
the unprecedented El Niño period, September 1996–
August 1998, and found that the summer rainfall pat-
terns in the A-AM region (30◦S–30◦N, 40◦–160◦E) (Li
and Zeng, 2003) are reproduced more poorly than its
counterpart in the El Niño region. The climate varia-
tions in the tropics are determined by slow oceanic dy-
namical processes (Zebiak and Cane, 1987). For this
reason, El Niño and the associated Southern Oscilla-
tion are perhaps the most predictable phenomenon in
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the Earth climate system (Cane et al., 1986).
In spite of the above difficulties in the A-AM inter-

annual variation (IAV) simulation and seasonal pre-
diction, determining the predictability of A-AM IAV
and identifying the sources of predictability are of cen-
tral importance in seasonal prediction and forecast-
ing the uncertainties associated with the prediction.
How to determine climate predictability in a model
hindcast remains elusive. We propose that the dis-
tinguished leading modes of the A-AM IAV are likely
more predictable than other higher modes. These lead-
ing modes may represent the predictable part of the
variability. Therefore, it is important to assess how
well a climate model captures the leading modes of the
A-AM IAV and to determine how the model’s perfor-
mances in capturing these leading modes are related
to the seasonal prediction skills. This is the major
purposes of the present study.

Our analysis will focus primarily on precipitation,
because precipitation is the most important variable
for seasonal prediction and also the most difficult vari-
able for seasonal prediction. Examination of precipita-
tion prediction is the most rigorous test for a climate
model.

2. The model, data and methodology

The model examined here is the GAMIL which
was developed in the State Key Laboratory of Numer-
ical Modeling for Atmospheric Sciences and Geophysi-
cal Fluid Dynamics (LASG), Institute of Atmospheric
Physics (IAP), Chinese Academy of Sciences (CAS).
This model also participated in the “Climate Predic-
tion and Its Application to Society” (CliPAS) project
which is aimed at supporting the Asia-Pacific Eco-
nomic Cooperation (APEC) Climate Center (APCC)
for seasonal prediction and its application to soci-
ety. The GAMIL employs a horizontal resolution of
2.8◦ × 2.8◦ and there are 26 levels in the vertical reso-
lution. The dynamical core is designed in LASG/IAP
using the semi-implicit finite difference scheme with
exact effective energy conservation, mass conservation,
and terrain reduction (Wang et al., 2004b). The phys-
ical package comes mainly from the National Center
for Atmospheric Research (NCAR) Community At-
mosphere Model, Version 2 (CAM2), in which an im-
proved Tiedtke convective Scheme (Tiedtke, 1989) is
used to replace the original convective parameteriza-
tion (Li et al., 2007).

Our analysis uses its two-tier hindcast data for the
period 1979–2004 that start four times a year, tar-
geting a 6-month prediction starting from 1 February,
1 May, 1 August, and 1 November. Note that in a
two-tier approach, sea surface temperature (SST) was

first predicted by using coupled models and then the
atmospheric anomalies were predicted by using atmo-
spheric models forced by the predicted SST (Bengtsson
et al., 1993). The predicted SST forcing GAMIL here
is taken from CliPAS project. In the present study, we
will focus on evaluating the one-month lead seasonal
forecast dataset. The Global Precipitation Climatol-
ogy Project (GPCP) data (Adler et al., 2003) were
used as a verification dataset. The observational 850
hPa wind fields are obtained from the National Centers
for Environmental Prediction (NCEP)/Department of
Energy (DOE) AMIP II Reanalysis (NCEP-2 hence-
forth) data (Kanamitsu et al., 2002) and the obser-
vational SST data are obtained from the improved
Extended Reconstructed SST Version 2 (ERSST V2)
data (Smith and Reynolds, 2004).

The year-to-year variation in the vast A-AM re-
gion exhibits enormous regional differences and de-
pends strongly on season. This complexity arises from
the dependence of the anomalous monsoon climate on
the phases of ENSO and the phases of the annual cy-
cle (Meehl, 1987). Based on this physical considera-
tion, Wang and An (2005) have put forward a Season-
reliant Empirical Orthogonal Function (S-EOF) anal-
ysis method to distinguish modes of variability that
evolve with seasons. Their S-EOF analysis of the
Indo-Pacific SST anomalies yielded two statistically
significant leading modes, which are not obtainable by
using conventional EOF analysis. They are the Low-
Frequency (LF) and Quasi-Biennial (QB) modes which
distinguish each other in their seasonal evolution, spa-
tial structure of the fractional variance, and inter-
decadal variation and trend. The differences between
the S-EOF and extended EOF (Weare and Nasstrom,
1982) and cyclostationary EOF (Kim, 2002) analyses
were discussed in Wang and An (2005).

The purpose of the S-EOF is to depict seasonally
evolving anomalies throughout a full calendar year.
Here we adopt the concept of the “monsoon year” (Ya-
sunari, 1991) from the summer, autumn and winter
of year 0 [shortly JJA(0), SON(0) and DJF(0/1), re-
spectively], to the spring of the following year (year
1), MAM (1). For this purpose, a covariance matrix
is constructed using four consecutive seasonal mean
anomalies for each year, i.e., treat the anomalies for
JJA (0), SON(0), DJF(0/1), and MAM(1) as a “yearly
block” that is labeled as year (0) in which the sequence
of anomalies commences. When the EOF decomposi-
tion is done, the yearly block is then divided into four
consecutive seasonal anomalies, so that one obtains a
seasonally evolving pattern of the monsoon anomalies
in each monsoon year for each eigenvector.

We apply the S-EOF analysis to both observed and
predicted seasonal mean precipitation anomalies,
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Fig. 1. Principal components of (a) the first and (b) the
second S-EOF modes of seasonal precipitation anomaly
obtained from GPCP observation (solid) and GAMIL
prediction (dashed), respectively.

which are the departures from the mean annual cy-
cle derived from the period 1979–2003. In the present
study, we consider the A-AM region extending from
30◦S to 40◦N and from 40◦E to 160◦E, which covers
South Asia and Australia as well as nearly the entire
Indo-Pacific warm pool region.

Seasonal mean prediction is obtained from the
mean of successive 3-month predictions from the 2nd
to 4th lead month for each seasonal prediction. For ex-
ample, summer mean prediction is calculated from the
average of June, July and August forecasts integrating
from May 1st.

3. Observed leading modes of the Asian-
Australian monsoon system

Figure 1 shows the time series of the principal com-
ponents (PCs) of the 1st and 2nd S-EOF mode ob-
tained from the GPCP precipitation seasonal anoma-
lies for the period 1979–2003. The PC time series ex-
hibit remarkable interannual variations, which might
be closely related to ENSO as measured by the Niño
3.4 SST anomalies. To examine their relationship with
ENSO, the lead-lag correlation coefficients between the

two PCs and the Niño 3.4 SST anomalies are presented
in Fig. 2. Note that the A-AM precipitation sea-
sonal anomaly from JJA(0) to the next MAM(1) is
centered in November-December of year 0 (see Section
2; Yasunari, 1991). The observed first mode shows a
maximum positive correlation coefficient that exceeds
0.9 with Niño 3.4 SSTA in D(0)JF(1). Since El Niño
events normally mature toward the end of the calen-
dar years (Rasmussen and Carpenter, 1982), the result
in Fig. 2a indicates that the first S-EOF mode con-
curs with El Niño turnaround. On the other hand,
the observed second mode shows a maximum corre-
lation coefficient (0.75) leading El Niño by about one
year, suggesting it may provide a precursory signal for
ENSO onset (Fig. 2b).

Figure 3a shows the seasonal evolutions of the spa-
tial patterns of A-AM precipitation anomalies associ-
ated with the first S-EOF mode. Also shown are the
NCEP-2 850 hPa wind anomalies (vectors), which were
linearly regressed against the corresponding first prin-
cipal component in an enlarged domain including the
entire tropical Indo-Pacific Oceans. In JJA (0) large-
scale suppressed convections are located over the Mar-
itime Continent and equatorial eastern Indian Ocean.
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Fig. 2. (a) Lead-lag correlation coefficients between the
first S-EOF principal component and the Niño 3.4 SST
index. (b) The same as in (a) except for the 2nd S-EOF
principal component.
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(a) The first SEOF mode (b) The second SEOF mode JJA JJA SON SON DJF DJF MAM MAM 
Fig. 3. Spatial patterns of the first S-EOF mode of seasonal precipitation anomalies from JJA(0)
to MAM(1) (color shading, units: mm d−1) and the NCEP-2 850 hPa wind anomalies (vectors,
units: m s−1), which were linearly regressed against the corresponding principal component. (b)
Same as in (a) except for the 2nd S-EOF mode.

The dry anomalies extend northwestward to the south-
ern Indian subcontinent and the Arabian Sea. The
enhanced rainfall is found over the equatorial western
Pacific. The wet anomalies also extend northwestward
to the Philippine Sea, the northern South China Sea,
and the Bay of Bengal. On the other hand, the precip-
itation along the East Asian monsoon front (Meiyu,
Baiu and Changma) weakens. Associated with the
anomalous convection patterns, an anomalous anticy-
clonic ridge extends from the Maritime Continent to
the southern tip of India with enhanced monsoon west-

erlies extending from India to the western Pacific.
During SON(0), the dry anomalies over the Mar-

itime Continent intensify and expand northward and
eastward, which cover the Philippine archipelago and
all of tropical South Asia and northern Australia.
Meanwhile, the western Indian Ocean becomes wet-
ter than normal and a dipole pattern develops in the
tropical Indian Ocean. The corresponding Southern
Indian Ocean (SIO) anticyclonic anomalies and the
zonal wind divergence around the Maritime Continent
are both well established. This pattern has been rec-
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ognized as associated with the Indian Ocean zonal
(or dipole) SST mode (Saji et al., 1999; Webster et
al., 1999). From SON to DJF season, the anomalies
move slowly eastward with the most suppressed con-
vection shifting to the Philippine Sea. The SIO anticy-
clone weakens slightly, meanwhile a new anticyclonic
anomaly forms over the Philippine Sea and southern
China is controlled by southwesterly wind anomalies.
The East Asian winter monsoon weakens but pre-
cipitation in southern China increases. From DJF
to the next MAM, the dry anomalies decay rapidly
and move further eastward with a dry center occur-
ring in the equatorial western Pacific. The SIO and
western North Pacific (WNP) anticyclones remain but
weaken. The evolution of precipitation anomalies re-
flects their association with ENSO turnaround. The
seasonal evolution of S-EOF 1 bears close resemblance
to the leading mode of the season-dependent Singular
Value Decomposition analysis of the tropical Pacific
SST anomalies and the A-AM circulation anomalies
derived by Wang et al. (2003).

Figure 3b shows spatial patterns of the second S-
EOF mode. In SON(0), the fall prior to the El Niño
development year, the WNP precipitation and cyclonic
circulation anomaly pattern shift equatorward from
their positions in the previous summer, and the con-
vective dipole in the equatorial Indian Ocean inten-
sifies. In the ensuing DJF and MAM, the anoma-
lous WNP cyclone and associated equatorial westerly
anomalies further strengthen, dominating the entire
western Pacific region. At the same time, dry anoma-
lies develop in the northern Indian Ocean and South-
east Asia in DJF and over eastern Indonesia and north-
ern Australia in MAM (1). The anomalous pattern in
MAM (1) is a robust precursor for El Niño develop-
ment; it then evolves into a mature El Niño event in
the central-eastern Pacific two or three seasons later.

Thus, an interesting precursory feature in the year
prior to the ENSO event is that a large-scale cyclonic
anomaly forms over the WNP in the summer to fall
prior to the El Niño developing year. This is fol-
lowed by a continuous southeastward movement and
strengthening through the following fall, winter, and
the next spring. This feature agrees well with the re-
sults of Wang (1995) who pointed out that this pattern
has occurred since the late 1970s.

4. The major modes of A-AM variability in
the GAMIL prediction

We first evaluate the skill of the one-month lead
prediction of seasonal precipitation anomalies made by
the GAMIL against the observed two leading modes,
then compare them with those derived from GPCP ob-

servation in order to fully appreciate the model’s skill.
Furthermore, we also discuss major deficiencies with
the GAMIL prediction.

Figure 1 shows that the temporal correlation co-
efficients between the observed and GAMIL predicted
PC time series are about 0.91 for the first S-EOF mode
and 0.32 for the second mode. Thus, the GAMIL
predicted the temporal variations of the observed 1st
mode very well, whereas the 2nd mode was not so well
predicted. Further, Fig. 2 indicates that the GAMIL
prediction captures, with high fidelity, the lead-lag cor-
relations between ENSO and the 1st mode, while it
fails to faithfully reflect the lead-lag correlations be-
tween ENSO and the 2nd mode. Note that the two
observed leading modes of A-AM IAV are primarily
associated with ENSO forcing and the local monsoon-
warm ocean interaction. This implies that the A-AM
IAV is basically determined by the ENSO forcing and
the ENSO-excited local monsoon-warm ocean interac-
tion. Land-sea thermal difference may be fundamental
for seasonal time scales or annual cycles of A-AM rain-
fall but not for its IAV. These are consistent with the
results obtained by Wang et al. (2003). Therefore, suc-
cessful reproduction of the El Niño-excited monsoon-
ocean interaction and El Niño forcing may be critical
for the seasonal prediction of the IAV leading modes
of the A-AM rainfall with the GAMIL.

The GAMIL’s hindcast reproduces the major fea-
tures of the observed first mode of the interannual
variability of A-AM seasonal precipitation better than
those of the second mode (Fig. 4). For the first S-
EOF mode, the anomalous patterns are, in general,
well forecast with the anomaly pattern correlation co-
efficient being 0.42. The second S-EOF mode patterns
are not so well reproduced with the anomaly pattern
correlation coefficient being 0.24. Larger discrepancies
are primarily found over the joining area of Asia and
the Indian-Pacific Ocean which includes the eastern In-
dian Ocean, the Maritime Continent, and the western
Pacific warm pool. The low-level winds are not ideally
reproduced in the tropics, especially in the Asian mon-
soon region during summer. As aforementioned, the
local monsoon-ocean interactions over the joining area
play an important role in the A-AM rainfall IAV, and
the low prediction skill of the GAMIL may result from
the deficiencies of reproduction in this joining area.
Thus, simulation improvement in the joining area of
Asia and the Indian-Pacific Ocean may be a crux of
matter for improving the GAMIL prediction skill of
the A-AM IAV.

Figure 5 shows the percentage variance accounted
for by the first four eigenvalues of the S-EOF analysis
of the A-AM precipitation. Shown also are the unit
standard deviation of the sampling errors associated
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Fig. 4. (a) Comparison of the spatial patterns of the 1st S-EOF eigenvector of seasonal precipita-
tion anomalies obtained from GPCP observation and GAMIL prediction. (b) The same as in (a)
except for the 2nd S-EOF mode.

with each percentage eigenvalue. According to the rule
of North et al. (1982), the observed first mode is well
distinguished from the rest of the S-EOFs in terms of
the sampling error bars. Hence, it is a statistically sig-
nificant mode. The first two modes derived from the
GAMIL prediction have similar levels of statistical sig-
nificance as the observed counterparts, only with the
fractional variance of the second mode slightly higher
than that of the observed.

Since the ENSO-excited local atmosphere-warm
ocean interaction is regarded as one of the physical
factors that determine the variability of the A-AM,
a feasible method for improving the GAMIL predic-
tion in this area is to use one-tier prediction system
which is considered to have taken into account local
monsoon-warm pool ocean interactions (Wang et al.,
2003; Wang et al., 2004a; Wu and Kirtman, 2005; Ku-
mar et al., 2005). The coupled one-tier approach may
enhance the predictability of the A-AM rainfall IAV.

5. Conclusion and discussion

Seasonal prediction of the A-AM precipitation is
of central importance yet it is extremely challenging
as far as climate prediction is concerned. Considering
the A-AM anomalies vary strongly with season, an S-
EOF analysis was adopted to depict the leading modes
of the IAV. The S-EOF analysis of GPCP precipitation
anomalies yields two distinguished modes. These two
modes have distinct relationship with ENSO. The first
mode concurs with the turnabout of warming (cooling)
in the eastern-central Pacific, whereas the 2nd mode
leads Niño 3.4 SST anomalies by about one year, pro-
viding a precursor for El Niño/La Niña development
(Fig. 2).

The GAMIL which participated in APCC/CliPAS
seasonal hindcast for the period 1979–2003 has been
evaluated against the observed leading modes of the
A-AM precipitation. It is found that the one-month
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Fig. 5. Percentage variance (%) explained by the first
4 S-EOF modes of seasonal precipitation anomalies ob-
tained from (a) GPCP and (b) GAMIL prediction. The
bars represent one standard deviation of the sampling
errors (North et al., 1982).

lead hindcast of the GAMIL is primarily able to cap-
ture major features of the observed two leading modes
of the A-AM IAV, with the first mode better predicted
than the second. It also depicts the relationship be-
tween the first mode and ENSO well. On the other
hand, the GAMIL has deficiencies in capturing the re-
lationship between the second mode and ENSO.

The GAMIL prediction discrepancies in the A-
AM IAV basically come from the simulation biases
in the joining area of Asia and the Indian-Pacific
Ocean. Considering the fact that the El Niño-excited
monsoon-ocean interaction and El Niño forcing may
be critical for the A-AM rainfall IAV major modes,
more efforts are needed to improve the simulation in
the joining area of Asia and the Indian-Pacific Ocean
as well as in the Niño 3.4 region. A feasible method is
to employ a one-tier prediction system and the coupled
one-tier approach which may enhance the predictabil-
ity of the A-AM rainfall IAV. However, since the two
leading IAV modes only explain 31.8% of the total
variance, how to predict the A-AM rainfall IAV is still
a challenging question.

In this study, we focus on the A-AM IAV predic-
tion with the GAMIL. As a matter of fact, the A-AM
variability has multi-timescale variations and the af-
fecting factors will change if time scale changes. Then

what factors contribute to the A-AM predictability on
other time scales? In addition, since ENSO forcing and
the ENSO-excited air-sea interaction play important
roles in the A-AM rainfall anomalies’ major modes,
could we find any additional source of predictability for
A-AM precipitation prediction? These are still open
questions and need further investigations.
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